共查询到20条相似文献,搜索用时 0 毫秒
1.
Sugiyama Y Ishida A Sueyoshi N Kameshita I 《Biochemical and biophysical research communications》2008,377(2):648-652
A 30-kDa fragment of Ca2+/calmodulin-dependent protein kinase II (30K-CaMKII) is a constitutively active protein Ser/Thr kinase devoid of autophosphorylation activity. We have produced a chimeric enzyme of 30K-CaMKII (designated CX40-30K-CaMKII), in which the N-terminal 40 amino acids of Xenopus Ca2+/calmodulin-dependent protein kinase I (CX40) were fused to the N-terminal end of 30K-CaMKII. Although CX40-30K-CaMKII exhibited essentially the same substrate specificity as 30K-CaMKII, it underwent significant autophosphorylation. Surprisingly, its autophosphorylation site was found to be Tyr-18 within the N-terminal CX40 region of the fusion protein, although it did not show any Tyr kinase activity toward exogenous substrates. Several lines of evidence suggested that the autophosphorylation occurred via an intramolecular mechanism. These data suggest that even typical Ser/Thr kinases such as 30K-CaMKII can phosphorylate Tyr residues under certain conditions. The possible mechanism of the Tyr residue autophosphorylation is discussed. 相似文献
2.
Using a standard patch-clamp technique in the perforated patch configuration, we studied the effect of a highly specific membrane-permeable
inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaM-KII), KN-93, on fast outward A-type potassium current in isolated smooth-muscle
cells (SMCs) of an epididymal region of the rat vas deferens. This inhibitor significantly changed the dynamics of the studied current; in particular, it increased the rate of inactivation
and considerably slowed down the recovery after inactivation. In the presence of 5 μM KN-93, we observed a moderate (nearly
by 20%) decrease in the peak amplitude of fast A-type current. Based on the data obtained, we conclude that voltage-sensitive
fast A-type potassium current in SMCs of the epididymal part of the rat vas deferens can be significantly regulated by the activity of CaM-KII. Therefore, by influencing the kinetic characteristics of the above
current, this enzyme can be indirectly involved in the control of electrical activity in SMCs.
Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 419–422, July–October, 2007. 相似文献
3.
Masashi Yamashita Hiroki Yamada Syouichi Katayama Yukako Senga Yasuhiro Takenaka 《Bioscience, biotechnology, and biochemistry》2018,82(8):1335-1343
We surveyed genome sequences from the basidiomycetous mushroom Coprinopsis cinerea and isolated a cDNA homologous to CMKA, a calmodulin-dependent protein kinase (CaMK) in Aspergillus nidulans. We designated this sequence, encoding 580 amino acids with a molecular weight of 63,987, as CoPK02. CoPK02 possessed twelve subdomains specific to protein kinases and exhibited 43, 35, 40% identity with rat CaMKI, CaMKII, CaMKIV, respectively, and 40% identity with CoPK12, one of the CaMK orthologs in C. cinerea. CoPK02 showed significant autophosphorylation activity and phosphorylated exogenous proteins in the presence of Ca2+/CaM. By the CaM-overlay assay we confirmed that the C-terminal sequence (Trp346-Arg358) was the calmodulin-binding site, and that the binding of Ca2+/CaM to CoPK02 was reduced by the autophosphorylation of CoPK02. Since CoPK02 evolved in a different clade from CoPK12, and showed different gene expression compared to that of CoPK32, which is homologous to mitogen-activated protein kinase-activated protein kinase, CoPK02 and CoPK12 might cooperatively regulate Ca2+-signaling in C. cinerea. 相似文献
4.
