首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In C. elegans the 4-cell stage blastomere EMS is an endomesodermal precursor. Its anterior daughter, MS, makes primarily mesodermal cells, while its posterior daughter E generates the entire intestine. The gene regulatory network underlying specification of MS and E has been the subject of study for more than 15 years. A key component of the specification of the two cells is the involvement of the Wnt/β-catenin asymmetry pathway, which through its nuclear effector POP-1, specifies MS and E as different from each other. Loss of pop-1 function results in the mis-specification of MS as an E-like cell, because POP-1 directly represses the end-1 and end-3 genes in MS, which would otherwise promote an endoderm fate. A long-standing question has been whether POP-1 plays a role in specifying MS fate beyond repression of endoderm fate. This question has been difficult to ask because the only chromosomal lesions that remove both end-1 and end-3 are large deletions removing hundreds of genes. Here, we report the construction of bona fide end-1 end-3 double mutants. In embryos lacking activity of end-1, end-3 and pop-1 together, we find that MS fate is partially restored, while E expresses early markers of MS fate and adopts characteristics of both MS and C. Our results suggest that POP-1 is not critical for MS specification beyond repression of endoderm specification, and reveal that Wnt-modified POP-1 and END-1/3 further reinforce E specification by repressing MS fate in E. By comparison, a previous work suggested that in the related nematode C. briggsae, Cb-POP-1 is not required to repress endoderm specification in MS, in direct contrast with Ce-POP-1, but is critical for repression of MS fate in E. The findings reported here shed new light on the flexibility of combinatorial control mechanisms in endomesoderm specification in Caenorhabditis.  相似文献   

3.
4.
5.
6.
7.
8.
Following a phase of rapid proliferation, cells in developing embryos must decide when to cease division and then whether to survive and differentiate or instead undergo programmed death. In screens for genes that regulate embryonic patterning of the endoderm in Caenorhabditis elegans, we identified overlapping chromosomal deletions that define a gene required for these decisions. These deletions result in embryonic hyperplasia in multiple somatic tissues, excessive numbers of cell corpses, and profound defects in morphogenesis and differentiation. However, cell-cycle arrest of the germline is unaffected. Cell lineage analysis of these mutants revealed that cells that normally stop dividing earlier than their close relatives instead undergo an extra round of division. These deletions define a genomic region that includes cki-1 and cki-2, adjacent genes encoding members of the Cip/Kip family of cyclin-dependent kinase inhibitors. cki-1 alone can rescue the cell proliferation, programmed cell death, and differentiation and morphogenesis defects observed in these mutants. In contrast, cki-2 is not capable of significantly rescuing these phenotypes. RNA interference of cki-1 leads to embryonic lethality with phenotypes similar to, or more severe than, the deletion mutants. cki-1 and -2 gene reporters show distinct expression patterns; while both are expressed at around the time that embryonic cells exit the cell cycle, cki-2 also shows marked expression starting early in embryogenesis, when rapid cell division occurs. Our findings demonstrate that cki-1 activity plays an essential role in embryonic cell cycle arrest, differentiation and morphogenesis, and suggest that it may be required to suppress programmed cell death or engulfment of cell corpses.  相似文献   

9.
10.
Fibroblast growth factor (FGF) signalling has important roles in the development of the embryonic pharyngeal (branchial) arches, but its effects on innervation of the arches and associated structures have not been studied extensively. We investigated the consequences of deleting two receptor tyrosine kinase (RTK) antagonists of the Sprouty (Spry) gene family on the early development of the branchial nerves. The morphology of the facial, glossopharyngeal and vagus nerves are abnormal in Spry1−/−;Spry2−/− embryos. We identify specific defects in the epibranchial placodes and neural crest, which contribute sensory neurons and glia to these nerves. A dissection of the tissue-specific roles of these genes in branchial nerve development shows that Sprouty gene deletion in the pharyngeal epithelia can affect both placode formation and neural crest fate. However, epithelial-specific gene deletion only results in defects in the facial nerve and not the glossopharyngeal and vagus nerves, suggesting that the facial nerve is most sensitive to perturbations in RTK signalling. Reducing the Fgf8 gene dosage only partially rescued defects in the glossopharyngeal nerve and was not sufficient to rescue facial nerve defects, suggesting that FGF8 is functionally redundant with other RTK ligands during facial nerve development.  相似文献   

