首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transforming growth factor-beta1 (TGF-beta1)-mediated loss of proximal tubular epithelial cell-cell interaction is regulated in a polarized fashion. The aim of this study was to further explore the polarity of the TGF-beta1 response and to determine the significance of R-Smad-beta-catenin association previously demonstrated to accompany adherens junction disassembly. Smad3 signaling response to TGF-beta1 was assessed by activity of the Smad3-responsive reporter gene construct (SBE)(4)-Lux and by immunoblotting for phospho-Smad proteins. Similar results were obtained with both methods. Apical application of TGF-beta1 led to increased Smad3 signaling compared with basolateral stimulation. Association of Smad proteins with beta-catenin was greater following basolateral TGFbeta-1 stimulation, as was the expression of cytoplasmic Triton-soluble beta-catenin. Inhibition of beta-catenin expression by small interfering RNA augmented Smad3 signaling. Lithium chloride, a GSK-3 inhibitor, increased expression of beta-catenin and attenuated TGF-beta1-dependent Smad3 signaling. Lithium chloride did not influence degradation of Smad3 but resulted in decreased nuclear translocation. Smad2 activation as assessed by Western blot analysis and activity of the Smad2-responsive reporter constructs ARE/MF1 was also greater following apical as compared with basolateral TGFbeta-1 stimulation, suggesting that this is a generally applicable mechanism for the regulation of TGF-beta1-dependent R-Smads. Caco-2 cells are a colonic carcinoma cell line, with known resistance to the anti-proliferative effects of TGF-beta1 and increased expression of beta-catenin. We used this cell line to address the general applicability of our observations. Inhibition of beta-catenin in this cell line by small interfering RNA resulted in increased TGF-beta1-dependent Smad3 phosphorylation and restoration of TGF-beta1 anti-proliferative effects.  相似文献   

2.
A CC chemokine CCL18 stimulates collagen production in pulmonary fibroblasts through an unknown signaling mechanism. In this study, involvement of Sp1 and Smad3 in CCL18 signaling in primary human pulmonary fibroblast cultures was investigated. Phosphorylation of Sp1, DNA-binding by Sp1, and the activity of an Sp1-dependent reporter were all increased in response to CCL18 stimulation. CCL18 did not stimulate a detectable increase in Smad3 phosphorylation or Smad3/4 DNA-binding activity, although some basal phosphorylation and DNA binding by Smad3/4 were noted. Transient overexpression of dominant negative mutants of Sp1 and Smad3 abrogated CCL18-dependent upregulation as well as basal production of collagen. These observations suggested that CCL18 activates collagen production in pulmonary fibroblasts through an Sp1-dependent pathway that also requires basal Smad3 activity. Possible involvement of autocrine TGF-beta in CCL18 signaling was considered. CCL18 stimulated increases in collagen mRNA and protein production without detectable changes in TGF-beta1, -beta2, and -beta3 mRNA or protein levels. Neutralizing anti-TGF-beta antibodies, latency-associated peptide, ALK5-specific inhibitor SD431542, and an inhibitor of the protease-dependent TGF-beta activation aprotinin, each failed to block CCL18-stimulated collagen production. These observations suggest that both CCL18 signaling in pulmonary fibroblasts and basal Smad3 activity are independent of autocrine TGF-beta.  相似文献   

