首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
2.
In all animals examined, somatic cells of the gonad control multiple biological processes essential for germline development. Gap junction channels, composed of connexins in vertebrates and innexins in invertebrates, permit direct intercellular communication between cells and frequently form between somatic gonadal cells and germ cells. Gap junctions comprise hexameric hemichannels in apposing cells that dock to form channels for the exchange of small molecules. Here we report essential roles for two classes of gap junction channels, composed of five innexin proteins, in supporting the proliferation of germline stem cells and gametogenesis in the nematode Caenorhabditis elegans. Transmission electron microscopy of freeze-fracture replicas and fluorescence microscopy show that gap junctions between somatic cells and germ cells are more extensive than previously appreciated and are found throughout the gonad. One class of gap junctions, composed of INX-8 and INX-9 in the soma and INX-14 and INX-21 in the germ line, is required for the proliferation and differentiation of germline stem cells. Genetic epistasis experiments establish a role for these gap junction channels in germline proliferation independent of the glp-1/Notch pathway. A second class of gap junctions, composed of somatic INX-8 and INX-9 and germline INX-14 and INX-22, is required for the negative regulation of oocyte meiotic maturation. Rescue of gap junction channel formation in the stem cell niche rescues germline proliferation and uncovers a later channel requirement for embryonic viability. This analysis reveals gap junctions as a central organizing feature of many soma–germline interactions in C. elegans.  相似文献   

3.
Fertilization in the female reproductive tract depends on intercellular signaling mechanisms that coordinate sperm presence with oocyte meiotic progression. To achieve this coordination in Caenorhabditis elegans, sperm release an extracellular signal, the major sperm protein (MSP), to induce oocyte meiotic maturation and ovulation. MSP binds to multiple receptors, including the VAB-1 Eph receptor protein-tyrosine kinase on oocyte and ovarian sheath cell surfaces. Canonical VAB-1 ligands called ephrins negatively regulate oocyte maturation and MPK-1 mitogen-activated protein kinase (MAPK) activation. Here, we show that MSP and VAB-1 regulate the signaling properties of two Ca2+ channels that are encoded by the NMR-1 N-methyl D-aspartate type glutamate receptor subunit and ITR-1 inositol 1,4,5-triphosphate receptor. Ephrin/VAB-1 signaling acts upstream of ITR-1 to inhibit meiotic resumption, while NMR-1 prevents signaling by the UNC-43 Ca2+/calmodulin-dependent protein kinase II (CaMKII). MSP binding to VAB-1 stimulates NMR-1-dependent UNC-43 activation, and UNC-43 acts redundantly in oocytes to promote oocyte maturation and MAPK activation. Our results support a model in which VAB-1 switches from a negative regulator into a redundant positive regulator of oocyte maturation upon binding to MSP. NMR-1 mediates this switch by controlling UNC-43 CaMKII activation at the oocyte cortex.  相似文献   

4.
This study documents changes in gonadal structure for the serial hermaphrodite (or bidirectional sex changer) divine dwarfgoby Eviota epiphanes (family Gobiidae) as individuals transition in both directions. To evaluate transitional gonad morphology, individuals actively producing the same gamete type (oocytes or sperm) were set up into pairs and euthanised over a period of 14 days to get a time series of morphological changes during gonad transformation. Results from this study show that rapid changes in the gonad take place at a structural level as individuals change their reproductive function and gamete production. Changing from oocyte production (o-phase) to sperm production (s-phase) starts with the breakdown of vitellogenic oocytes (i.e., atresia) followed by the appearance and proliferation of spermatogenic tissue which, in most cases, was not previously visible. Changing from sperm production to oocyte production included the cessation of sperm production, a reduction in size and number of seminiferous lobules and the maturation of previtellogenic oocytes already present in the gonads. Experimental fish changed from oocyte production to sperm production more readily than from sperm production to oocyte production. The hypothesis that shifts in sexual function among serially hermaphroditic fish species have a similar cost in either direction is not supported in E. epiphanes.  相似文献   

