首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells respond to mitogenic or stress stimuli by the rapid induction of immediate-early (IE) genes, which occurs concomitantly with the phosphorylation of histone H3 and the high-mobility-group protein HMG-14. In mammalian cells this response is mediated via ERK and p38 MAP kinase pathways, but the identity of the downstream kinase that phosphorylates histone H3 has been contentious. One study, based on Coffin- Lowry cells defective in RSK2, reported that RSK2 was the histone H3 kinase, while a second study, based on the efficiency of RSKs and MSKs as in vitro histone H3 kinases, and their relative susceptibility to kinase inhibitors, suggested that MSKs were responsible. We show here that the histone H3 phosphorylation response is normal in Coffin-Lowry cells. Further more, we show that histone H3 and HMG-14 phosphorylation is severely reduced or abolished in mice lacking MSK1 and MSK2. We also show that, despite this, histone H3 acetylation is unimpaired in these cells and that IE genes can be induced, although at a reduced efficiency. We conclude that MSKs are the major kinases for histone H3 and HMG-14 in response to mitogenic and stress stimuli in fibroblasts.  相似文献   

2.
The members of p90 ribosomal S6 kinase (RSK) family of Ser/Thr kinases are downstream effectors of MAPK/ERK pathway that regulate diverse cellular processes including cell growth, proliferation and survival. In carcinogenesis, RSKs are thought to modulate cell motility, invasion and metastasis. Herein, we have studied an involvement of RSKs in FGF2/FGFR2-driven behaviours of mammary epithelial and breast cancer cells. We found that both silencing and inhibiting of FGFR2 attenuated phosphorylation of RSKs, whereas FGFR2 overexpression and/or its stimulation with FGF2 enhanced RSKs activity. Moreover, treatment with ERK, Src and p38 inhibitors revealed that p38 kinase acts as an upstream RSK2 regulator. We demonstrate for the first time that in FGF2/FGFR2 signalling, p38 but not MEK/ERK, indirectly activated RSK2 at Tyr529, which facilitated phosphorylation of its other residues (Thr359/Ser363, Thr573 and Ser380). In contrast to FGF2-triggered signalling, inhibition of p38 in the EGF pathway affected only RSK2-Tyr529, without any impact on the remaining RSK phosphorylation sites. p38-mediated phosphorylation of RSK2-Tyr529 was crucial for the transactivation of residues located at kinase C-terminal domain and linker-region, specifically, in the FGF2/FGFR2 signalling pathway. Furthermore, we show that FGF2 promoted anchorage-independent cell proliferation, formation of focal adhesions and cell migration, which was effectively abolished by treatment with RSKs inhibitor (FMK). These indicate that RSK2 activity is indispensable for FGF2/FGFR2-mediated cellular effects. Our findings identified a new FGF2/FGFR2-p38-RSK2 pathway, which may play a significant role in the pathogenesis and progression of breast cancer and, hence, may present a novel therapeutic target in the treatment of FGFR2-expressing tumours.  相似文献   

3.
Mitogen-activated protein kinase (MAPK) plays a crucial role in meiotic maturation of mouse oocytes. In order to understand the mechanism by which MAPK regulates meiotic maturation, we examined the effects of the MAPK pathway inhibitor U0126 on microtubule organization, gamma-tubulin and nuclear mitotic apparatus protein (NuMA) distribution, and actin filament assembly in mouse oocytes maturing in vitro. Western blotting with antibodies that detect active, phosphorylated MAPK revealed that MAPK was inactive in fully grown germinal vesicle (GV) oocytes. Phosphorylated MAPK was first detected 3 hr after the initiation of maturation cultures, was fully active at 6 hr, and remained active until metaphase II. Treatment of GV stage oocytes with 20 microM U0126 completely blocked MAPK phosphorylation, but did not affect GV breakdown (GVBD). However, the oocytes did not progress to the Metaphase I stage, which would normally occur after 9 hr in the maturation cultures. The inhibition of MAPK resulted in abnormal spindles and abnormal distributions of gamma-tubulin and NuMA, but did not affect actin filament assembly. In oocytes treated with U0126 after GVBD, polar body extrusion was normal, but the organization of the metaphase plate and chromosome segregation were abnormal. In conclusion, the meiotic abnormalities caused by U0126, a specific inhibitor of MAPK signaling, indicate that MAPK plays an important regulatory role in microtubule and centrosome assembly, but not actin filament assembly.  相似文献   