3.
4.
5.
Smad7 plays an essential role in the negative-feedback regulation of transforming growth factor beta (TGF-beta) signaling by inhibiting TGF-beta signaling at the receptor level. It can interfere with binding to type I receptors and thus activation of receptor-regulated Smads or recruit the E3 ubiquitin ligase Smurf to receptors and thus target them for degradation. Here, we report that Smad7 is predominantly localized in the nucleus of Hep3B cells. The targeted expression of Smad7 in the nucleus conferred superior inhibitory activity on TGF-beta signaling, as determined by reporter assay in mammalian cells and by its effect on zebrafish embryogenesis. Furthermore, Smad7 repressed Smad3/4-, Smad2/4-, and Smad1/4-enhanced reporter gene expression, indicating that Smad7 can function independently of type I receptors. An oligonucleotide precipitation assay revealed that Smad7 can specifically bind to the Smad-responsive element via its MH2 domain, and DNA-binding activity was further confirmed in vivo with the promoter of PAI-1, a TGF-beta target gene, by chromatin immunoprecipitation. Finally, we provide evidence that Smad7 disrupts the formation of the TGF-beta-induced functional Smad-DNA complex. Our findings suggest that Smad7 inhibits TGF-beta signaling in the nucleus by a novel mechanism.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
Activation of the transforming growth factor-beta (TGF-beta) system has been implicated in the pathological changes of diabetic nephropathy such as renal hypertrophy and accumulation of extracellular matrix. Streptozotocin-induced diabetic mice were used to examine whether the Smad pathway, which transduces the TGF-beta signal, is activated in the diabetic kidney, employing Southwestern histochemistry with labeled Smad-binding element (SBE) oligonucleotides and immunoblotting of nuclear protein extracts for Smad3. Mouse mesangial cells were used to study the role of Smads in mediating the effects of high glucose and TGF-beta on fibronectin expression, using transient transfections of Smad expression vectors and TGF-beta-responsive reporter assays. By Southwestern histochemistry, the binding of nuclear proteins to labeled SBE increased in both glomeruli and tubules at 1, 3, and 6 weeks of diabetes. Likewise, immunoblotting demonstrated that nuclear accumulation of Smad3 was increased in the kidney of diabetic mice. Both increases were prevented by insulin treatment. In mesangial cells, high glucose potentiated the effect of low-dose TGF-beta1 (0.2ng/ml) on the following TGF-beta-responsive constructs: 3TP-Lux (containing AP-1 sites and PAI-1 promoter), SBE4-Luc (containing four tandem repeats of SBE sequence), and the fibronectin promoter. Additionally, Smad3 overexpression increased fibronectin promoter activity, an effect that was enhanced by high ambient glucose or treatment with TGF-beta1 (2ng/ml). The TGF-beta-stimulated activity of the fibronectin promoter was prevented by transfection with either a dominant-negative Smad3 or the inhibitory Smad7. We conclude that hyperglycemia activates the intrarenal TGF-beta/Smad signaling pathway, which then promotes mesangial matrix gene expression in diabetic nephropathy.  相似文献   

14.
15.
16.
17.
18.
This study provides evidence that in mammary epithelial cells the pluripotent cytokine TGF-beta1 repressed expression of multiple genes involved in Phase II detoxification. GCLC, the gene that encodes the catalytic subunit of the enzyme glutamate cysteine ligase, the rate-limiting enzyme in the biosynthesis of glutathione, was used as a molecular surrogate for investigating the mechanisms by which TGF-beta suppressed Phase II gene expression. TGF-beta was found to suppress luciferase reporter activity mediated by the human GCLC proximal promoter, as well as reporter activity mediated by the GCLC antioxidant response element, ARE4. TGF-beta downregulated expression of endogenous GCLC mRNA and GCLC protein. TGF-beta suppression of the Phase II genes correlated with a decrease in cellular glutathione and an increase in cellular reactive oxygen species. Ectopic expression of constitutively active Smad3E was sufficient to inhibit both reporters in the absence of TGF-beta, whereas dominant negative Smad3A blocked TGF-beta suppression. Smad3E suppressed Nrf2-mediated activation of the GCLC reporter. We demonstrate that TGF-beta increased ATF3 protein levels, as did transient overexpression of Smad3E. Ectopic expression of ATF3 was sufficient to suppress the GCLC reporter activity, as well as endogenous GCLC expression. These results demonstrate that Smad3-ATF3 signaling mediates TGF-beta repression of ARE-dependent Phase II gene expression and potentially provide critical insight into mechanisms underlying TGF-beta1 function in carcinogenesis, tissue repair, and fibrosis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号