Ishida A Kameshita I Okuno S Kitani T Fujisawa H 《Archives of biochemistry and biophysics》2002,407(1):72-82
Calmodulin-dependent protein kinase IV (CaM-kinase IV) phosphorylated calmodulin (CaM), which is its own activator, in a poly-L-Lys [poly(Lys)]-dependent manner. Although CaM-kinase II weakly phosphorylated CaM under the same conditions, CaM-kinase I, CaM-kinase kinase alpha, and cAMP-dependent protein kinase did not phosphorylate CaM. Polycations such as poly(Lys) were required for the phosphorylation. The optimum concentration of poly(Lys) for the phosphorylation of 1 microM CaM was about 10 microg/ml, but poly(Lys) strongly inhibited CaM-kinase IV activity toward syntide-2 at this concentration, suggesting that the phosphorylation of CaM is not due to simple activation of the catalytic activity. Poly-L-Arg could partially substitute for poly(Lys), but protamine, spermine, and poly-L-Glu/Lys/Tyr (6/3/1) could not. When phosphorylation was carried out in the presence of poly(Lys) having various molecular weights, poly(Lys) with a higher molecular weight resulted in a higher degree of phosphorylation. Binding experiments using fluorescence polarization suggested that poly(Lys) mediates interaction between the CaM-kinase IV/CaM complex and another CaM. The 32P-labeled CaM was digested with BrCN and Achromobacter protease I, and the resulting peptides were purified by reversed-phase HPLC. Automated Edman sequence analysis of the peptides, together with phosphoamino acid analysis, indicated that the major phosphorylation site was Thr44. Activation of CaM-kinase II by the phosphorylated CaM was significantly lower than that by the nonphosphorylated CaM. Thus, CaM-kinase IV activated by binding Ca2+/CaM can bind and phosphorylate another CaM with the aid of poly(Lys), leading to a decrease in the activity of CaM. 相似文献
5.
Li-Sung Hsu Ann-Ping Tsou Chin-Wen Chi Chen-Hsen Lee Jeou-Yuan Chen 《Journal of biomedical science》1998,5(2):141-149
A human cDNA clone encoding the calcium/calmodulin-dependent protein kinase kinase (CaMKK) was isolated by RT-PCR amplification of the fragment corresponding to the conserved kinase catalytic domain followed by rapid amplification of cDNA ends and cDNA library screening. Compilation of nucleotide sequencing data yielded a consensus cDNA sequence of 1.9 kb with an open reading frame of 1,251 nucleotides in length which translates to a polypeptide of 417 amino acids (47 kd). It showed significant homology to the rat brain CaMKK isozymes. The human CaMKK, which was expressed as a Flag-tagged protein in human non-small cell lung cancer H-1299 cells followed by immunoprecipitation with anti-Flag antibody, was shown to phosphorylate recombinant human CaMK I in a calcium/CaM-dependent fashion. Northern blot analysis revealed that human CaMKK is ubiquitously expressed, with brain showing the highest level of expression. The CaMKK gene is localized to human chromosome 12. The presence of cDNA clones with divergent 3' terminal sequences suggests a family of CaMKK variants which may arise from alternative splicing. 相似文献
6.
Ishida A Kameshita I Kitani T Okuno S Takeuchi M Fujisawa H 《Archives of biochemistry and biophysics》2002,408(2):229-238
Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKPase) dephosphorylates and regulates multifunctional Ca(2+)/calmodulin-dependent protein kinases (CaMKs). One of the prominent features of CaMKPase is stimulation of phosphatase activity by polycations such as poly-L-lysine (poly(Lys)). Using various polycations, basicity and molecular weight of the polymer proved to be important for the stimulation. Surface plasmon resonance (SPR) analysis showed that CaMKIV(T196D), which mimics CaMKPase substrate, and CaMKPase could form tight complexes with poly(Lys). Pull-down binding experiments suggested that the formation of a tightly associated ternary complex consisting of CaMKPase, poly(Lys), and phosphorylated CaMKIV is essential for stimulation. Dilution experiments also supported this contention. Poly(Lys) failed to stimulate a CaMKPase mutant in which a Glu cluster corresponding to residues 101-109 in the N-terminal domain was deleted, and the mutant could not interact with poly(Lys) in the presence of Mn(2+). Thus, the Glu cluster appeared to be the binding site for polycations and to play a pivotal role in the polycation stimulation of CaMKPase activity. 相似文献
7.