5.
Genetic and embryological experiments have established the Caenorhabditis elegans adult hermaphrodite gonad as a paradigm for studying the control of germline development and the role of soma-germline interactions. We describe ultrastructural features relating to essential germline events and the soma-germline interactions upon which they depend, as revealed by electron and fluorescence microscopy. Gap junctions were observed between oocytes and proximal gonadal sheath cells that contract to ovulate the oocyte. These gap junctions must be evanescent since individual oocytes lose contact with sheath cells when they are ovulated. In addition, proximal sheath cells are coupled to each other by gap junctions. Within proximal sheath cells, actin/myosin bundles are anchored to the plasma membrane at plaque-like structures we have termed hemi-adherens junctions, which in turn are closely associated with the gonadal basal lamina. Gap junctions and hemi-adherens junctions are likely to function in the coordinated series of contractions required to ovulate the mature oocyte. Proximal sheath cells are fenestrated with multiple small pores forming conduits from the gonadal basal lamina to the surface of the oocyte, passing through the sheath cell. In most instances where pores occur, extracellular yolk particles penetrate the gonadal basal lamina to directly touch the underlying oocytes. Membrane-bounded yolk granules were generally not found in the sheath cytoplasm by either electron microscopy or fluorescence microscopy. Electron microscopic immunocytochemistry was used to confirm and characterize the appearance of yolk protein in cytoplasmic organelles within the oocyte and in free particles in the pseudocoelom. The primary route of yolk transport apparently proceeds from the intestine into the pseudocoelom, then through sheath pores to the surface of the oocyte, where endocytosis occurs. Scanning electron microscopy was used to directly visualize the distal tip cell which extends tentacle-like processes that directly contact distal germ cells. These distal tip cell processes are likely to play a critical role in promoting germline mitosis. Scanning electron microscopy also revealed thin filopodia extending from the distal sheath cells. Distal sheath filopodia were also visualized using a green fluorescent protein reporter gene fusion and confocal microscopy. Distal sheath filopodia may function to stretch the sheath over the distal arm.  相似文献   

6.
The MSP domain is a conserved immunoglobulin-like structure that is important for C. elegans reproduction and human motor neuron survival. C. elegans MSPs are the most abundant proteins in sperm, where they function as intracellular cytoskeletal proteins and secreted hormones. Secreted MSPs bind to multiple receptors on oocyte and ovarian sheath cell surfaces to induce oocyte maturation and sheath contraction. MSP binding stimulates oocyte MPK-1 ERK MAP Kinase (MAPK) phosphorylation, but the function and mechanism are not well understood. Here we show that the Shp class protein-tyrosine phosphatase PTP-2 acts in oocytes downstream of sheath/oocyte gap junctions to promote MSP-induced MPK-1 phosphorylation. PTP-2 functions in the oocyte cytoplasm, not at the cell surface to inhibit multiple RasGAPs, resulting in sustained Ras activation. We also provide evidence that MSP promotes production of reactive oxygen species (ROS), which act as second messengers to augment MPK-1 phosphorylation. The Cu/Zn superoxide dismutase SOD-1, an enzyme that catalyzes ROS breakdown in the cytoplasm, inhibits MPK-1 phosphorylation downstream of or in parallel to ptp-2. Our results support the model that MSP triggers PTP-2/Ras activation and ROS production to stimulate MPK-1 activity essential for oocyte maturation. We propose that secreted MSP domains and Cu/Zn superoxide dismutases function antagonistically to control ROS and MAPK signaling.  相似文献   

7.
8.
BACKGROUND: A conserved biological feature of sexual reproduction in animals is that oocytes arrest in meiotic prophase and resume meiosis in response to extraovarian signals. In C. elegans, sperm trigger meiotic resumption by means of the major sperm protein (MSP) signal. MSP promotes meiotic resumption by functioning as an ephrin-signaling antagonist and by counteracting inhibitory inputs from the somatic gonadal sheath cells. RESULTS: By using a genome-wide RNAi screen in a female-sterile genetic background, we identified 17 conserved genes that maintain meiotic arrest in the absence of the MSP signal. In vitro binding experiments show that MSP promotes oocyte mitogen-activated protein kinase activation and meiotic maturation in part through direct interaction with the VAB-1 Eph receptor. Four conserved proteins, including a disabled protein (DAB-1), a vav family GEF (VAV-1), a protein kinase C (PKC-1), and a STAM homolog (PQN-19), function with the VAB-1 Eph/MSP receptor in oocytes. We show that antagonistic Galphao/i and Galphas signaling pathways function in the soma to regulate meiotic maturation in parallel to the VAB-1 pathway. Galphas activity is necessary and sufficient to promote meiotic maturation, which it does in part by antagonizing inhibitory sheath/oocyte gap-junctional communication. CONCLUSIONS: Our findings show that oocyte Eph receptor and somatic cell G protein signaling pathways control meiotic diapause in C. elegans, highlighting contrasts and parallels between MSP signaling in C. elegans and luteinizing hormone signaling in mammals.  相似文献   

