首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Signalling and the control of skeletal muscle size   总被引:1,自引:0,他引:1  
Skeletal muscle is highly adaptive to environmental stimuli and can alter its mass accordingly. This tissue is almost unique in that it can increase its size through two distinct mechanisms. It can grow through a cellular process mediated by cell fusion, or it can increase its size simply by increasing its protein content. Understanding how these processes are regulated is crucial for the development of potential therapies against debilitating skeletal muscle wasting diseases. Two key signalling molecules, Insulin like Growth Factor (IGF) and GDF-8/myostatin, have emerged in recent years to be potent regulators of skeletal muscle size. In this review we bring together recent data highlighting the important and novel aspects of both molecules and their signalling pathways, culminating in a discussion of the cellular and tissue phenotypic outcomes of their stimulation or antagonism. We emphasise the complex regulatory mechanisms and discuss the temporal and spatial differences that control their action, understanding of which is crucial to further their use as potential therapeutic targets.  相似文献   

2.
We have studied the growth rate, nucleic-acid concentration, protein-accumulation rate (KG), and several other parameters relating to protein turnover, such as the protein-synthesis (KS), and protein-degradation rates (KD), protein-synthesis capacity (CS), protein-synthesis efficiency (KRNA), protein-synthesis rate per DNA unit (KDNA) and protein-retention efficiency (PRE), in the white muscle of rainbow trout during development. Both growth rate and relative food intake decreased significantly with age and weight, as did the food-efficiency ratio (FER) and protein-efficiency ratio (PER). Although absolute RNA and DNA contents increased with age, their relative concentrations decreased. The RNA/DNA ratio increased sharply from 14 to 28 weeks but afterwards decreased towards initial values. Hypertrophy increased rapidly to the 28-week stage but thenceforth increased much more slowly. Hyperplasia, on the other hand, continued to increase linearly, resulting in a significant four- to fivefold predominance in this type of growth at the end of the 96-week experimental period. KG decreased significantly with age, as did KS, and CS, whereas at the 14-week stage, KD was significantly lower than at other ages. KRNA increased until 28 weeks. KDNA increased significantly in juvenile fish compared to both fingerlings and adults, where it showed similar lower values. PRE remained high at all ages.  相似文献   

3.
4.
Summary Species of small fish are becoming useful tools for studies on vertebrate development. We have investigated the developing embryo of the Japanese medaka for its application as a transient expression system for the in vivo analysis of gene regulation and function. The temporal and spatial expression patterns of bacterial chloramphenicol acetyltransferase and galactosidase reporter genes injected in supercoiled plasmid form into the cytoplasm of one cell of the two-cell stage embryo was promoter-specific. The transient expression was found to be mosaic within the tissue and organs reflecting the unequal distribution of extrachromosomal foreign DNA and the intensive cell mixing movements that occur in fish embryogenesis. The expression data are consistent with data on DNA fate. Foreign DNA persisted during embryogenesis and was still detectable in some 3- and 9-month-old adult fish; it was found in high molecular weight form as well as in circular plasmid conformations. The DNA was replicated during early and late embryogenesis. Our data indicate that the developing medaka embryo is a powerful in vivo assay system for studies of gene regulation and function.This work contains part of the PhD thesis of C. Winkler  相似文献   

5.
The aim of this work was to gain insights into the mechanism of muscle differentiation and growth in Pagellus bogaraveo, by studying muscle fibre phenotypes identified by immunohistochemistry. At hatching, several layers of deep fast-white fibres were covered by a superficial fibre monolayer. At 5 days, slow-red fibres appeared near the lateral line nerve. At 40 days, the intermediate-pink muscle became visible, and in the slow-red and fast-white muscle layers transitions from larval myosin isoforms to the isoforms typical of adult muscle occurred. Between 70 and 100 days, small fibres with a distinct ATPase profile appeared throughout the fast-white muscle, marking the onset of “mosaic” hyperplasia. The myosin of the original superficial monolayer fibres underwent two myosin transformations, before being slowly replaced by an adult slow-red isoform. In juveniles and adults, the slow-red muscle layer could be resolved into two distinct types. The analysis of fibre phenotypes indicated that post-larval muscle growth occurred by two distinct stages of hyperplasia. This study offers a basis for further comparative and experimental studies with this economically relevant species, namely for identifying factors influencing its muscle growth dynamics and disclosing underlying mechanisms.  相似文献   