4.
Mitogen-activated protein kinase (MAPK) becomes activated during the meiotic maturation of pig oocytes, but its physiological substrate is unknown. The 90-kDa ribosome S6 protein kinase (p90rsk) is the best known MAPK substrate in Xenopus and mouse oocytes. The present study was designed to investigate the expression, phosphorylation, subcellular localization, and possible roles of p90rsk in porcine oocytes during meiotic maturation, fertilization, and parthenogenetic activation. This kinase was partially phosphorylated in oocytes at germinal vesicle (GV) stage through a MAPK-independent mechanism, but its full phosphorylation is dependent on MAPK activity. After fertilization or electrical activation, p90rsk was dephosphorylated shortly before pronucleus formation, which coincided with the inactivation of MAPK. A protein phosphatase inhibitor, okadaic acid, accelerated the phosphorylation of p90rsk during meiotic maturation and induced its rephosphorylation in activated eggs. MAPK kinase (MAPKK or MEK) inhibitor U0126 inhibited the activation of MAPK and p90rsk in both cumulus-enclosed and denuded pig oocytes, but prevented GV breakdown (GVBD) only in cumulus-enclosed oocytes. Active MAPK and p90rsk were detected in pig cumulus cells, and U0126 induced their dephosphorylation. In meiosis II arrested eggs, U0126 led to the inactivation of MAPK and p90rsk, as well as the interphase transition of the eggs. P90rsk was distributed evenly in GV oocytes, but it accumulated in the nucleus before GVBD. It was localized to the meiotic spindle after GVBD and concentrated in the spindle mid zone during emission of the polar bodies. All these results suggest that p90rsk is downstream of MAPK and plays functional roles in the regulation of nuclear status and microtubule organization. Although MAPK and p90rsk activity are not essential for the spontaneous meiotic resumption in denuded oocytes, activation of this cascade in cumulus cells is indispensable for the gonadotropin-induced meiotic resumption of pig oocytes.  相似文献   

5.
6.
7.
The 5'AMP-activated protein kinase (AMPK) activation is involved in the meiotic maturation of oocytes in the ovaries of mice and pigs. However, its effects on the oocyte appear to be species-specific. We investigated the patterns of AMPK and mitogen-activated protein kinases (MAPK3/1) phosphorylation during bovine in vitro maturation (IVM) and the effects of metformin, an AMPK activator, on oocyte maturation in cumulus-oocyte complexes (COCs) and denuded bovine oocytes (DOs). In bovine COCs, PRKAA Thr172 phosphorylation decreased, whereas MAPK3/1 phosphorylation increased in both oocytes and cumulus cells during IVM. Metformin (5 and 10 mM) arrested oocytes at the GV stage in COCs but not in DOs. In COCs, this arrest was associated with the inhibition of cumulus cell expansion, an increase in PRKAA Thr172 phosphorylation, and a decrease in MAPK3/1 phosphorylation in both oocytes and cumulus cells. However, the addition of compound C (10 muM), an inhibitor of AMPK, accelerated the initiation of the GV breakdown (GVBD) process without any alteration of MAPK3/1 phosphorylation in oocytes from bovine COCs. Metformin decreased AURKA and CCNB1 protein levels in oocytes. Moreover, after 1 h of IVM, metformin decreased RPS6 phosphorylation and increased EEF2 phosphorylation, suggesting that protein synthesis rates were lower in oocytes from metformin-treated COCs. Most oocytes were arrested after the GVBD stage following the treatment of COCs with the MEK inhibitor, U0126 (100 micromoles). Thus, in bovine COCs, metformin blocks meiotic progression at the GV stage, activates PRKAA, and inhibits MAPK3/1 phosphorylation in both the oocytes and cumulus cells during IVM. Moreover, cumulus cells were essential for the effects of metformin on bovine oocyte maturation, whereas MAPK3/1 phosphorylation was not.  相似文献   