9.
Summary In telotrophic insect ovaries, the oocytes develop in association with two kinds of supporting cells. Each ovary contains five to seven ovarioles. An ovariole consists of a single strand of several oocytes. At the apex of each ovariole is a syncytium of nurse cells (the tropharium), which connects by strands of cytoplasm (the trophic cords) to four or more previtellogenic oocytes. In addition, each oocyte is surrounded by an epithelium of follicle cells, with which it may form gap junctions. To study the temporal and spatial patterns of these associations, Lucifer yellow was microinjected into ovaries of the red cotton bug, Dysdercus intermedius. Freeze-fracture replicas were examined to analyze the distribution of gap junctions between the oocyte and the follicle cells. Dye-coupling between oocytes and follicle cells was detectable early in previtellogenesis and was maintained through late vitellogenesis. It was restricted to the lateral follicle cells. The anterior and posterior follicle cells were not dye-coupled. Freeze-fracture analysis showed microvilli formed by the oocyte during mid-previtellogenesis, and the gap junctions became located at the tips of these. As the microvilli continued to elongate until late vitellogenesis, gap junction particles between them and follicle cell membranes became arranged in long arrays. The morphological findings raise questions about pathways for the intrafollicular phase of the ion currents known to surround the previtellogenic and vitellogenic growth zones of the ovariole.Supported by the Deutsche Forschungsgemeinschaft (Schwerpunkt Differenzierung)  相似文献   

10.
The cell contacts between follicle cells, and follicle cells and oocytes of egg-laying populations of Helisoma duryi and non-egg-laying populations of H. trivcolvis have been studied. Scanning electron microscopy reveals that four to six follicle cells envelop a single developing oocyte. Thin sections and lanthanum impregnations demonstrate apical zonulae adherentes followed by winding pleated-type septate junctions between follicle cells. Gap junctions and septate junctions have been found between follicle cells and vitellogenic oocytes. Freeze-fracture replicas show relatively wide sinuous rows of septate junctional particles, and nemerous large gap junctional particle aggregates on the P-face between vitellogenic oocytes and follicle cells. Septate and gap junctions between immature or nonvitellogenic oocytes and follicle cells are fewer compared to those in vitellogenic oocytes. Similarly, the junctional complexes are less developed in non-egg-laying H. trivolvis compared to those in egg-laying H. duryi. It is possible that intimate interaction between follicle cells and a developing oocyte is necessary for the maturation of the oocyte. The junctional complexes could be involved in the interaction of the follicle cells and the oocyte, and they must disassemble at the onset of ovulation. Rhombic particle arrays and nonjunctional ridges of particles have been found in the basal part of the oolemma.  相似文献   

