首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously shown that the peptidase, nardilysin, contains a bipartite nuclear localization signal that permits the enzyme to cycle between the nucleus and cytoplasm. In the present study, we report that nardilysin accumulates in the nucleus of an oocyte as a function of its maturation. Nardilysin is predominantly localized in the cytoplasm of an oocyte when initially placed into culture. The enzyme starts to accumulate in the nucleus within 30 min of in vitro culture. After 3 h, nardilysin is found as a spherical structure surrounded by condensed chromosomal DNA. After 18 h of in vitro culture, it co-localizes with beta-tubulin at the spindle apparatus. Cilostamide, a phosphodiesterase 3A inhibitor that inhibits meiosis, blocks accumulation of nuclear nardilysin. This finding demonstrates that the nuclear entry of nardilysin is tightly controlled in the oocyte. Taken together, these experiments strongly suggest a role for nardilysin in meiosis through its dynamic translocation from cytosol to nucleus, and then to the spindle apparatus.  相似文献   

2.
NORPEG (RAI14), a developmentally regulated gene induced by retinoic acid, encodes a 980 amino acid (aa) residue protein containing six ankyrin repeats and a long coiled-coil domain [Kutty et al., J. Biol. Chem. 276 (2001), pp. 2831-2840]. We have expressed aa residues 1-287 of NORPEG and used the recombinant protein to produce an anti-NORPEG polyclonal antibody. Confocal immunofluorescence analysis showed that the subcellular localization of NORPEG in retinal pigment epithelial (ARPE-19) cells varies with cell density, with predominantly nuclear localization in nonconfluent cells, but a cytoplasmic localization, reminiscent of cytoskeleton, in confluent cultures. Interestingly, an evolutionarily conserved putative monopartite nuclear localization signal (P(270)KKRKAP(276)) was identified by analyzing the sequences of NORPEG and its orthologs. GFP-NORPEG (2-287 aa), a fusion protein containing this signal, was indeed localized to nuclei when expressed in ARPE-19 or COS-7 cells. Deletion and mutation analysis indicated that the identified nuclear localization sequence is indispensable for nuclear targeting.  相似文献   

3.
In the present study, the sub-cellular localization of ErbB2 and its mutants expressed as GFP-tagged proteins in MCF-7 cells or endogenous ErbB2 in SKBR3 cells was examined. The data presented here demonstrate that the full-length ErbB2 was localized at the cytoplasmic membrane and ErbB2 ICD localized in the nucleus predominantly. The sequence of ErbB2 ICD contains the information supporting its nuclear translocation and cytoplasmic retention. A region (residues 721–970) harboring an arginine triplet is essential for the cytoplasmic trafficking of ErbB2. The results indicate that differential sub-cellular localization of ErbB2 ICD and the full-length ErbB2 is dependent on their structural determinants. The present results give initial clues for further analysis of the mechanism of ErbB2 intracellular localization.  相似文献   

4.
Recent studies have shown that inositol 1,4,5-trisphosphate 3-kinase isoform B (IP3KB) possesses important roles in the development of immune cells. IP3KB can be targeted to multiple cellular compartments, among them nuclear localization and binding in close proximity to the plasma membrane. The B isoform is the only IP3K that is almost ubiquitously expressed in mammalian cells. Detailed mechanisms of its targeting regulation will be important in understanding the role of Ins(1,4,5)P(3) phosphorylation on subcellular calcium signaling and compartment-specific initiation of pathways leading to regulatory active higher phosphorylated inositol phosphates. Here, we identified an exportin 1-dependent nuclear export signal ((134)LQRELQNVQV) and characterized the amino acids responsible for nuclear localization of IP3KB ((129)RKLR). These two targeting domains regulate the amount of nuclear IP3KB in cells. We also demonstrated that the localization of IP3KB at the plasma membrane is due to its binding to cortical actin structures. Intriguingly, all three of these targeting activities reside in one small polypeptide segment (amino acids 104-165), which acts as a multitargeting domain (MTD). Finally, a hitherto unknown subnuclear localization of IP3KB could be demonstrated in rapidly growing H1299 cells. IP3KB is specifically enriched at nuclear invaginations extending perpendicular between the apical and basal surface of the nucleus of these flat cells. Such nuclear invaginations are known to be involved in Ins(1,4,5)P(3)-mediated Ca(2+) signaling of the nucleus. Our findings indicate that IP3KB not only regulates cytoplasmic Ca(2+) signals by phosphorylation of subplasmalemmal and cytoplasmic Ins(1,4,5)P(3) but may also be involved in modulating nuclear Ca(2+) signals generated from these nuclear envelope invaginations.  相似文献   