6.
7.
Orito K  Yamane T  Kanai T  Fujii Y  Wakao Y  Matsuda H 《Life sciences》2004,75(9):1135-1145
ACE and chymase play crucial roles in the establishment of pressure overload-induced cardiac hypertrophy. In the present study, time sequences of ACE and chymase-like activities, and their correlation with hypertrophic changes including free wall thickness and cardiac fibrosis, were elucidated in dogs with constant pressure overload to the right ventricle. Pulmonary artery banding (PAB) was applied so that the diameter of the main pulmonary artery was reduced to 60% of the original size, right ventricular pressure was elevated by about 70%, and pulmonary artery flow was increased by about three times of that in sham operation groups. These increases remained unchanged 15, 60, and 180 days after PAB, suggesting that constant right ventricular pressure overload was obtained, at least during this period. The diameter of the right ventricular myocyte was slightly increased and the percentage of fractional shortening was decreased 15 days after PAB. Right ventricular wall thickness and interstitial collagenous fiber were, however, not different from those of sham-operated dogs, suggesting that this period is a period of adaptation to the overload. Sixty days after PAB, the diameter of the right ventricular myocyte was further increased, and right ventricular wall thickness and interstitial collagenous fiber were also increased. These changes were almost identical even 180 days after PAB. Thus, stable hypertrophy was elicited from 60 through 180 days after PAB. ACE activity was facilitated at the adaptation period to the overload (15 days after PAB), but chymase activity was not facilitated at this period. On the other hand, both ACE and chymase-like activities were unchanged in the earlier phase (60 days after PAB) of stable hypertrophy, but facilitated in the latter phase (180 days after PAB). These findings suggest the pathophysiologic roles of these enzymes may be different over the time course of pressure overload-induced hypertrophy.  相似文献   

8.
Ohtsuka M  Kikuchi N  Ozato K  Inoko H  Kimura M 《Genomics》2004,83(6):1063-1071
Medaka is one of the prominent model animals, which also include other fishes such as Fugu and zebrafish. Its genome is relatively compact but has not been well characterized. Here we have sequenced a 229-kb region of medaka, containing the Double anal fin (Da) locus, and compared its structure to those in Fugu, human, and mouse. This region, representing a gene-poor region, contains no major rearrangements and can be readily compared among different species. Comparison of G+C contents and repeats suggested that medaka and Fugu are highly related as expected and that medaka is more similar to mammals than Fugu is. Sequence comparisons of developmental genes zic1 and zic4, identified within this region, revealed that zic1, but not zic4, is highly conserved among vertebrates. The 5' coding region of zic4 is, however, extremely homologous among fishes with little synonymous substitutions, implying its distinct function in fish.  相似文献   

9.
We have isolated parcas (pcs) in a screen to identify novel regulators of muscle morphogenesis. Pcs is expressed in the ovary and oocyte during oogenesis and again in the embryo, specifically in the developing mesoderm, throughout muscle development. pcs is first required in the ovary during oogenesis for patterning and segmentation of the early Drosophila embryo due primarily to its role in the regulation of Oskar (Osk) levels. In addition to the general patterning defects observed in embryos lacking maternal contribution of pcs, these embryos show defects in Wingless (Wg) expression, causing losses of Wg-dependent cell types within the affected segment. pcs activity is required again later during embryogenesis in the developing mesoderm for muscle development. Loss and gain of function studies demonstrate that pcs is necessary at distinct times for muscle specification and morphogenesis. Pcs is predicted to be a novel regulator of non-receptor tyrosine kinase (NRTK) signaling. We have identified one target of Pcs regulation, the Drosophila Tec kinase Btk29A. While Btk29A appears to be regulated by Pcs during its early role in patterning and segmentation, it does not appear to be a major target of Pcs regulation during muscle development. We propose that Pcs fulfils its distinct roles during development by the regulation of multiple NRTKs.  相似文献   

