首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simian virus 40 capsid proteins VP-1, VP-2, and VP-3 have been synthesized in wheat germ and reticulocyte cell-free systems in response to either poly(A)-containing mRNA from the cytoplasm of infected cells or viral RNA purified by hybridization to simian virus 40 DNA linked to Sepharose. All three viral polypeptides synthesized in vitro are specifically immunoprecipitated with anti-simian virus 40 capsid serum. VP-2 and VP-3 are related by tryptic peptide mapping to each other but not to VP-1. The most abundant class of L-strand-specific viral mRNA, the 16S species, codes for the major capsid protein. The relatively minor 19S class directs the cell-free synthesis of VP-1, VP-2, and VP-3. Whether the 19S RNA represents more than one distinct species of mRNA is not yet clear. VP-1 mRNA can be isolated from the cytoplasm, detergent-washed nuclei, and the nuclear wash fraction. The mRNA from the nuclear wash fraction is enriched for VP-2 mRNA when compared to other viral or cellular polypeptides.  相似文献   

2.
3.
W Lin  T Hata    H Kasamatsu 《Journal of virology》1984,50(2):363-371
The amounts of simian virus 40 structural polypeptides Vp1, Vp2, and Vp3 in different subcellular fractions at various times after lytic infection were determined by a quantitative immunoblotting procedure. Simian virus 40-infected cells were lysed with a buffer containing Nonidet P-40 to yield a soluble fraction. The Nonidet P-40-insoluble fraction was further fractionated in the presence of deoxycholate and Tween 40 to yield a soluble fraction (cytoskeletal) and an insoluble fraction (Nuc), which is primarily cell nuclei. At 33 h postinfection, the majority of viral structural proteins was found in the cell nucleus, whereas, at 48 to 65 h postinfection, Vp1 was distributed evenly among all cell fractions and Vp2 and Vp3 were found predominantly in the cytoskeletal and Nuc fractions. Thus, not all of the viral polypeptides synthesized in the cytoplasm migrated into the cell nucleus. Throughout infection, the molar ratio (Vp3/Vp2) was rather constant in all subcellular fractions, indicating that the synthesis or processing or both of Vp2 and Vp3 are coordinately regulated. The molar ratio of Vp1/(Vp2 + Vp3) varied among the fractions. The Vp1/(Vp2 + Vp3) molar ratio in the soluble fraction varied during the course of infection; however, constant ratios were maintained in the cytoskeletal and Nuc fractions. Thus, the mechanism which controls the movement of Vp1 to different compartments of the cell appears to be different from that of Vp2 and Vp3. The Vp1/(Vp2 + Vp3) value in the Nuc fraction was similar to the ratio found in virus particles. The constant molar distribution of Vp1, Vp2, and Vp3 in the Nuc fraction throughout infection suggests that there is a specific mechanism which regulates the transport of viral structural proteins. These results support the hypothesis that the structural proteins of simian virus 40 are transported into the cell nucleus in precise proportions.  相似文献   

4.
The defective step which leads human adenovirus type 2 infection of African green monkey kidney cells (clone C14) to be abortive and its complementation in simian virus 40-transformed cells (clone T22) were studied by comparing the synthesis and function of macromolecules in these cell lines. Neither a quantitative nor a qualitative difference was detected in virus DNA replication and in virus mRNA synthesis in these cells, while a definite difference was observed in protein synthesis. The capsid proteins, such as hexon or penton, were synthesized in T22 cells but not in C14 cells. Inability of polyribosomes to synthesize the capsid proteins in C14 cells infected with adenovirus type 2 may not be due to a defect in elongation of nascent polypeptides or their release, since nascent polypeptides pulse-labelled with [3H]leucine were completely released from polyribosomes after the chase. The electrophoretic analysis of proteins synthesized in vitro with polyribosomes from either infected T22 or C14 cells using the pH 5 enzyme and S100 fraction from T22 cells revealed that hexon was synthesized with polyribosomes from T22 cells but not from C14 cells, thereby suggesting that the defect is not ascribed to a component in the pH 5 enzyme and S100 fraction, but resides in polyribosomes. The analysis of late adenovirus mRNA associated with polyribosomes in the infected T22 and C14 cells by hybridization competition or by sedimentation revealed that all the species of virus mRNA were present in the cytoplasm of these cells; however, certain species of virus mRNA larger than 20 S were absent in polyribosomes of the infected C14 cells. Sedimentation analysis of late adenovirus mRNA following separation on poly(U)-Sepharose or by membrane filtration gave the same results. These results suggest that the defect of C14 cells to support growth of adenoviruses is due to the inability of ribosomes to associate with certain species of late virus mRNA to form polyribosomes and suggest that a factor complementing this defect is induced by simian virus 40.  相似文献   