11.
It has been demonstrated in Bufo arenarum that fully grown oocytes are capable of meiotic resumption in the absence of a hormonal stimulus if they are deprived of their follicular envelopes. This event, called spontaneous maturation, only takes place in oocytes collected during the reproductive period, which have a metabolically mature cytoplasm. In Bufo arenarum, progesterone acts on the oocyte surface and causes modifications in the activities of important enzymes, such as a decrease in the activity of adenylate cyclase (AC) and the activation of phospholipase C (PLC). PLC activation leads to the formation of diacylglycerol (DAG) and inositol triphosphate (IP(3)), second messengers that activate protein kinase C (PKC) and cause an increase in intracellular Ca(2+). Recent data obtained from Bufo arenarum show that progesterone-induced maturation causes significant modifications in the level and composition of neutral lipids and phospholipids of whole fully grown ovarian oocytes and of enriched fractions in the plasma membrane. In amphibians, the luteinizing hormone (LH) is responsible for meiosis resumption through the induction of progesterone production by follicular cells. The aim of this work was to study the importance of gap junctions in the spontaneous and LH-induced maturation in Bufo arenarum oocytes. During the reproductive period, Bufo arenarum oocytes are capable of undergoing spontaneous maturation in a similar way to mammalian oocytes while, during the non-reproductive period, they exhibit the behaviour that is characteristic of amphibian oocytes, requiring progesterone stimulation for meiotic resumption (incapable oocytes). This different ability to mature spontaneously is coincident with differences in the amount and composition of the phospholipids in the oocyte membranes. Capable oocytes exhibit in their membranes higher quantities of phospholipids than incapable oocytes, especially of PC and PI, which are precursors of second messengers such as DAG and IP(3). The uncoupling of the gap junctions with 1-octanol or halothane fails to induce maturation in follicles from the non-reproductive period, whose oocytes are incapable of maturing spontaneously. However, if the treatment is performed during the reproductive period, with oocytes capable of undergoing spontaneous maturation, meiosis resumption occurs in high percentages, similar to those obtained by manual defolliculation. Interestingly, results show that LH is capable of inducing GVBD in both incapable oocytes and in oocytes capable of maturing spontaneously as long as follicle cells are present, which would imply the need for a communication pathway between the oocyte and the follicle cells. This possibility was analysed by combining LH treatment with uncoupling agents such as 1-octanol or halothane. Results show that maturation induction with LH requires a cell-cell coupling, as the uncoupling of the gap junctions decreases GVBD percentages. Experiments with LH in the presence of heparin, BAPTA/AM and theophylline suggest that the hormone could induce GVBD by means of the passage of IP(3) or Ca(2+) through the gap junctions, which would increase the Ca(2+) level in the oocyte cytoplasm and activate phosphodiesterase (PDE), thus contributing to the decrease in cAMP levels and allowing meiosis resumption.  相似文献   

12.
BACKGROUND: In C. elegans, a sperm-sensing mechanism regulates oocyte meiotic maturation and ovulation, tightly coordinating sperm availability and embryo production; sperm release the major sperm protein (MSP) signal to trigger meiotic resumption. Meiotic arrest depends on the parallel function of the oocyte VAB-1 MSP/Eph receptor and somatic G protein signaling. MSP promotes meiotic maturation by antagonizing Eph receptor signaling and counteracting inhibitory inputs from the gonadal sheath cells. RESULTS: Here, we present evidence suggesting that in the absence of the MSP ligand, the VAB-1 Eph receptor inhibits meiotic maturation while either in or in transit to the endocytic-recycling compartment. VAB-1::GFP localization to the RAB-11-positive endocytic-recycling compartment is independent of ephrins but is antagonized by MSP signaling. Two negative regulators of oocyte meiotic maturation, DAB-1/Disabled and RAN-1, interact with the VAB-1 receptor and are required for its accumulation in the endocytic-recycling compartment in the absence of MSP or sperm (hereafter referred to as MSP/sperm). Inactivation of the endosomal recycling regulators rme-1 or rab-11.1 causes a vab-1-dependent reduction in the meiotic-maturation rate in the presence of MSP/sperm. Further, we show that Galpha(s) signaling in the gonadal sheath cells, which is required for meiotic maturation in the presence of MSP/sperm, affects VAB-1::GFP trafficking in oocytes. CONCLUSIONS: Regulated endocytic trafficking of the VAB-1 MSP/Eph receptor contributes to the control of oocyte meiotic maturation in C. elegans. Eph receptor trafficking in other systems may be influenced by the conserved proteins DAB-1/Disabled and RAN-1 and by crosstalk with G protein signaling in neighboring cells.  相似文献   