10.
Cardiac myosin light chain 2 (MLC‐2) plays a key role in heart development, contraction, and embryo and adult heart maintenance. In some animals, defects in the function of cardiac MLC‐2 cause hypertrophic cardiomyopathy. To illuminate the functions of cardiac MLC‐2 in embryonic heart formation and contraction, and into the evolution of MLC‐2, we characterized the expression and requirement for medaka cardiac MLC‐2 gene in the developing heart. Medaka cardiac MLC‐2 cDNA (mcmlc2) was isolated and its gene expression pattern was determined. The mcmlc2 was found to be expressed in the bilateral cardiac mesoderm, the formed heart tube, and in both the differentiated ventricle and atrium. Knockdown of mcmlc2 function caused severe cardiac disorders, including edema in the atrium and sinus venosus. Using phylogenetic analysis, we found that physiological variations in the MLC‐2 molecules evolved due to amino acid changes in the Ca2+ binding domain during molecular evolution. Our findings concerning the function and expression of mcmlc2 are nearly identical with those of other MLC‐2 genes, and our phylogenetic analysis suggests that during evolution, the variations in physiological function within the MLC‐2 gene family have arisen from a change in the amino acids in the Ca2+ binding domain in the MLC‐2 molecule.  相似文献   

11.
Previous studies on non-diadromous euryhaline teleosts introduced a hypothesis that the lowest level of gill Na+/K+-ATPase (NKA) activity occurs in the environments with salinity close to the primary natural habitats of the studied species. To provide more evidence of the hypothesis, two medaka species, Oryzias latipes and O. dancena, whose primary natural habitats are fresh water (FW) and brackish water (BW) environments, respectively, were compared from levels of mRNA to cells in this study. The plasma osmolalities of O. latipes and O. dancena were lowest in the FW individuals. The muscle water contents of O. latipes decreased with elevated external salinities, but were constant among FW-, BW-, and seawater (SW)-acclimated O. dancena. Expression of NKA, the primary driving force of ion transporters in gill ionocytes, revealed different patterns in the two Oryzias species. The highest NKA α-subunit mRNA abundances were found in the gills of the SW O. latipes and the FW O. dancena, respectively. The pattern of NKA activity and α-subunit protein abundance in the gills of O. latipes revealed that the FW group was the lowest, while the pattern in O. dancena revealed that the BW group was the lowest. Immunohistochemical staining showed similar profiles of NKA immunoreactive (NKIR) cell activities (NKIR cell number × cell size) in the gills of these two species among FW, BW, and SW groups. Taken together, O. latipes exhibited better hyposmoregulatory ability, while O. dancena exhibited better hyperosmoregulatory ability. Our results corresponding to the hypothesis indicated that the lowest branchial NKA activities of these two medaka species were found in the environments with salinities similar to their natural habitats.  相似文献   

12.
The objective of this study was to investigate how joint specific biomechanical loading influences the functional development and phenotypic stability of cartilage grafts engineered in vitro using stem/progenitor cells isolated from different source tissues. Porcine bone marrow derived multipotent stromal cells (BMSCs) and infrapatellar fat pad derived multipotent stromal cells (FPSCs) were seeded in agarose hydrogels and cultured in chondrogenic medium, while simultaneously subjected to 10 MPa of cyclic hydrostatic pressure (HP). To mimic the endochondral phenotype observed in vivo with cartilaginous tissues engineered using BMSCs, the culture media was additionally supplemented with hypertrophic factors, while the loss of phenotype observed in vivo with FPSCs was induced by withdrawing transforming growth factor (TGF)-β3 from the media. The application of HP was found to enhance the functional development of cartilaginous tissues engineered using both BMSCs and FPSCs. In addition, HP was found to suppress calcification of tissues engineered using BMSCs cultured in chondrogenic conditions and acted to maintain a chondrogenic phenotype in cartilaginous grafts engineered using FPSCs. The results of this study point to the importance of in vivo specific mechanical cues for determining the terminal phenotype of chondrogenically primed multipotent stromal cells. Furthermore, demonstrating that stem or progenitor cells will appropriately differentiate in response to such biophysical cues might also be considered as an additional functional assay for evaluating their therapeutic potential.  相似文献   