Ovulated rat oocytes are activated spontaneously soon after recovery from the oviducts. To investigate the kinetics and mechanism of rat oocyte spontaneous activation (OSA), we investigated the effect of aging in oviducts, hyaluronidase treatment, and extracellular and intracellular calcium, and examined the activity of CaMKII and the effect of its inhibitor on OSA. Oocyte aging in oviducts and hyaluronidase did not affect OSA. However, OSA was significantly decreased in calcium-free medium and in calcium-containing medium containing L-type calcium channel blocker and IP(3)R inhibitor. Moreover, significantly lower OSA was shown with an inhibitor of CaMKII. There was a significant increase of CaMKII activity at 30min after oocyte recovery and constitutively active CaMKII was located near the meiotic spindle in freshly recovered oocytes. Therefore, CaMKII is one of the upstream signals to activate rat oocytes spontaneously after recovery and rat oocytes respond very sensitively to extracellular calcium. 相似文献
8.
Grossman SD Futter M Snyder GL Allen PB Nairn AC Greengard P Hsieh-Wilson LC 《Journal of neurochemistry》2004,90(2):317-324
Spinophilin is a protein phosphatase-1- and actin-binding protein that modulates excitatory synaptic transmission and dendritic spine morphology. We have recently shown that the interaction of spinophilin with the actin cytoskeleton depends upon phosphorylation by protein kinase A. We have now found that spinophilin is phosphorylated by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in neurons. Ca(2+)/calmodulin-dependent protein kinase II, located within the post-synaptic density of dendritic spines, is known to play a role in synaptic plasticity and is ideally positioned to regulate spinophilin. Using tryptic phosphopeptide mapping, site-directed mutagenesis and microsequencing analysis, we identified two sites of CaMKII phosphorylation (Ser-100 and Ser-116) within the actin-binding domain of spinophilin. Phosphorylation by CaMKII reduced the affinity of spinophilin for F-actin. In neurons, phosphorylation at Ser-100 by CaMKII was Ca(2+) dependent and was associated with an enrichment of spinophilin in the synaptic plasma membrane fraction. These results indicate that spinophilin is phosphorylated by multiple kinases in vivo and that differential phosphorylation may target spinophilin to specific locations within dendritic spines. 相似文献
9.
The promoter activity of the rat Ca2+/calmodulin-dependent protein kinase II gene was analyzed using the luciferase reporter gene in neuronal and non-neuronal
cell lines. Neuronal cell type-specific promoter activity was found in the 5′-flanking region of α and β isoform genes of
the kinase. Silencer elements were also found further upstream of promoter regions. A brain-specific protein bound to the
DNA sequence of the 5′-flanking region of the gene was found by gel mobility shift analysis in the nuclear extract of the
rat brain, including the cerebellum, forebrain, and brainstem, but not in that of non-neuronal tissues, including liver, kidney
and spleen. The luciferase expression system and gel shift analysis can be used as an additional and better index by which
to monitor gene expression in most cell types.
Published: April 12, 2002 相似文献
10.
Ca(2+)/calmodulin-dependent protein kinase kinase alpha (CaMKKalpha) plays critical roles in the modulation of neuronal cell survival as well as many other cellular activities. Here we show that 14-3-3 proteins directly regulate CaMKKalpha when the enzyme is phosphorylated by protein kinase A on either Ser74 or Ser475. Mutational analysis revealed that these two serines are both functional: the CaMKKalpha mutant with a mutation at either of these residues, but not the double mutant, was inhibited significantly by 14-3-3. The mode of regulation described herein differs the recently described mode of 14-3-3 regulation of CaMKKalpha. 相似文献
11.