5.
Two isoforms of adenosine kinase (AdK) have been identified in mammalian organisms with the long isoform (AdK-long) containing extra 20-21 amino acids at the N-terminus (NTS). The subcellular localizations of these isoforms are not known and they contain no identifiable targeting sequence. Immunofluorescence labeling of mammalian cells expressing either only AdK-long or both isoforms with AdK-specific antibody showed only nuclear labeling or both nucleus and cytoplasmic labeling, respectively. The AdK-long and -short isoforms fused at the C-terminus with c-myc epitope also localized in the nucleus and cytoplasm, respectively. Fusion of the AdK-long NTS to green fluorescent protein also resulted in its nuclear localization. AdK-long NTS contains a cluster of conserved amino acids (PKPKKLKVE). Replacement of KK in this sequence with either AA or AD abolished its nuclear localization capability, indicating that this cluster likely serves as a nuclear localization signal. AdK in nucleus is likely required for sustaining methylation reactions.  相似文献   

6.
The transport of proteins into the nucleus requires the recognition of a nuclear localization signal sequence. Several proteins that interact with these sequences have been identified, including one of about 66 kDa. We have prepared antibodies that recognize the 66-kDa nuclear localization signal binding protein (NLSBP) and inhibit nuclear localization in vitro. By immunofluorescence, it is seen that the NLSBP is predominantly cytoplasmic and is distributed peripherally around the nucleus and the microtubule organizing center. There is also a weak punctate staining of the surface of the nucleus. Methanol-fixed cells can also be stained directly with fluorescently labeled karyophilic proteins. These stains reveal the same cytoplasmic structures as anti-NLSBP. The expression of the NLSBP is growth dependent. When cells grown to confluence are examined, the cytoplasmic staining is greatly reduced, leaving the punctate nuclear staining as the predominant feature. In serum-starved cells, very little staining of either the cytoplasm or the nucleus can be seen. Upon simulation by the addition of serum, the original cytoplasmic and nuclear envelope staining is restored. Cells grown in the presence of colchicine or taxol have an altered NLSBP distribution but apparently normal cytoplasmic nuclear transport.  相似文献   

7.
Dyskeratosis congenita is an inherited disease caused by mutations in genes coding for telomeric components. It was previously reported that expression of a dyskerin-derived peptide, GSE24.2, increases telomerase activity, regulates gene expression and decreases DNA damage and oxidative stress in dyskeratosis congenita patient cells. The biological activity of short peptides derived from GSE24.2 was tested and one of them, GSE4, that probed to be active, was further characterized in this article. Expression of this eleven amino acids long peptide increased telomerase activity and reduced DNA damage, oxidative stress and cell senescence in dyskerin-mutated cells. GSE4 expression also activated c-myc and TERT promoters and increase of c-myc, TERT and TERC expression. The level of biological activity of GSE4 was similar to that obtained by GSE24.2 expression. Incorporation of a dyskerin nuclear localization signal to GSE24.2 did not change its activity on promoter regulation and DNA damage protection. However, incorporation of a signal that increases the rate of nucleolar localization impaired GSE24.2 activity. Incorporation of the dyskerin nuclear localization signal to GSE4 did not alter its biological activity. Mutation of the Aspartic Acid residue that is conserved in the pseudouridine synthase domain present in GSE4 did not impair its activity, except for the repression of c-myc promoter activity and the decrease of c-myc, TERT and TERC gene expression in dyskerin-mutated cells. These results indicated that GSE4 could be of great therapeutic interest for treatment of dyskeratosis congenita patients.  相似文献   

8.
Porcine circovirus type 2 possesses a circular, single-stranded DNA genome that requires the replication protein (Rep) for virus replication. To characterize the DNA binding potential and the significant region that confers the nuclear localization of the Rep protein, the defined coding regions of rep gene were cloned and expressed. All of the recombinant proteins except for the N-terminal 110 residues deletion mutant could bind to the double-stranded minimal binding site of replication origin (ori). In addition, the N-terminal deletion mutant lacking 110 residues exhibited mainly cytoplasmic staining in the transfected cells in contrast to the others, which localized dominantly in the nucleus, suggesting that this N-terminal domain is essential for nuclear localization. Furthermore, a series of green fluorescence proteins (GFP) containing potential nuclear localization signal (NLS) sequences were tested for their cellular distribution. The ability of the utmost 20 residues of the N-terminal region to target the GFP to the nucleus confirmed its role as a functional NLS.  相似文献   