13.
14.
Intercellular communication between germ cells and neighboring somatic cells is essential for reproduction. Caenorhabditis elegans oocytes are surrounded by and coupled via gap junctions to smooth muscle-like myoepithelial sheath cells. Rhythmic sheath cell contraction drives ovulation and is triggered by a factor secreted from oocytes undergoing meiotic maturation. We demonstrate for the first time that signaling through the epidermal growth factor-like ligand LIN-3 and the LET-23 tyrosine kinase receptor induces ovulatory contractions of sheath cells. Reduction-of-function mutations in the inositol 1,4,5-trisphosphate (IP(3)) receptor gene itr-1 and knockdown of itr-1 expression by RNA interference inhibit sheath contractile activity. itr-1 gain-of-function mutations increase the rate and force of basal contractions and induce tonic sheath contraction during ovulation. Sheath contractile activity is disrupted by RNAi of plc-3, one of six phospholipase C-encoding genes in the C. elegans genome. PLC-3 is a PLC-gamma homolog and is expressed in contractile sheath cells of the proximal gonad. Maintenance of sheath contractile activity requires plasma membrane Ca(2+) entry. We conclude that IP(3) generated by LET-23 mediated activation of PLC-gamma induces repetitive intracellular Ca(2+) release that drives rhythmic sheath cell contraction. Calcium entry may function to trigger Ca(2+) release via IP(3) receptors and/or refill intracellular Ca(2+) stores.  相似文献   

15.
In most animals, female meiotic spindles assemble in the absence of centrosomes; instead, microtubule nucleation by chromatin, motor activity, and microtubule dynamics drive the self-organization of a bipolar meiotic spindle. Meiotic spindle assembly commences when microtubules gain access to chromatin after nuclear envelope breakdown (NEBD) during meiotic maturation. Although many studies have addressed the chromatin-based mechanism of female meiotic spindle assembly, it is less clear how signaling influences microtubule localization and dynamics prior to NEBD. Here we analyze microtubule behavior in Caenorhabditis elegans oocytes at early stages of the meiotic maturation process using confocal microscopy and live-cell imaging. In C. elegans, sperm trigger oocyte meiotic maturation and ovulation using the major sperm protein (MSP) as an extracellular signaling molecule. We show that MSP signaling reorganizes oocyte microtubules prior to NEBD and fertilization by affecting their localization and dynamics. We present evidence that MSP signaling reorganizes oocyte microtubules through a signaling network involving antagonistic G alpha(o/i) and G alpha(s) pathways and gap-junctional communication with somatic cells of the gonad. We propose that MSP-dependent microtubule reorganization promotes meiotic spindle assembly by facilitating the search and capture of microtubules by meiotic chromatin following NEBD.  相似文献   

16.
Innexins are the proposed structural components of gap junctions in invertebrates. Antibodies that specifically recognize the Caenorhabditis elegans innexin protein INX-3 were generated and used to examine the patterns of inx-3 gene expression and the subcellular sites of INX-3 localization. INX-3 is first detected in two-cell embryos, concentrated at the intercellular interface, and is expressed ubiquitously throughout the cellular proliferation phase of embryogenesis. During embryonic morphogenesis, INX-3 expression becomes more restricted. Postembryonically, INX-3 is expressed transiently in several cell types, while expression in the posterior pharynx persists throughout development. Through immuno-EM techniques, INX-3 was observed at gap junctions in the adult pharynx, providing supporting evidence that innexins are components of gap junctions. An inx-3 mutant was isolated through a combined genetic and immunocytochemical screen. Homozygous inx-3 mutants exhibit defects during embryonic morphogenesis. At the comma stage of early morphogenesis, variable numbers of cells are lost from the anterior of inx-3(lw68) mutants. A range of terminal defects is seen later in embryogenesis, including localized rupture of the hypodermis, failure of the midbody to elongate properly, abnormal contacts between hypodermal cells, and failure of the pharynx to attach to the anterior of the animal.  相似文献   