Yamamoto H Hiragami Y Murayama M Ishizuka K Kawahara M Takashima A 《Journal of neurochemistry》2005,94(5):1438-1447
It is well known that tau is a good in vitro substrate for Ca2+/calmodulin-dependent protein kinase II (CaM kinase II). However, it is not clear at present whether CaM kinase II phosphorylates tau in vivo or not. Serine 416, numbered according to the longest human tau isoform, has been reported to be one of the major phosphorylation sites by CaM kinase II in vitro. In this study, we produced a specific antibody against tau phosphorylated at serine 416 (PS416-tau). Immunoblot analysis revealed that the antibody reacted with tau in the rat brain extract which was prepared in the presence of protein phosphatase inhibitors. Developmental study indicated that serine 416 was strongly phosphorylated at early developmental stages in rat brain. We examined the localization of PS416-tau in primary cultured hippocampal neurons and the immortalized GnRH neurons (GT1-7 cells), which were stably transfected with CaM kinase IIalpha cDNA. Immunostaining of these cells indicated that tau was phosphorylated mainly in neuronal soma. Interestingly, tau in neuronal soma in Alzheimer's disease (AD) brain was strongly immunostained by the antibody. These results suggest that CaM kinase II is involved in the accumulation of tau in neuronal soma in AD brain. 相似文献
12.
Mariko Tsukane 《Journal of enzyme inhibition and medicinal chemistry》2013,28(2):365-371
The involvement of tau phosphorylation in apoptosis resembling Alzheimer's disease (AD) was investigated using a cell model of P19 cells stably expressing human tau441 (tau/P19 cells). Apoptotic cell death was observed specifically in tau/P19 cells during neural differentiation with retinoic acid (RA) treatment. A CaM kinase II inhibitor, KN-93, protected tau/P19 cells from apoptosis, although it stimulated the cell death of wild-type P19 cells (wt/P19 cells). W-7 and calmidazolium, calmodulin antagonists, also specifically inhibited the apoptosis of tau/P19 cells. LiCl, an inhibitor of glycogen synthase 3, a tau kinase, was effective in protecting tau/P19 cells from apoptosis, but the protective effect was less than that of CaM kinase II inhibitor and calmodulin antagonists. Tau in the nuclei of tau/P19 cells was phosphorylated at the sites for CaM kinase II detected by an antibody recognizing a phosphorylated form of tau. These results indicated that CaM kinase II was involved in the apoptosis of tau/P19 cells induced by RA treatment. 相似文献
13.
Keisuke Kaneko Yusuke YamadaNoriyuki Sueyoshi Akira WatanabeYasuhiko Asada Isamu Kameshita 《Biochimica et Biophysica Acta (BBA)/General Subjects》2009
We isolated cDNA clones for novel protein kinases by expression screening of a cDNA library from the basidiomycetous mushroom Coprinus cinereus. One of the isolated clones was found to encode a calmodulin (CaM)-binding protein consisting of 488 amino acid residues with a predicted molecular weight of 53,906, which we designated CoPK12. The amino acid sequence of the catalytic domain of CoPK12 showed 46% identity with those of rat Ca2+/CaM-dependent protein kinase (CaMK) I and CaMKIV. However, a striking difference between these kinases is that the critical Thr residue in the activating phosphorylation site of CaMKI/IV is replaced by a Glu residue at the identical position in CoPK12. As predicted from its primary sequence, CoPK12 was found to behave like an activated form of CaMKI phosphorylated by an upstream CaMK kinase, indicating that CoPK12 is a unique CaMK with different properties from those of the well-characterized CaMKI, II, and IV. CoPK12 was abundantly expressed in actively growing mycelia and phosphorylated various proteins, including endogenous substrates, in the presence of Ca2+/CaM. Treatment of mycelia of C. cinereus with KN-93, which was found to inhibit CoPK12, resulted in a significant reduction in growth rate of mycelia. These results suggest that CoPK12 is a new type of multifunctional CaMK expressed in C. cinereus, and that it may play an important role in the mycelial growth. 相似文献
14.