9.
Nuclear localization of topoisomerase IIalpha and beta is important for normal cell function as well as being a determinant of tumour cell sensitivity to topoisomerase II-targeting chemotherapeutic agents. However, topoisomerase II is cytoplasmic under certain circumstances, indicating that it may undergo active nuclear export. We have examined the ability of Leu-rich potential nuclear export signal (NES) sequences present in human topoisomerase IIalpha and beta to direct the export of a green fluorescent protein-glutathione-S-transferase fusion protein following microinjection into HeLa cell nuclei. Of 12 sequences tested, only one potential NES sequence from the comparable location in each isoform (alphaNES(1018-1028) and betaNES(1034-1044)) was active. Mutation of hydrophobic residues in alphaNES(1018-1028) and betaNES(1034-1044) substantially reduced their nuclear export activity as did leptomycin B treatment of microinjected cells. Our results provide the first evidence of active nuclear export of topoisomerase II and suggest it is mediated by a CRM1-dependent pathway.  相似文献   

10.
Using both conventional and laser confocal fluorescence microscopy, the intracellular distribution of galectin-1 in HeLa cells was analyzed and compared with the localization of previously documented markers of the nucleus and cytoplasm. The Sm epitopes of the small nuclear ribonucleoprotein complexes (snRNPs) and the non-snRNP splicing factor SC35 yielded only nuclear staining. On the other hand, the enzyme lactate dehydrogenase was cytoplasmic. In contrast to these patterns in which nuclear versus cytoplasmic localizations appeared to be mutually exclusive, galectin-1, as well as galectin-3, yielded simultaneous nuclear and cytoplasmic staining. Confocal microscopy showed galectin-1 fluorescence throughout most of the sections from the top of the cell to the bottom. Through the middle sections, as the plane of focus cuts through the nucleus, there was definite fluorescence staining in the nuclear compartment. This nuclear localization was critically dependent on the type of detergent used to permeabilize the cell: cells treated with saponin or digitonin yielded exclusively cytoplasmic staining while Triton X-100-treated cells showed nuclear as well as cytoplasmic labeling. Finally, double-immunofluorescence analysis showed that, within the nucleoplasm, the following pairs of nuclear antigens could be colocalized in certain speckled structures: (a) SC35 versus Sm; (b) galectin-1 versus Sm; (c) galectin-3 versus Sm; and (d) galectin-1 versus galectin-3. These results establish the presence of galectin-1 in the nuclei of HeLa cells, a conclusion consistent with the identification of the protein in nuclear extracts of the same cells and with its documentation as a factor in pre-mRNA splicing.  相似文献   

11.
We examined the expression of potential tumor marker survivin by immunohistochemical staining using antisurvivin antibody (DAKO, Clone 12C4) in a panel of 25 malignant melanomas. In each section, we assessed the percentage of positively stained tumor cells, the intensity of staining and its subcellular localization. Survivin was present in 23 out of 25 cases (92%). Nuclear staining was found in 2 of these 23 cases (8.7%) only, while cytoplasmic staining only was seen in 3 of them (13%). The combined nuclear as well as cytoplasmic localization of survivin was demonstrated in 18 out of 23 cases (78.3%). In 2 cases revealing nuclear staining only, the worse histological features were more pronounced than in 3 cases with cytoplasmic staining only. Our results suggest that nuclear positivity of survivin may correlate with the degree of malignancy. In addition, we conclude that overexpression of survivin involved in the pathogenesis of melanoma represents an important diagnostic marker.  相似文献   

12.
Galectin-3 is a galactose/lactose-binding protein (M(r) approximately 30,000), identified as a required factor in the splicing of pre-mRNA. In the LG1 strain of human diploid fibroblasts, galectin-3 could be found in both the nucleus and the cytoplasm of young, proliferating cells. In contrast, the protein was predominantly cytoplasmic in senescent LG1 cells that have lost replicative competence through in vitro culture. Incubation of young cells with leptomycin B, a drug that disrupts the interaction between the leucine-rich nuclear export signal and its receptor, resulted in the accumulation of galectin-3 inside the nucleus. In senescent cells, galectin-3 staining remained cytoplasmic even in the presence of the drug, thus suggesting that the observed localization in the cytoplasm was due to a lack of nuclear import. In heterodikaryons derived from fusion of young and senescent LG1 cells, the predominant phenotype was galectin-3 in both nuclei. These results suggest that senescent LG1 cells might lack a factor(s) specifically required for galectin-3 nuclear import.  相似文献   