11.
12.
 The tactile bristles of the fly comprise four cells that originate from a single precursor cell through a fixed lineage. The gene tramtrack (ttk) plays a crucial role in defining the fates of these cells. Here we analyse the normal pattern of expression of ttk, as well as the effect of ttk overexpression at different steps of the lineage. We show that ttk is never expressed in cells having a neural potential, and that in cells where ttk is expressed, there is a delay between division and the onset of expression. The ectopic expression of ttk before some stage of the cell cycle can block further cell division. Furthermore, this expression transforms neural into non-neural cells, suggesting that ttk acts as a repressor of neural fate at each step of the lineage. Our results suggest that ttk is probably not involved in setting up the mechanism that creates an asymmetry between sister cells, but rather in the implementation of that choice. Received: 10 October 1996 / Accepted: 11 February 1997  相似文献   

13.
The zebrafish pharyngeal cartilage is derived from the pharyngeal apparatus, a vertebrate-specific structure derived from all three germ layers. Developmental aberrations of the pharyngeal apparatus lead to birth defects such as Treacher-Collins and DiGeorge syndromes. While interactions between endoderm and neural crest (NC) are known to be important for cartilage formation, the full complement of molecular players involved and their roles remain to be elucidated. Activated leukocyte cell adhesion molecule a (alcama), a member of the immunoglobulin (Ig) superfamily, is among the prominent markers of pharyngeal pouch endoderm, but to date no role has been assigned to this adhesion molecule in the development of the pharyngeal apparatus. Here we show that alcama plays a crucial, non-autonomous role in pharyngeal endoderm during zebrafish cartilage morphogenesis. alcama knockdown leads to defects in NC differentiation, without affecting NC specification or migration. These defects are reminiscent of the phenotypes observed when Endothelin 1 (Edn1) signaling, a key regulator of cartilage development is disrupted. Using gene expression analysis and rescue experiments we show that Alcama functions downstream of Edn1 signaling to regulate NC differentiation and cartilage morphogenesis. In addition, we also identify a role for neural adhesion molecule 1.1 (nadl1.1), a known interacting partner of Alcama expressed in neural crest, in NC differentiation. Our data shows that nadl1.1 is required for alcama rescue of NC differentiation in edn1−/− mutants and that Alcama interacts with Nadl1.1 during chondrogenesis. Collectively our results support a model by which Alcama on the endoderm interacts with Nadl1.1 on NC to mediate Edn1 signaling and NC differentiation during chondrogenesis.  相似文献   

14.
Multiple signaling molecules, including Fibroblast Growth Factor (FGF) and Wnt, induce two patches of ectoderm on either side of the hindbrain to form the progenitor cell population for the inner ear, or otic placode. Here we report that in Spry1, Spry2 compound mutant embryos (Spry1−/−; Spry2−/− embryos), the otic placode is increased in size. We demonstrate that the otic placode is larger due to the recruitment of cells, normally destined to become cranial epidermis, into the otic domain. The enlargement of the otic placode observed in Spry1−/−; Spry2−/− embryos is preceded by an expansion of a Wnt8a expression domain in the adjacent hindbrain. We demonstrate that both the enlargement of the otic placode and the expansion of the Wnt8a expression domain can be rescued in Spry1−/−; Spry2−/− embryos by reducing the gene dosage of Fgf10. Our results define a FGF-responsive window during which cells can be continually recruited into the otic domain and uncover SPRY regulation of the size of a putative Wnt inductive center.  相似文献   

15.
16.
In the mouse blastocyst, some cells of the inner cell mass (ICM) develop into primitive endoderm (PE) at the surface, while deeper cells form the epiblast. It remained unclear whether the position of cells determines their fate, such that gene expression is adjusted to cell position, or if cells are pre-specified at random positions and then sort. We have tracked and characterised dynamics of all ICM cells from the early to late blastocyst stage. Time-lapse microscopy in H2B-EGFP embryos shows that a large proportion of ICM cells change position between the surface and deeper compartments. Most of this cell movement depends on actin and is associated with cell protrusions. We also find that while most cells are precursors for only one lineage, some give rise to both, indicating that lineage segregation is not complete in the early ICM. Finally, changing the expression levels of the PE marker Gata6 reveals that it is required in surface cells but not sufficient for the re-positioning of deeper cells. We provide evidence that Wnt9A, known to be expressed in the surface ICM, facilitates re-positioning of Gata6-expressing cells. Combining these experimental results with computer modelling suggests that PE formation involves both cell sorting movements and position-dependent induction.  相似文献   