8.
The cell cycle in oocytes generally arrests at a particular meiotic stage to await fertilization. This arrest occurs at metaphase of meiosis II (meta-II) in frog and mouse, and at G1 phase after completion of meiosis II in starfish. Despite this difference in the arrest phase, both arrests depend on the same Mos-MAPK (mitogen-activated protein kinase) pathway, indicating that the difference relies on particular downstream effectors. Immediately downstream of MAPK, Rsk (p90 ribosomal S6 kinase, p90(Rsk)) is required for the frog meta-II arrest. However, the mouse meta-II arrest challenges this requirement, and no downstream effector has been identified in the starfish G1 arrest. To investigate the downstream effector of MAPK in the starfish G1 arrest, we used a neutralizing antibody against Rsk and a constitutively active form of Rsk. Rsk was activated downstream of the Mos-MAPK pathway during meiosis. In G1 eggs, inhibition of Rsk activity released the arrest and initiated DNA replication without fertilization. Conversely, maintenance of Rsk activity prevented DNA replication following fertilization. In early embryos, injection of Mos activated the MAPK-Rsk pathway, resulting in G1 arrest. Moreover, inhibition of Rsk activity during meiosis I led to parthenogenetic activation without meiosis II. We conclude that immediately downstream of MAPK, Rsk is necessary and sufficient for the starfish G1 arrest. Although CSF (cytostatic factor) was originally defined for meta-II arrest in frog eggs, we propose to distinguish ;G1-CSF' for starfish from ;meta-II-CSF' for frog and mouse. The present study thus reveals a novel role of Rsk for G1-CSF.  相似文献   

9.
The Bcl-2 family member Bad is a pro-apoptotic protein, and phosphorylation of Bad by cytokines and growth factors promotes cell survival in many cell types. Induction of apoptosis by UV radiation is well documented. However, little is known about UV activation of cell survival pathways. Here, we demonstrate that UVB induces Bad phosphorylation at serine 112 in JNK1, RSK2, and MSK1-dependent pathways. Inhibition of mitogen-activated protein (MAP) kinases including ERKs, JNKs, and p38 kinase by the use of their respective dominant negative mutant or a specific inhibitor for MEK1 or p38 kinase, PD98059 or SB202190, resulted in abrogation of UVB-induced phosphorylation of Bad at serine 112. Incubation of active MAP kinase members with Bad protein showed serine 112 phosphorylation of Bad by JNK1 only. However, activated RSK2 and MSK1, downstream kinases of ERKs and p38 kinase, respectively, also phosphorylated Bad at serine 112 in vitro. Cells from a Coffin-Lowry syndrome patient (deficient in RSK2) or expressing an N-terminal or C-terminal kinase-dead mutant of MSK1 were defective for UVB-induced serine 112 phosphorylation of Bad. Furthermore, MAP kinase pathway-dependent serine 112 phosphorylation was shown to be required for dissociation of Bad from Bcl-X(L). These data illustrated that UVB-induced phosphorylation of Bad at serine 112 was mediated through MAP kinase signaling pathways in which JNK1, RSK2, and MSK1 served as direct mediators.  相似文献   