13.
14.
15.
Muslin AJ  Xing H 《Cellular signalling》2000,12(11-12):703-709
14-3-3 family of proteins plays a key regulatory role in signal transduction, checkpoint control, apoptotic, and nutrient-sensing pathways. 14-3-3 proteins act by binding to partner proteins, and this binding often leads to the altered subcellular localization of the partner. 14-3-3 proteins promote the cytoplasmic localization of many binding partners, including the pro-apoptotic protein BAD and the cell cycle regulatory phosphatase Cdc25C, but they can also promote the nuclear localization of other partners, such as the catalytic subunit of telomerase (TERT). In some cases, 14-3-3 binding has no effect on the subcellular localization of a partner. 14-3-3 may affect the localization of a protein by interfering with the function of a nearby targeting sequence, such as a nuclear localization sequence (NLS) or a nuclear export sequence (NES), on the binding partner.  相似文献   

16.
17.
18.
Cellular disintegrins are a family of proteins that are related to snake venom integrin ligands and metalloproteases. We have cloned and sequenced the mouse and human homologue of a widely expressed cellular disintegrin, which we have termed MDC9 (for metalloprotease/disintegrin/cysteine-rich protein 9). The deduced mouse and human protein sequences are 82% identical. MDC9 contains several distinct protein domains: a signal sequence is followed by a prodomain and a domain with sequence similarity to snake venom metalloproteases, a disintegrin domain, a cysteine-rich region, an EGF repeat, a membrane anchor, and a cytoplasmic tail. The cytoplasmic tail of MDC9 has two proline-rich sequences which can bind the SH3 domain of Src, and may therefore function as SH3 ligand domains. Western blot analysis shows that MDC9 is an approximately 84-kD glycoprotein in all mouse tissues examined, and in NIH 3T3 fibroblast and C2C12 myoblast mouse cell lines. MDC9 can be both cell surface biotinylated and 125I-labeled in NIH 3T3 mouse fibroblasts, indicating that the protein is present on the plasma membrane. Expression of MDC9 in COS-7 cells yields an 84-kD protein, and immunofluorescence analysis of COS-7 cells expressing MDC9 shows a staining pattern that is consistent with a plasma membrane localization. The apparent molecular mass of 84 kD suggests that MDC9 contains a membrane-anchored metalloprotease and disintegrin domain. We propose that MDC9 might function as a membrane-anchored integrin ligand or metalloprotease, or that MDC9 may combine both activities in one protein.  相似文献   

19.
Previously we reported that ferritin in corneal epithelial (CE) cells is a nuclear protein that protects DNA from UV damage. Since ferritin is normally cytoplasmic, in CE cells, a mechanism must exist that effects its nuclear localization. We have now determined that this involves a nuclear transport molecule we have termed ferritoid. Ferritoid is specific for CE cells and is developmentally regulated. Structurally, ferritoid contains multiple domains, including a functional SV40-type nuclear localization signal and a ferritin-like region of approximately 50% similarity to ferritin itself. This latter domain is likely responsible for the interaction between ferritoid and ferritin detected by co-immunoprecipitation analysis. To test functionally whether ferritoid is capable of transporting ferritin into the nucleus, we performed cotransfections of COS-1 cells with constructs for ferritoid and ferritin. Consistent with the proposed nuclear transport function for ferritoid, co-transfections with full-length constructs for ferritoid and ferritin resulted in a preferential nuclear localization of both molecules; this was not observed when the nuclear localization signal of ferritoid was deleted. Moreover, since ferritoid is structurally similar to ferritin, it may be an example of a nuclear transporter that evolved from the molecule it transports (ferritin).  相似文献   

20.
C105Y, a synthetic peptide (CSIPPEVKFNKPFVYLI) based on the amino acid sequence corresponding to residues 359-374 of alpha1-antitrypsin, enhances gene expression from DNA nanoparticles. To investigate how this enhancement occurs, C105Y was fluorescently labeled to study its uptake and intracellular trafficking. When human hepatoma cells (HuH7) were incubated with fluorescently labeled C105Y for as little as 3 min, C105Y displayed nuclear and cytoplasmic staining with enrichment of fluorescent signal in the nucleus and nucleolus. Uptake and nucleolar localization were observed with the short sequence PFVYLI, but not with SIPPEVKFNK, and the D-isomer was readily taken up into cells but not into the nucleus. We found that the C105Y peptide is routed to the nucleolus very rapidly in an energy-dependent fashion, whereas membrane translocation and nuclear localization are energy-independent. When we tested the involvement of known endocytosis pathways in uptake and trafficking of this peptide, we demonstrated that C105Y peptide is internalized by a clathrin- and caveolin-independent pathway, although lipid raft-mediated endocytosis may play a role in peptide intracellular trafficking. Efficient energy-independent cell entry with rapid nuclear localization probably accounts for enhancement of gene expression from inclusion of C105Y into DNA nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号