17.
R-spondins are a recently characterized family of secreted proteins that activate Wnt/β-catenin signaling. Herein, we determine R-spondin2 (Rspo2) function in craniofacial development in mice. Mice lacking a functional Rspo2 gene exhibit craniofacial abnormalities such as mandibular hypoplasia, maxillary and mandibular skeletal deformation, and cleft palate. We found that loss of the mouse Rspo2 gene significantly disrupted Wnt/β-catenin signaling and gene expression within the first branchial arch (BA1). Rspo2, which is normally expressed in BA1 mesenchymal cells, regulates gene expression through a unique ectoderm–mesenchyme interaction loop. The Rspo2 protein, potentially in combination with ectoderm-derived Wnt ligands, up-regulates Msx1 and Msx2 expression within mesenchymal cells. In contrast, Rspo2 regulates expression of the Dlx5, Dlx6, and Hand2 genes in mesenchymal cells via inducing expression of their upstream activator, Endothelin1 (Edn1), within ectodermal cells. Loss of Rspo2 also causes increased cell apoptosis, especially within the aboral (or caudal) domain of the BA1, resulting in hypoplasia of the BA1. Severely reduced expression of Fgf8, a survival factor for mesenchymal cells, in the ectoderm of Rspo2−/− embryos is likely responsible for increased cell apoptosis. Additionally, we found that the cleft palate in Rspo2−/− mice is not associated with defects intrinsic to the palatal shelves. A possible cause of cleft palate is a delay of proper palatal shelf elevation that may result from the small mandible and a failure of lowering the tongue. Thus, our study identifies Rspo2 as a mesenchyme-derived factor that plays critical roles in regulating BA1 patterning and morphogenesis through ectodermal–mesenchymal interaction and a novel genetic factor for cleft palate.  相似文献   

18.
In the canonical Wnt pathway, signaling results in the stabilization and increased levels of β-catenin in responding cells. β-catenin then enters the nucleus, functioning as a coactivator for the Wnt effector, TCF/LEF protein. In the absence of Wnt signaling, TCF is complexed with corepressors, together repressing Wnt target genes. In C. elegans, Wnt signaling specifies the E blastomere to become the endoderm precursor. Activation of endoderm genes in E requires not only an increase in β-catenin level, but a concomitant decrease in the nuclear level of POP-1, the sole C. elegans TCF. A decrease in nuclear POP-1 levels requires Wnt-induced phosphorylation of POP-1 and 14-3-3 protein-mediated nuclear export. Nuclear POP-1 levels remain high in the sister cell of E, MS, where POP-1 represses the expression of endoderm genes. Here we express three vertebrate TCF proteins (human TCF4, mouse LEF1 and Xenopus TCF3) in C. elegans embryos and compare their localization, repression and activation functions to POP-1. All three TCFs are localized to the nucleus in C. elegans embryos, but none undergoes Wnt-induced nuclear export. Although unable to undergo Wnt-induced nuclear export, human TCF4, but not mouse LEF1 or Xenopus TCF3, can repress endoderm genes in MS, in a manner very similar to POP-1. This repressive activity requires that human TCF4 recognizes specific promoter sequences upstream of endoderm genes and interacts with C. elegans corepressors. Domain swapping identified two regions of POP-1 that are sufficient to confer nuclear asymmetry to human TCF4 when swapped with its corresponding domains. Despite undergoing Wnt-induced nuclear export, the human TCF4/POP-1 chimeric protein continues to function as a repressor for endoderm genes in E, a result we attribute to the inability of hTCF4 to bind to C. elegans β-catenin. Our results reveal a higher degree of species specificity among TCF proteins for coactivator interactions than for corepressor interactions, and uncover a basic difference between how POP-1 and human TCF4 steady state nuclear levels are regulated.  相似文献   

19.
20.
The sinoatrial node (SAN), functionally known as the pacemaker, regulates the cardiac rhythm or heartbeat. Several genes are expressed in the developing SAN and form a genetic network regulating the fate of the SAN cells. The short stature homeobox gene Shox2 is an important player in the SAN genetic network by regulating the expression of different cardiac conduction molecular markers including the early cardiac differentiation marker Nkx2.5. Here we report that the expression patterns of Shox2 and Nkx2.5 are mutually exclusive from the earliest stages of the venous pole and the SAN formation. We show that tissue specific ectopic expression of Shox2 in the developing mouse heart downregulates the expression of Nkx2.5 and causes cardiac malformations; however, it is not sufficient to induce a SAN cell fate switch in the working myocardium. On the other hand, tissue specific overexpression of Nkx2.5 in the heart leads to severe hypoplasia of the SAN and the venous valves, dis-regulation of the SAN genetic network, and change of the SAN cell fate into working myocardium, and causes embryonic lethality, recapitulating the phenotypes including bradycardia observed in Shox2−/− mutants. These results indicate that Nkx2.5 activity is detrimental to the normal formation of the SAN. Taken together, our results demonstrate that Shox2 downregulation of Nkx2.5 is essential for the proper development of the SAN and that Shox2 functions to shield the SAN from becoming working myocardium by acting upstream of Nkx2.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号