5.
Serum raised against a mouse 53,000-dalton (53K) phosphoprotein precipitates both the 53K immunogen and simian virus 40 large-T from lysates of simian virus 40-transformed 3T3 cells. This serum, designated F5, does not recognize antigenic determinants on native or denatured large-T and precipitates large-T because the 53K phosphoprotein forms a stable complex with large-T. This complex sediments at 23S on sucrose density gradients, corresponding to a molecular weight of 600K to 1,000K, and appears to contain only 53K and large-T as major components. It is held together by noncovalent bonds and is located in the cell nucleus. All the 53K immunoprecipitated from cell lysates by F5 is present in the high-molecular-weight complex, but large-T can be separated into a complexed and a free form on sucrose density gradients. The complexed form of large-T is more readily phosphorylated than the free form. We have been unable to detect an association of large-T with comparable host cell proteins during productive infections with simian virus 40.  相似文献   

6.
We have demonstrated the synthesis of a 74,000-dalton protein (74K protein) in African green monkey kidney cells infected with simian virus (SV)40. The 74K protein was detected late during the lytic cycle. Its synthesis was inhibited by arabinosyl cytosine as was the synthesis of the capsid proteins. Monospecific antibodies raised against VP1 and VP3 precipitated the structural proteins and the 74K protein. The 74K protein was not found in purified virions. Tryptic peptide analysis demonstrated that the 74K protein shares methionine- and serine-containing peptides with VP1 and VP3 and thus is structurally related to the capsid proteins.  相似文献   

7.
S C Ng  M Bina 《Journal of virology》1984,50(2):471-477
We examined the morphology, protein composition, and stability of the nucleoprotein complexes assembled in cells infected with simian virus 40 mutants belonging to the BC complementation group (tsBC11, tsBC208, tsBC214, tsB216, tsBC217, tsBC248, tsBC223, and tsBC274). We found that the 220S virions were not assembled in tsBC-infected cells under restrictive conditions. This block in assembly resulted in the accumulation of 75S chromatin in tsBC11-infected cells, as previously observed by Garber et al. (E.A. Garber, M.M. Seidman, and A.J. Levine, Virology 107:389-401, 1980). In cells infected with any other mutant listed above, the block in assembly resulted in the accumulation of 75S chromatin as well as nucleoprotein complexes sedimenting from 90 to 140S. Biochemical analysis revealed that these latter complexes contained the capsid proteins in addition to simian virus 40 DNA and the cellular core histones. Electron microscopic analysis clearly showed the association of the capsid proteins with the viral chromatin. Our results suggest that these proteins interact with simian virus 40 chromatin in the course of virion maturation and may thus play an active role in controlling simian virus 40 functions.  相似文献   

8.
During the lytic infection of monkey and mouse cells with simian virus 40 and polyoma virus, respectively, the preferentially increased synthesis of two host proteins of 92,000 and 72,000 Mr was observed by 15 to 20 h after infection besides the general stimulation of most cellular proteins. The incubation of uninfected monkey and mouse cell cultures for 30 to 60 min at 43.5 degrees C induced the enhanced synthesis of at least three proteins of 92,000, 72,000 and 70,000 Mr, the last one being the major heat shock protein of mammalian cells. Two-dimensional gel electrophoresis and partial proteolytic digestion confirmed that the same 92,000- and 72,000-Mr proteins are stimulated by virus infection and thermal treatment. In simian virus 40-infected CV-1 cells, we also observed the weak stimulation of a 70,000-Mr protein comigrating in gel electrophoresis with the major heat shock protein. The 92,000-, 72,000- and 70,000-Mr proteins of monkey cells are structurally very similar to the corresponding proteins of mouse cells. In immunoprecipitations, no specific association of these proteins to simian virus 40 T antigens was noticed.  相似文献   