13.
Distal myopathy with rimmed vacuoles/hereditary inclusion body myopathy (DMRV/hIBM), characterized by progressive muscle atrophy, weakness, and degeneration, is due to mutations in GNE, a gene encoding a bifunctional enzyme critical in sialic acid biosynthesis. In the DMRV/hIBM mouse model, which exhibits hyposialylation in various tissues in addition to muscle atrophy, weakness, and degeneration, we recently have demonstrated that the myopathic phenotype was prevented by oral administration of N-acetylneuraminic acid, N-acetylmannosamine, and sialyllactose, underscoring the crucial role of hyposialylation in the disease pathomechanism. The choice for the preferred molecule, however, was limited probably by the complex pharmacokinetics of sialic acids and the lack of biomarkers that could clearly show dose response. To address these issues, we screened several synthetic sugar compounds that could increase sialylation more remarkably and allow demonstration of measurable effects in the DMRV/hIBM mice. In this study, we found that tetra-O-acetylated N-acetylmannosamine increased cell sialylation most efficiently, and in vivo evaluation in DMRV/hIBM mice revealed a more dramatic, measurable effect and improvement in muscle phenotype, enabling us to establish analysis of protein biomarkers that can be used for assessing response to treatment. Our results provide a proof of concept in sialic acid-related molecular therapy with synthetic monosaccharides.  相似文献   

14.
15.
The distribution of insulin-like growth factor-I (IGF-I) and myostatin (MSTN) was investigated in sea bass (Dicentrarchus labrax) by real-time polymerase chain reaction (PCR), in situ hybridization (ISH) and immunohistochemistry. Real-time PCR indicated that IGF-I mRNA increased from the second day post-hatching and that this trend became significant from day 4. ISH confirmed a strong IGF-I mRNA expression from the first week post-hatching, with the most abundant expression being detected in the liver of larvae and adults. Real-time PCR also showed that the level of MSTN mRNA increased significantly from day 25. The expression of MSTN mRNA was higher in muscle and almost absent in other anatomical regions in both larvae and adults. Interestingly, the lateral muscle showed a quantitative differential expression of IGF-I and MSTN mRNAs in red and white muscle, depending on the developmental stage examined. IGF-I immunoreactivity was detected in developing intestine at hatching and in skeletal muscle, skin and yolk sac. MSTN immunostaining was evident in several tissues and organs in both larvae and adults. Both IGF-I and MSTN proteins were detected in the liver from day 4 post-hatching and, subsequently, in the kidney and heart muscle from day 10. Our results suggest, on the basis of a combined methodological approach, that IGF-I and MSTN are involved in the regulation of somatic growth in the sea bass. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This research was supported by grants from the Italian Ministero dell’Università e della Ricerca Scientifica e Tecnologica (MIUR) and by the University of Padua (Progetto di Ateneo).  相似文献   

16.
The epidermis serves as a barrier protecting organs and tissues from the environment, and comprises many types of cells. A cell renewal system is established in epidermis: old epithelial cells are replaced by newly differentiated cells, which are derived from epidermal stem cells located near basement membrane. In order to examine the mechanism of epidermal development, we isolated a novel gene expressed in Xenopus epidermis and named the gene Xenopus polka dots (Xpod) from its polka dot-like expression pattern throughout larval periods. Several immunohistochemical examinations showed that the Xpod-expressing cell type is neither p63-positive epidermal stem cells, nor the α-tubulin-positive ciliated cells, but a subset of the foxi1e-positive ionocytes. The forced gene expression of foxi1e caused the suppression of Xpod expression, while Xpod showed no effect on foxi1e expression. In a comparison of several osmotic conditions, we found that hypertonic culture caused the increase in number of the Xpod-expressing cell, whereas number of the foxi1e-expressing cells was reduced under the hypertonic condition. These results show the possibility that Xpod is involved in the establishment of a certain subpopulation of ionocytes under hypertonic conditions.  相似文献   