Ca2+/calmodulin-dependent protein kinase II (CaMKII), the most abundant kinase at the postsynaptic density (PSD), is expected to be involved in activity-induced regulation of synaptic properties. CaMKII is activated when it binds calmodulin in the presence of Ca2+ and, once autophosphorylated on T-286/7, remains active in the absence of Ca2+ (autonomous form). In the present study we used a quantitative mass spectrometric strategy (iTRAQ) to identify sites on PSD components phosphorylated upon CaMKII activation. Phosphorylation in isolated PSDs was monitored under conditions where CaMKII is: (1) mostly inactive (basal state), (2) active in the presence of Ca2+, and (3) active in the absence of Ca2+. The quantification strategy was validated through confirmation of previously described autophosphorylation characteristics of CaMKII. The effectiveness of phosphorylation of major PSD components by the activated CaMKII in the presence and absence of Ca2+ varied. Most notably, autonomous activity in the absence of Ca2+ was more effective in the phosphorylation of three residues on SynGAP. Several PSD scaffold proteins were phosphorylated upon activation of CaMKII. The strategy adopted allowed the identification, for the first time, of CaMKII-regulated sites on SAPAPs and Shanks, including three conserved serine residues near the C-termini of SAPAP1, SAPAP2, and SAPAP3. Involvement of CaMKII in the phosphorylation of PSD scaffold proteins suggests a role in activity-induced structural re-organization of the PSD. 相似文献
15.
Diisopropyl phosphorofluoridate (DFP) produces organophosphorus ester-induced delayed neurotoxicity (OPIDN) in humans and sensitive animal species, e.g., adult chicken. The chickens were sacrificed 18 days after a single dose of DFP (1.7 mg/kg, sc.), which produced severe ataxia or paralysis in 10–14 days. We studied Ca2+/calmodulin-dependent in vitro neurofilament phosphorylation by the brain subcellular fractions of control and DFP-treated hens. There was enhanced phosphorylation of all three NF subunits by the brain supernatant of treated hens. This was accompanied by enhanced autophosphorylation of both Ca2+/CaM-dependent protein kinase II (CaM-kinase II) subunits and increased calmodulin binding using either125I-CaM or biotinylated calmodulin to only subunit without concomitant increase in the amount of this enzyme. This enhanced phosphorylation of neurofilament subunits was completely and partially inhibited by mastoparan and KN-62, respectively. There was no alteration in the distribution of CaM-kinase II activity in treated hens and the activity was not related to its concentration in different subcellular fractions. The difference in125I-CaM binding to CaM-kinase II subunit in the brain supernatants of control and DFP-treated hens was not altered by its phosphorylation or dephosphorylation. The increased CaM-kinase II activity in the soluble fraction of DFP-treated hen brain may be involved in the aberrant phosphorylation of axonal neurofilaments, and thus play a role in OPIDN.Abbreviations CaM
calmodulin
- CaM-kinase II
Ca2+/calmodulin-dependent protein kinase II
- DFP
diisopropyl phosphorofluoridate
- ECL
enhanced chemiluminescence
- EDTA
ethylenediaminetetraacetic acid
- EGTA
ethylene glycol-bis(-aminoethyl ether)N,N,N,N-tetraacetic acid
- MAP-2
microtubule-associated protein-2
- MBP
myelin basic protein
- OPIDN
organophosphorus ester-induced delayed neurotoxicity
- PIPES
1,4-piperazinediethanesulfonic acid
- PMSF
phenylmethylsulfonyl fluoride
- SDS-PAGE
sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- TCA
trichloroacetic acid 相似文献
16.
The relation between CaM kinase II activity and high Ca2+-mediated stress responses was studied in cultured vascular smooth muscle cells. Treatment with ionomycin (1 M) for 5 min caused a significant loss of CaM kinase II activity in whole cell homegenates and prominent vesiculation of the endoplasmic reticulum (ER). Similar losses of CaM kinase II activity were observed in the soluble lysate as assessed by activity measurements and Western blotting. Examination of the post-lysate particulate fraction showed that the loss of CaM kinase II from the soluble lysate was accompanied by a redistribution of CaM kinase II to this fraction. The ionomycin-mediated response was limited to this concentration (1 M); lower concentrations of ionomycin as well as stimulation with angiotensin II (1 M) or ATP (100 M) did not cause a shift in CaM kinase II distribution. Treatment with neither the CaM kinase II inhibitor KN-93 nor the phosphatase inhibitor okadaic acid altered the ionomycin-induced redistribution indicating that CaM kinase II activation and/or phosphorylation was not part of the mechanism. The response, however, was eliminated when the cells were treated in Ca2+-free medium. Washout of ionomycin led to only a partial restoration of the kinase activity in the soluble fraction after 10 min. Immunofluorescence microscopy of resting cells indicated colocalization of antibodies to CaM kinase II and an ER protein marker. ER vesiculation induced by ionomycin coincided with a parallel redistribution of CaM kinase II and ER marker proteins. These data link ionomycin-induced ER restructuring to a progressive redistribution of CaM kinase II protein to an insoluble particulate fraction and loss of cellular CaM kinase II activity. We propose that redistribution of CaM kinase II and loss of cellular activity are components of a common Ca2+-overload induced cellular stress response in cells. 相似文献
17.