9.
Normal fibroblasts display two distinct growth controls which can be assayed as requirements for serum or for anchorage. Interaction of mouse 3T3 fibroblasts with simian virus 40 (SV40) thus generates four classes of transformed cells. We have examined viral gene expression in these four classes of cell lines. Immunoprecipitation of [35S]methionine-labeled cell extracts with an antiserum obtained from tumor-bearing hamsters detected the SV40 large T and small t proteins (94,000 molecular weight [94K], 17K) and the nonviral host 54K protein in all cell lines tested. A tumor antigen with an apparent molecular weight of 100,000 was also found in some, but not all, lines. Similar "super T" molecules have been found by others in many rodent transformed lines. We carried out an analysis of the relation of phenotype to relative amounts of these proteins in cell lines of the four classes, using the Spearman rank correlation test. The amount of the 100K T antigen relative to the 94K T antigen or to total viral protein was well correlated with the ability to form colonies in semisolid medium. No significant correlation was found between quantities of labeled 94K T antigen, 54K host antigen, or 17K t antigen and either serum or anchorage independence. Mouse cells transformed with the small t SV40 deletion mutant 884 synthesized a 100K T antigen, suggesting that small t is not required for the production of this protein. The 100K T antigen migrated more slowly than lytic T. Since mixtures of extracts from cells expressing and lacking the 100K T antigen yielded the expected amount of this protein, it is unlikely that the 100K T derives from the 94K protein by a posttranslational modification.  相似文献   

10.
Ad2(+)ND(1), a nondefective hybrid virus containing a segment of the early region of simian virus 40 (SV40) DNA covalently inserted into the human adenovirus 2 genome, enhances the growth of human adenoviruses in simian cells and induces the SV40 U antigen. This hybrid previously has been shown to code for a 28,000 (28K) molecular weight protein not present in wild-type adenovirus 2-infected cells. By radioimmunoprecipitation using sera from hamsters bearing SV40-specific tumors, we have established that the Ad2(+)ND(1)-induced 28K protein is SV40-specific. This Ad2(+)ND(1)-induced protein is synthesized as a 30K molecular weight precursor, which is detectable only when infected cells are pulse-labeled in the presence of the protease inhibitor tosylamino phenylethyl chloromethyl ketone. Upon fractionation of labeled cell extracts, about 80% of the 28K protein is found in the plasma membrane fraction, whereas the remaining 20% is associated with the outer nuclear membrane. This protein is not detectable either in the nucleus or in the cytoplasm. Blockage of proteolytic cleavage by tosylamino phenylethyl chloromethyl ketone did not alter the topographic distribution of this SV40-specific protein, although the amount of the precursor protein in the outer nuclear membrane increased fourfold while that in the plasma membrane was proportionately decreased. This result suggests that the 28K protein is transferred from the outer nuclear membrane to the plasma membrane after posttranslational cleavage of the 30K precursor polypeptide. These data offer further support to the proposal that the 28K protein contains the determinants for SV40 U antigen and is responsible for SV40 enhancement of adenovirus growth in simian cells.  相似文献   

11.
Tau antigens (also known as cellular or nonviral tumor antigens) were detected in uninfected and simian virus 40-infected monkey cells after immunoprecipitation with serum from hamsters bearing simian virus 40-induced tumours (anti-T serum). These two proteins (56,000 daltons) were digested to similarly sized peptides with various amounts of Staphylococcus aureus V8 protease. The Tau antigen isolated from infected monkey cells was closely related but was not identical to the corresponding protein from human cells transformed by simian virus 40, as determined by two-dimensional mapping of their methionine-labeled tryptic peptides. Hamster cells transformed by various primate papovaviruses (simian virus 40, BK virus, and JC virus) synthesized indistinguishable Tau antigens, as determined by two-dimensional peptide mapping. When tested by the same procedure, these proteins and the ones made in monkey and human cells were found to be related to the Tau antigens isolated from simian virus 40-transformed mouse and rat cells. Based on these results, an "evolutionary tree" was constructed to show the relationship among the methionine-containing tryptic peptides of all of these proteins.  相似文献   