10.
The 90-kDa ribosomal S6 kinases (RSK1-3) are important mediators of growth factor stimulation of cellular proliferation, survival, and differentiation and are activated via coordinated phosphorylation by ERK and 3-phosphoinositide-dependent protein kinase-1 (PDK1). Here we performed the functional characterization of a predicted new human RSK homologue, RSK4. We showed that RSK4 is a predominantly cytosolic protein with very low expression and several characteristics of the RSK family kinases, including the presence of two functional kinase domains and a C-terminal docking site for ERK. Surprisingly, however, in all cell types analyzed, endogenous RSK4 was maximally (constitutively) activated under serum-starved conditions where other RSKs are inactive due to their requirement for growth factor stimulation. Constitutive activation appeared to result from constitutive phosphorylation of Ser232, Ser372, and Ser389, and the low basal ERK activity in serum-starved cells appeared to be sufficient for induction of approximately 50% of the constitutive RSK4 activity. Finally experiments in mouse embryonic stem cells with targeted deletion of the PDK1 gene suggested that PDK1 was not required for phosphorylation of Ser232, a key regulatory site in the activation loop of the N-terminal kinase domain, that in other RSKs is phosphorylated by PDK1. The unusual regulation and growth factor-independent kinase activity indicate that RSK4 is functionally distinct from other RSKs and may help explain recent findings suggesting that RSK4 can participate in non-growth factor signaling as for instance p53-induced growth arrest.  相似文献   

11.
In matured rat oocytes, spontaneous activation from the metaphase-II (MII) stage occurred after collection from the oviducts. It is well known that the mitogen-activated protein kinase (MAPK) pathway and p34(cdc2) kinase play an important role in the arrest at MII in other species. However, there is no information about the difference in these factors among strains of rats. In the present study, in spontaneously activated oocytes from the Wistar rat, the Mos protein level and the activity of MAPK kinase (MEK)/MAPK were decreased at 120 min (13.8, 25.7, and 19.3, respectively, P<0.05), whereas Sprague-Dawley (SD) oocytes, which were not spontaneously activated, had a high level of Mos protein and MEK/MAPK activity (75.9, 76.2, and 87.9, respectively, P<0.05). Phosphorylation of MAPK in the SD oocytes was significantly suppressed by MEK inhibitor, U0126 at 60 min; this treatment decreased p34(cdc2) kinase activity via cyclin B1 degradation in a time-dependent manner. The treatment with proteasome inhibitor, MG132 or Ca2+-chelator, BAPTA-AM, overcame the spontaneous degradation of both Mos and cyclin B1 in a dose-dependent manner in Wistar oocytes. More than 90% of Wistar oocytes treated with BAPTA-AM were arrested at MII until 120 min. In conclusion, SD oocytes carrying Mos/MEK/MAPK, maintained a high activity of p34(cdc2) kinase by stabilizing cyclin B1, thus involved in their meiotic arrest. In contrast, Wistar oocytes had a relatively low cytostatic factor activity; rapid decrease of Mos/MEK/MAPK failed to stabilize both cyclin B1 and Mos, and these oocytes were likely to spontaneously activate.  相似文献   

12.
The sterol 4,4-dimethyl-5-cholesta-8,14,24-trien-3-ol (follicular fluid meiosis-activating sterol [FF-MAS]) isolated from human follicular fluid induces resumption of meiosis in mouse oocytes cultured in vitro. The purpose of this study was to examine the hypothesis that differential signal transduction mechanisms exist for FF-MAS-induced and spontaneous in vitro resumption of meiosis in mouse oocytes. Mouse oocytes were dissected from ovaries originating from mice primed with FSH 48 h before oocyte collection. Mechanically denuded germinal vesicle (GV) oocytes were in vitro matured in medium supplemented with hypoxanthine and FF-MAS or allowed to mature spontaneously; both groups were exposed to individual compounds known to inhibit specific targets in the cell. After 20-22 h of in vitro maturation, resumption of meiosis was assessed as the frequency of oocytes in GV breakdown (GVBD) stage. Pertussis toxin (2.5 microg/ml) did not influence resumption of meiosis in either group. Dibutyryl cyclic GMP (320 microM) inhibited FF-MAS-induced GVBD, but not spontaneous GVBD, whereas the subtype 5 phosphodiesterase-inhibitor zaprinast (50 microM) inhibited GVBD in both groups. Microinjection of the catalytic subunit of cAMP-dependent protein kinase into oocytes inhibited spontaneous GVBD, but not FF-MAS-induced GVBD. An inhibitor of cytoplasmic polyadenylation, cordycepin (80 microM), inhibited or retarded spontaneous GVBD to a further extent than it did FF-MAS-induced GVBD. Spontaneous GVBD was more sensitive to the histone H1 kinase-inhibitor olomoucine (250 microM) than was FF-MAS-induced GVBD. Addition of the mitogen-activated protein kinase (MAPK)-inhibitor PD 98059 (50 microM), phospholipase C-inhibitor U-73122 (10 microM), p21(ras)-inhibitor lovastatine (250 microM), and the src-like kinase inhibitor PP2 (20 microg/ml) inhibited FF-MAS-induced GVBD, but not spontaneous GVBD. Both MAPKs, extracellular regulated kinase (ERK) 1 and ERK2, were phosphorylated under FF-MAS-induced meiotic resumption, in contrast to spontaneous meiotic resumption, in which ERK1 and ERK2 phosphorylation occurred 2 h after GVBD. In the present study, we show that FF-MAS acts through an MAPK-dependent pathway, and we suggest that src-like kinase, p21(ras), and phosphoinositide signaling lie upstream of MAPK in the FF-MAS-activated signaling pathway. Clearly, striking pathway differences are present between spontaneous versus FF-MAS-induced meiotic resumption.  相似文献   