Toshie Kambe Tao Song Tsuyoshi Takata Yoshiaki Miyamoto Yasuhito Naito Yasuo Watanabe 《FEBS letters》2010,584(11):2478-2323
We show that Ca2+/calmodulin(CaM)-dependent protein kinase I (CaMKI) is directly inhibited by its S-glutathionylation at the Cys179. In vitro studies demonstrated that treatment of CaMKI with diamide and glutathione results in inactivation of the enzyme, with a concomitant S-glutathionylation of CaMKI at Cys179 detected by mass spectrometry. Mutagenesis studies confirmed that S-glutathionylation of Cys179 is both necessary and sufficient for the inhibition of CaMKI by diamide and glutathione. In transfected cells expressing CaMKI, treatment with diamide caused a reversible decrease in CaMKI activity. Cells expressing mutant CaMKI (179CV) proved resistant in this regard. Thus, our results indicate that the reversible regulation of CaMKI via its modification at Cys179 is an important mechanism in processing calcium signal transduction in cells. 相似文献
18.
Tada Y Nimura T Sueyoshi N Ishida A Shigeri Y Kameshita I 《Archives of biochemistry and biophysics》2006,452(2):174-185
Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP) is a member of the serine/threonine protein phosphatases and shares 29% sequence identity with protein phosphatase 2Calpha (PP2Calpha) in its catalytic domain. To investigate the functional domains of CaMKP, mutational analysis was carried out using various recombinant CaMKPs expressed in Escherichia coli. Analysis of N-terminal deletion mutants showed that the N-terminal region of CaMKP played important roles in the formation of the catalytically active structure of the enzyme, and a critical role in polycation stimulation. A chimera mutant, a fusion of the N-terminal domain of CaMKP and the catalytic domain of PP2Calpha, exhibited similar substrate specificity to CaMKP but not to PP2Calpha, suggesting that the N-terminal region of CaMKP is crucial for its unique substrate specificity. Point mutations at Arg-162, Asp-194, His-196, and Asp-400, highly conserved amino acid residues in the catalytic domain of PP2C family, resulted in a significant loss of phosphatase activity, indicating that these amino acid residues may play important roles in the catalytic activity of CaMKP. Although CaMKP(1-412), a C-terminal truncation mutant, retained phosphatase activity, it was found to be much less stable upon incubation at 37 degrees C than wild type CaMKP, indicating that the C-terminal region of CaMKP is important for the maintenance of the catalytically active conformation. The results suggested that the N- and C-terminal sequences of CaMKP are essential for the regulation and stability of CaMKP. 相似文献
19.
Yoshiyuki Yoshimura Takashi Shinkawa Masato Taoka Kana Kobayashi Toshiaki Isobe Takashi Yamauchi 《Biochemical and biophysical research communications》2002,290(3):948-954
Previously we detected more than 28 PSD proteins to be phosphorylated by CaM kinase II, and identified 14 protein substrates (Yoshimura, Y., Aoi, T., Yamauchi, T., Mol. Brain Res. 81, 118-128, 2000). In the present study, the remaining substrates were analyzed by protein sequencing and mass spectrometry. We found 6 proteins not previously known to be substrates of CaM kinase II, namely PSD95-associated protein, SAP97, TOAD-64, TNF receptor-associated protein, insulin-receptor tyrosine kinase 58/53 kDa substrate, and homer 1b. 相似文献