12.
To sort out possible influences of protein sequences and fatty acid acylation on the plasma membrane association of simian virus 40 large T-antigen, we have analyzed the membrane interactions of carboxy-terminal fragments of large T-antigen, encoded by the adenovirus type 2 (Ad2+)-simian virus 40 hybrid viruses Ad2+ND1 and Ad2+ND2. The 28,000 (28K)-molecular-weight protein of Ad2+ND1 as well as the 42K and 56K proteins of Ad2+ND2 associate preferentially with membranous structures and were found in association with the membrane system of the endoplasmic reticulum and with plasma membranes. Neither the endoplasmic reticulum membrane- nor the plasma membrane-associated 28K protein of Ad2+ND1 is fatty acid acylated. We, therefore, conclude that fatty acid acylation is not necessary for membrane association of this protein and suggest that an amino acid sequence in this protein is responsible for its membrane interaction. In contrast, the 42K and 56K proteins of Ad2+ND2 in plasma membrane fractions contain fatty acid. However, the interaction of these proteins with the plasma membrane differs from that of the 28K protein of Ad2+ND1: whereas the 28K protein of Ad2+ND1 interacts stably with Nonidet P-40-soluble constituents of the plasma membrane, the 42K and 56K proteins of Ad2+ND2 are tightly bound to the Nonidet P-40-insoluble plasma membrane lamina. Thus, an amino acid sequence in the amino-terminal region of the 28K protein confers membrane affinity to these proteins, whereas a region between the amino-terminal end of the 42K protein of Ad2+ND2 and the amino-terminal end of the 28K protein of Ad2+ND1 contains a reactive site for fatty acid acylation. This posttranslational modification correlates with the stable association of the 42K and 56K proteins with the plasma membrane lamina. We suggest that the same sequences also mediate the proper plasma membrane association of large T-antigen in simian virus 40-transformed cells.  相似文献   

13.
Infection of AGMK or CV-1 cells by the early simian virus 40 mutant tsA58 at the permissive temperature (32 degrees C) followed by a shift to the nonpermissive temperature (41 degrees C) caused a substantial decrease in the levels of late viral RNA in the cytoplasm of AGMK cells but not CV-1 cells. At the translational level, this depression of late viral RNA levels was reflected by a decrease in late viral protein synthesis. Thus, in AGMK cells, an early region gene product (presumably large T-antigen) appeared to be continuously required for efficient expression of the late viral genes. In contrast, late simian virus 40 gene expression, once it is initiated in CV-1 cells, continued efficiently regardless of the tsA mutation. The difference in expression of the late simian virus 40 genes in these tsA mutant-infected monkey kidney cell lines may reflect a difference in host cell proteins which regulate viral gene expression in conjunction with early viral proteins.  相似文献   

14.
C Wychowski  D Benichou    M Girard 《Journal of virology》1987,61(12):3862-3869
A cDNA fragment coding for poliovirus capsid polypeptide VP1 was inserted into a simian virus 40 (SV40) genome in the place of the SV40 VP1 gene and fused in phase to the 3' end of the VP2-VP3 genes. Simian cells were infected with the resulting hybrid virus in the presence of an early SV40 mutant used as a helper. Indirect immunofluorescence analysis of the infected cells using anti-poliovirus VP1 immune serum revealed that the SV40/poliovirus fusion protein was located inside the cell nucleus. Deletions of various lengths were generated in the SV40 VP2-VP3 portion of the hybrid gene using BAL31 nuclease. The resulting virus genomes expressed spliced fusion proteins whose intracellular location was either intranuclear or intracytoplasmic, depending on the presence or absence of VP2 amino acid residues 317 to 323 (Pro-Asn-Lys-Lys-Lys-Arg-Lys). This was confirmed by site-directed mutagenesis of the Lys residue at position 320. Modification of Lys-320 into either Thr or Asn abolished the nuclear accumulation of the fusion protein. It is concluded that at least part of the sequence of VP2 amino acids 317 to 323 allows VP2 and VP3 to remain stably located inside the cell nucleus. The proteins are most probably transported from the cell cytoplasm to the cell nucleus by interaction, with VP1 acting as a carrier.  相似文献   

15.
Cell surface T antigen, detected by a radioimmune assay that uses 125I-labeled Staphylococcus aureus protein A and antibodies against either authentic T antigen or D2 hybrid T antigen, was found in simian virus 40-transformed and -infected cells and in cells infected with an adenovirus-simian virus 40 hybrid, Ad2+D2. In simian virus 40 lytic infection, the surface T antigen appeared at the same time as the nuclear T antigen.  相似文献   