13.
14.
The effect of the p42/44 mitogen-activated kinase (MAPK) inhibitor, PD98059, on MAPK activation and meiosis resumption in mouse oocytes was studied. When germinal vesicle (GV)-stage denuded oocytes (DOs) were cultured continuously in 50 microM PD98059, germinal vesicle breakdown (GVBD) was postponed for 2-3 h. MAPK phosphorylation and activation was delayed as well. However, PD98059 did not impair histone H1 kinase activation. After 14 h of culture there was no significant difference in the rate of DOs reaching metaphase II (MII) arrest in either control or experimental conditions. The effect of PD98059 on MAPK inhibition was further tested in epidermal growth factor (EGF)-treated oocytecumulus complexes (OCCs). Exposure of GV-stage OCCs for 5 min to EGF (10 ng/ml) induced a considerable increase in MAPK phosphorylation. After OCCs were further cultured in 50 microM PD98059 a rapid dephosphorylation of MAPK was induced. Already after 1 min of treatment the non-phosphorylated form of MAPK dominated, indicating the high effectivity of PD98059. This result indicates that short EGF/PD98059 treatment of OCCs induced MAPK phosphorylation/dephosphorylation in cumulus cells only. As only a transient delay in MAPK phosphorylation and activation was observed in PD98059-treated DOs we conclude that there is also another PD98059-nonsensitive pathway(s) leading to MAPK activation in mouse oocytes. The data obtained suggest that meiosis resumption in mouse oocytes is somehow influenced by the MEK/MAPK activation pathway.  相似文献   

15.
In most species, the meiotic cell cycle is arrested at the transition between prophase and metaphase through unclear somatic signals. Activation of the Cdc2-kinase component of maturation promoting factor (MPF) triggers germinal vesicle breakdown after the luteinizing hormone (LH) surge and reentry into the meiotic cell cycle. Although high levels of cAMP and activation of protein kinase A (PKA) play a critical role in maintaining an inactive Cdc2, the steps downstream of PKA in the oocyte remain unknown. Using a small-pool expression-screening strategy, we have isolated several putative PKA substrates from a mouse oocyte cDNA library. One of these clones encodes a Wee1-like kinase that prevents progesterone-induced oocyte maturation when expressed in Xenopus oocytes. Unlike the widely expressed Wee1 and Myt1, mWee1B mRNA and its protein are expressed only in oocytes, and mRNA downregulation by RNAi injection in vitro or transgenic overexpression of RNAi in vivo causes a leaky meiotic arrest. Ser15 residue of mWee1B is the major PKA phosphorylation site in vitro, and the inhibitory effects of the kinase are enhanced when this residue is phosphorylated. Thus, mWee1B is a key MPF inhibitory kinase in mouse oocytes, functions downstream of PKA, and is required for maintaining meiotic arrest.  相似文献   