17.
Information on gonad morphology and its relation to basic reproductive parameters such as clutch size and spawning frequency is lacking for Acartia clausi, a dominant calanoid copepod of the North Sea. To fill this gap, females of this species were sampled at Helgoland Roads from mid March to late May 2001. Gonad structure and oogenesis were studied using a combination of histology and whole-body-analysis. In addition, clutch size and spawning frequency were determined in incubation experiments, during which individual females were monitored at short intervals for 8 and 12 h, respectively. The histological analysis revealed that the ovary of A. clausi is w-shaped with two distinct tips pointing posteriorly. It is slightly different from that of other Acartia species and of other copepod taxa. From the ovary, two anterior diverticula extend into the head region, and two posterior diverticula extend to the genital opening in the abdomen. Developing oocytes change in shape and size, and in the appearance of the nucleus and the ooplasm. Based on these morphological characteristics, different oocyte development stages (OS) were identified. Mitotically dividing oogonia and young oocytes (OS 0) were restricted to the ovary, whereas vitellogenic oocytes (OS 1–4) were present in the diverticula. The development stage of the oocytes increased with distance to the ovary in both, anterior and posterior diverticula. Most advanced oocytes were situated ventrally, and their number varied between 1 and 18, at a median of 4. All oocyte development stages co-occur indicating that oogenesis in A. clausi is a continuous process. These morphological features reflect the reproductive traits of this species. In accordance with the low numbers of mature oocytes in the gonads, females usually produced small clutches of one to five eggs. Clutches were released throughout the entire observation period at intervals of 90 min (median) resulting in mean egg production rates of 18–28 eggs female−1 day−1.  相似文献   

18.
《Developmental biology》1999,205(1):111-128
Prior to fertilization, oocytes undergo meiotic maturation (cell cycle progression) and ovulation (expulsion from the ovary). To begin the study of these processes inCaenorhabditis elegans,we have defined a time line of germline and somatic events by video microscopy. As the oocyte matures, its nuclear envelope breaks down and its cell cortex rearranges. Immediately thereafter, the oocyte is ovulated by increasing contraction of the myoepithelial gonadal sheath and relaxation of the distal spermatheca. By systematically altering the germ cell contents of the hermaphrodite using mutant strains, we have uncovered evidence of four cell–cell interactions that regulate maturation and ovulation. (1) Both spermatids and spermatozoa induce oocyte maturation. In animals with a feminized germline, maturation is inhibited and oocytes arrest in diakinesis. The introduction of sperm by mating restores maturation. (2) Sperm also directly promote sheath contraction. In animals with a feminized or tumorous germline, contractions are infrequent, whereas in animals with a masculinized germline or with sperm introduced by mating, contractions are frequent. (3 and 4) The maturing oocyte both induces spermathecal dilation and modulates sheath contractions at ovulation; dilation of the distal spermatheca and sharp increases in sheath contraction rates are only observed in the presence of a maturing oocyte.  相似文献   

19.
Summary mRNA from estrogen-stimulated rat myometrium, a tissue known to upregulate cell-cell channels in response to this hormone, was microinjected intoXenopus laevis oocytes. The oocytes had been freed from covering layers of follicle cells and vitelline to allow direct cell membrane interactions when paired. About 4 hours after the mRNA injection, paired oocytes become electrically coupled. This coupling was due to the presence of typical cell-cell channels characterized by size-limited intercellular tracer flux, the presence of gap junctions at the oocyte-oocyte interface, and the reversible uncoupling that occurred in the presence of carbon dioxide. The induction of new cell-cell channels in the oocyte membrane was observed against a zero background or a low level of endogenous coupling, depending on the maturation stage of the oocytes. The time course of development of cell-cell coupling after the microinjection of mRNA was determined. The mRNA capable of inducing cell-cell coupling was confined to an intermediate size class when fractionated on a sucrose gradient.  相似文献   

20.
This study describes the reproductive strategy of the stream‐dwelling catfish Hatcheria macraei in the Pichileufu River, Argentina. Gonad maturity phases, classified on the basis of histological analysis, stages of gamete development and the frequency distribution of oocyte size, were correlated with macroscopic features of the gonads. Hatcheria macraei has a cystovarian ovary, asynchronous oocyte development and lobular testes. Five oocyte and four spermatogenic stages were identified and related to macroscopic gonad characteristics, making it possible to divide gonad development into five phases for females and males. Mature oocyte diameter ranged from 922 to 1935 µm. Absolute fecundity in mature females varied from 115 to 480 oocytes. Hatcheria macraei has multiple spawning during a protracted reproductive season that extends from December to April. This, together with its small size, is characteristic of an opportunistic reproductive strategy, commonly found in species that inhabit adverse and unpredictable environments, such as the low‐order rivers of Patagonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号