17.
Previously, we reported that α1,6-fucosyltransferase (Fut8)-deficient (Fut8(-/-)) mice exhibit emphysema-like changes in the lung and severe growth retardation due to dysregulation of TGF-β1 and EGF receptors and to abnormal integrin activation, respectively. To study the role of α1,6-fucosylation in brain tissue where Fut8 is highly expressed, we examined Fut8(-/-) mice using a combination of neurological and behavioral tests. Fut8(-/-) mice exhibited multiple behavioral abnormalities consistent with a schizophrenia-like phenotype. Fut8(-/-) mice displayed increased locomotion compared with wild-type (Fut8(+/+)) and heterozygous (Fut8(+/-)) mice. In particular, Fut8(-/-) mice showed strenuous hopping behavior in a novel environment. Working memory performance was impaired in Fut8(-/-) mice as evidenced by the Y-maze tests. Furthermore, Fut8(-/-) mice showed prepulse inhibition (PPI) deficiency. Intriguingly, although there was no significant difference between Fut8(+/+) and Fut8(+/-) mice in the PPI test under normal conditions, Fut8(+/-) mice showed impaired PPI after exposure to a restraint stress. This result suggests that reduced expression of Fut8 is a plausible cause of schizophrenia and related disorders. The levels of serotonin metabolites were significantly decreased in both the striatum and nucleus accumbens of the Fut8(-/-) mice. Likewise, treatment with haloperidol, which is an antipsychotic drug that antagonizes dopaminergic and serotonergic receptors, significantly reduced hopping behaviors. The present study is the first to clearly demonstrate that α1,6-fucosylation plays an important role in the brain, and that it might be related to schizophrenia-like behaviors. Thus, the results of the present study provide new insights into the underlying mechanisms responsible for schizophrenia and related disorders.  相似文献   

18.
Prophylactic efficacies of Iodus 40 and salicylic acid (SA) against wheat powdery mildew caused by Blumeria graminis f. sp. tritici have been shown and compared with those of heptanoyl salicylic acid (HSA) and trehalose. Plantlets treated once exhibited 55%, 50%, 95%, and 38% protection levels, respectively. Two sprayings increased these levels up to 60%, 65%, 100%, and 60%, respectively. Biological effects of these resistance inducers on reactive oxygen species (ROS) metabolism and lipid peroxidation were also investigated. We found clear differences in the extent and the type of induced responses, with HSA exhibiting both the most numerous and the highest effects. HSA and SA induced a 5.5-fold increase of whole cell DAB staining due to hydrogen peroxide accumulation, whereas Iodus 40 and trehalose increased staining intensity at the penetration sites only. However, these effects were not correlated with any modification of catalase (CAT), oxalate oxidase (OXO) or lipoxygenase (LOX) activities, except for HSA which decreased CAT in non-inoculated conditions and increased LOX in infectious conditions. HSA also induced an increase in the rate of lipid peroxidation, whereas Iodus 40 induced a decrease. The effects of the inducers on germinating conidia and wheat epidermal cells responding to fungal penetration were also investigated. Papilla-linked autofluorescence was affected by SA and Iodus 40 whereas germination was slightly altered by Iodus 40. The newly described protective efficacies and the partial, distinct and non-overlapping activities of these inducers on the wheat/powdery mildew interaction are discussed.  相似文献   

19.
Changes in growth and biochemical composition during the transition from egg through zoea to decapodid in the ghost shrimp, Lepidophthalmus louisianensis (Schmitt, 1935), were documented in terms of dry weight, lipid classes, fatty acid composition, and carbon to nitrogen (C:N) ratios. Larvae of the ghost shrimp were mass-reared in the laboratory (28°C; 20‰ S) from hatching to the decapodid stage. Iatroscan lipid class analysis revealed that major lipid classes in recently produced eggs were phospholipids (80.8±1.3%) and triglycerides (16.0±1.1%), which decreased during the incubation period. Polar lipids (zoea I: 77.4±1.7%; zoea II: 77.5±2.1%; decapodid: 80.0±1.7%) and neutral lipids, of which free fatty acids (zoea I: 10.5±2.7%; zoea II: 13.1±5.2%; decapodid: 7.8±2.1%) were dominant, represented the major lipid classes in the zoeal and decapodid stages. Triglycerides were present in small amounts. The predominant fatty acids of L. louisianensis eggs, zoeae and decapodids were palmitic (16:0), stearic (18:0), eicosapentaenoic (20:5ω3), oleic (18:1ω9), and arachidonic (20:4ω6). Elemental composition of eggs, larvae, and the decapodid stage revealed conspicuous changes in the C:N ratio, with N being relatively stable during larval development but C decreasing during the decapodid stage. These data suggest independence of newly hatched L. louisianensis on external energy resources. This combined with the ability to incorporate saturated fatty acids into polar lipids provides a selective advantage for fast development of new tissue and growth, characteristic of decapod crustacean larvae with lecithotrophic development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号