16.
17.
The p90 ribosomal S6 kinases (RSKs) also known as MAPKAP-Ks are serine/threonine protein kinases that are activated by ERK or PDK1 and act as downstream effectors of mitogen-activated protein kinase (MAPK). RSK1, a member of the RSK family, contains two distinct kinase domains in a single polypeptide chain, the regulatory C-terminal kinase domain (CTKD) and the catalytic N-terminal kinase domain (NTKD). Autophosphorylation of the CTKD leads to activation of the NTKD that subsequently phosphorylates downstream substrates. Here we report the crystal structures of the unactivated RSK1 NTKD bound to different ligands at 2.0 A resolution. The activation loop and helix alphaC, key regulatory elements of kinase function, are disordered. The DFG motif of the inactive RSK1 adopts an "active-like" conformation. The beta-PO(4) group in the AMP-PCP complex adopts a unique conformation that may contribute to inactivity of the enzyme. Structures of RSK1 ligand complexes offer insights into the design of novel anticancer agents and into the regulation of the catalytic activity of RSKs.  相似文献   

18.
19.
Meiotic maturation of mammalian oocytes (transition from prophase I to metaphase II) is accompanied by complex changes in the protein phosphorylation pattern. At least two major protein kinases are involved in these events; namely, cdc2 kinase and mitogen-activated protein (MAP) kinase, because the inhibition of these kinases arrest mammalian oocytes in the germinal vesicle (GV) stage. We show that during meiotic maturation of bovine oocytes, the translation initiation factor, eIF4E (the cap binding protein), gradually becomes phosphorylated. This substantial phosphorylation begins at the time of germinal vesicle breakdown (GVBD) and continues to the metaphase II stage. The onset of eIF4E phosphorylation occurs in parallel with a significant increase in overall protein synthesis. However, although eIF4E is nearly fully phosphorylated in metaphase II oocytes, protein synthesis reaches only basal levels at this stage, similar to that of prophase I oocytes, in which the factor remains unphosphorylated. We present evidence that a specific repressor of eIF4E, the binding protein 4E-BP1, is present and could be involved in preventing eIF4E function in metaphase II stage oocytes. Recently, two protein kinases, called Mnk1 and Mnk2, have been identified in somatic cells as eIF4E kinases, both of which are substrates of MAP kinase in vivo. In bovine oocytes, a specific inhibitor of cdk kinases, butyrolactone I, arrests oocytes in GV stage and prevents activation of both cdc2 and MAP kinase. Under these conditions, the phosphorylation of eIF4E is also blocked, and its function in initiation of translation is impaired. In contrast, PD 098059, a specific inhibitor of the MAP kinase activation pathway, which inhibits the MAP kinase kinase, called MEK function, leads only to a postponed GVBD, and a delay in MAP kinase and eIF4E phosphorylation. These results indicate that in bovine oocytes, 1) MAP kinase activation is only partially dependent on MEK kinase, 2) MAP kinase is involved in eIF4E phosphorylation, and 3) the abundance of fully phosphorylated eIF4E does not necessarily directly stimulate protein synthesis. A possible MEK kinase-independent pathway of MAP kinase phosphorylation and the role of 4E-BP1 in repressing translation in metaphase II oocytes are discussed.  相似文献   

20.
The replication of viral nucleic acids triggers cellular antiviral responses. The double-stranded RNA (dsRNA)-activated protein kinase (PKR) plays a key role in this antiviral response. We have recently reported that JFH-1 HCV replication in Huh-7 cells triggers PKR activation. Here we show that the HCV-induced PKR activation is further stimulated by the mitogen- and stress-activated protein kinase 2 (MSK2), a member of the 90 kDa ribosomal S6 kinase (RSK) family that has emerged as an important downstream effector of ERK and p38 MAPK signaling pathways. We show that MSK2 binds PKR and stimulates PKR phosphorylation, whereas the closely related MSK1 and RSK2 have no effect. Our data further indicate that MSK2 functions as an adaptor in mediating PKR activation, apparently independent of its catalytic activity. These results suggest that, in addition to viral dsRNA, stress signaling contributes to the regulation of cellular antiviral response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号