16.
A measure of the molecular weight of the large simian virus 40 T antigen was sought by SDS-polyacrylamide gel electrophoresis, random-coil chromatography, and sedimentation-velocity analysis in a density gradient. Large T antigen obtained from a simian virus 40-transformed human cell line either by immunoprecipitation or by standard preparatory methods migrated like a 94,000-molecular-weight (approximately 94K) polypeptide in SDS-gels but was found to have an approximate was observed with T antigen obtained from lytically infected monkey cells. In view of the strong theoretical basis for the guanidine method and the agreement with the sedimentation data, these findings suggest that the molecular weight of this protein is approximately 75 to 80K as opposed to 94 to 100K and, therefore, that considerably less than the entire early region of simian virus 40 is required to encode it. This size estimate is in keeping with earlier results which revealed a normal-size T antigen in cells infected with viable deletion mutants lacking as much as 10% of the early region.  相似文献   

17.
Stable interactions between simian virus 40 large T antigen and host proteins are believed to play a major role in the ability of the viral protein to transform cells in culture and induce tumors in vivo. Two of these host proteins, the retinoblastoma susceptibility protein (pRB) and p53, are products of tumor suppressor genes, suggesting that T antigen exerts at least a portion of its transforming activity by complexing with and inactivating the function of these proteins. While analyzing T antigen-host protein complexes in mouse cells, we noted a protein of 185 kDa (p185) which specifically coimmunoprecipitates with T antigen. Coimmunoprecipitation results from the formation of stable complexes between T antigen and p185. Complex formation is independent of the interactions of T antigen with pRB, p120, and p53. Furthermore, analysis of T-antigen mutants suggests that T antigen-p185 complex formation may be important in transformation by simian virus 40.  相似文献   

18.
Phosphopeptide analyses of the simian virus 40 (SV40) large tumor antigen (LT) in SV40-transformed rat cells, as well as in SV40 lytically infected monkey cells, showed that gel-purified LT that was not complexed to p53 (free LT) and p53-complexed LT differed substantially in their phosphorylation patterns. Most significantly, p53-complexed LT contained phosphopeptides not found in free LT. We show that these additional phosphopeptides were derived from MDM2, a cellular antagonist of p53, which coprecipitated with the p53-LT complexes, probably in a trimeric LT-p53-MDM2 complex. MDM2 also quantitatively bound the free p53 in SV40-transformed cells. Free LT, in contrast, was not found in complex with MDM2, indicating a specific targeting of the MDM2 protein by SV40. This specificity is underscored by significantly different phosphorylation patterns of the MDM2 proteins in normal and SV40-transformed cells. Furthermore, the MDM2 protein, like p53, becomes metabolically stabilized in SV40-transformed cells. This suggests the possibility that the specific targeting of MDM2 by SV40 is aimed at preventing MDM2-directed proteasomal degradation of p53 in SV40-infected and -transformed cells, thereby leading to metabolic stabilization of p53 in these cells.  相似文献   

19.
We have determined the nucleotide sequence of the DNA of simian virus 40. The proceeding report (Dhar, R., Reddy, V.B., and Weissman, S.M. (1978) J. Biol. Chem. 253, 612-620) presents the sequence of a portion of the simian virus 40 DNA that overlaps the region encoding the 5' end of the minor structural protein VP2. We report here the sequence of the remainder of the genes for minor structural proteins VP2 and VP3. The results indicate that the mRNA for the two proteins is read in the same phase and the initiation site for VP3 lies within the structural gene of VP2. The codons of the COOH-terminal amino acids of VP2 and VP3 are read in a second phase as the codons of the NH2-terminal amino acids of VP1.  相似文献   

20.
Simian virus 40 large T antigen is a multifunctional protein that is encoded by the early region of the viral genome. We constructed fusion proteins between simian virus 40 large T antigen and beta-galactosidase by cloning HindIII fragments A and D of the virus into the HindIII sites of expression vectors pUR290, pUR291, and pUR292. Large amounts of the fusion protein were synthesized when the DNA fragment encoding part of simian virus 40 large T antigen was in frame with the lacZ gene of the expression vector. Using Western blotting and a competition radioimmunoassay, we assessed the binding of existing anti-T monoclonal and polyclonal antibodies to the two fusion proteins. Several monoclonal antibodies reacted with the protein encoded by the fragment A construction, but none reacted with the protein encoded by the fragment D construction. However, mice immunized with pure beta-galactosidase-HindIII fragment D fusion protein produced good levels of anti-T antibodies, which immunoprecipitated simian virus 40 large T antigen from lytically infected cells, enabling derivation of monoclonal antibodies to this region of large T antigen. Therefore, the fusion proteins allowed novel epitopes to be discovered on large T antigen and permitted the precise localization of epitopes recognized by existing antibodies. The same approach can also be used to produce antibodies against defined regions of any gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号