首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Endocardial to mesenchymal transformation (EMT) is a fundamental cellular process required for heart valve formation. Notch, Wnt and Bmp pathways are known to regulate this process. To further address how these pathways coordinate in the process, we specifically disrupted Notch1 or Jagged1 in the endocardium of mouse embryonic hearts and showed that Jagged1-Notch1 signaling in the endocardium is essential for EMT and early valvular cushion formation. qPCR and RNA in situ hybridization assays reveal that endocardial Jagged1-Notch1 signaling regulates Wnt4 expression in the atrioventricular canal (AVC) endocardium and Bmp2 in the AVC myocardium. Whole embryo cultures treated with Wnt4 or Wnt inhibitory factor 1 (Wif1) show that Bmp2 expression in the AVC myocardium is dependent on Wnt activity; Wnt4 also reinstates Bmp2 expression in the AVC myocardium of endocardial Notch1 null embryos. Furthermore, while both Wnt4 and Bmp2 rescue the defective EMT resulting from Notch inhibition, Wnt4 requires Bmp for its action. These results demonstrate that Jagged1-Notch1 signaling in endocardial cells induces the expression of Wnt4, which subsequently acts as a paracrine factor to upregulate Bmp2 expression in the adjacent AVC myocardium to signal EMT.  相似文献   

2.
Cardiac cushion development provides a valuable system to investigate epithelial to mesenchymal transition (EMT), a fundamental process in development and tumor progression. In the atrioventricular (AV) canal, endocardial cells lining the heart respond to a myocardial-derived signal, undergo EMT, and contribute to cushion mesenchyme. Here, we inactivated bone morphogenetic protein 2 (Bmp2) in the AV myocardium of mice. We show that Bmp2 has three functions in the AV canal: to enhance formation of the cardiac jelly, to induce endocardial EMT and to pattern the AV myocardium. Bmp2 is required for myocardial expression of Has2, a crucial component of the cardiac jelly matrix. During EMT, Bmp2 promotes expression of the basic helix-loop-helix factor Twist1, previously implicated in EMT in cancer metastases, and the homeobox genes Msx1 and Msx2. Deletion of the Bmp type 1A receptor, Bmpr1a, in endocardium also resulted in failed cushion formation, indicating that Bmp2 signals directly to cushion-forming endocardium to induce EMT. Lastly, we show that Bmp2 mutants failed to specify the AV myocardium with loss of Tbx2 expression uncovering a myocardial, planar signaling function for Bmp2. Our data indicate that Bmp2 has a crucial role in coordinating multiple aspects of AV canal morphogenesis.  相似文献   

3.
4.
5.
6.
TBX20 gain-of-function mutations in humans are associated with congenital heart malformations and myocardial defects. However the effects of increased Tbx20 function during cardiac chamber development and maturation have not been reported previously. CAG-CAT-Tbx20 transgenic mice were generated for Cre-dependent induction of Tbx20 in myocardial lineages in the developing heart. βMHCCre-mediated overexpression of Tbx20 in fetal ventricular cardiomyocytes results in increased thickness of compact myocardium, induction of cardiomyocyte proliferation, and increased expression of Bmp10 and pSmad1/5/8 at embryonic day (E) 14.5. βMHCCre-mediated Tbx20 overexpression also leads to increased expression of cardiac conduction system (CCS) genes Tbx5, Cx40, and Cx43 throughout the ventricular myocardium. In contrast, Nkx2.5Cre mediated overexpression of Tbx20 in the embryonic heart results in reduced cardiomyocyte proliferation, increased expression of a cell cycle inhibitor, p21(CIP1), and decreased expression of Tbx2, Tbx5, and N-myc1 at E9.5, concomitant with decreased phospho-ERK1/2 expression. Together, these analyses demonstrate that Tbx20 differentially regulates cell proliferation and cardiac lineage specification in embryonic versus fetal cardiomyocytes. Induction of pSmad1/5/8 at E14.5 and inhibition of dpERK expression at E9.5 are consistent with selective Tbx20 regulation of these pathways in association with stage-specific effects on cardiomyocyte proliferation. Together, these in vivo data support distinct functions for Tbx20 in regulation of cardiomyocyte lineage maturation and cell proliferation at embryonic and fetal stages of heart development.  相似文献   

7.
Smoothened is a key receptor of the hedgehog pathway, but the roles of Smoothened in cardiac development remain incompletely understood. In this study, we found that the conditional knockout of Smoothened from the mesoderm impaired the development of the venous pole of the heart and resulted in hypoplasia of the atrium/inflow tract (IFT) and a low heart rate. The blockage of Smoothened led to reduced expression of genes critical for sinoatrial node (SAN) development in the IFT. In a cardiac cell culture model, we identified a Gli2–Tbx5–Hcn4 pathway that controls SAN development. In the mutant embryos, the endocardial-to-mesenchymal transition (EndMT) in the atrioventricular cushion failed, and Bmp signalling was downregulated. The addition of Bmp2 rescued the EndMT in mutant explant cultures. Furthermore, we analysed Gli2+ scRNAseq and Tbx5−/− RNAseq data and explored the potential genes downstream of hedgehog signalling in posterior second heart field derivatives. In conclusion, our study reveals that Smoothened-mediated hedgehog signalling controls posterior cardiac progenitor commitment, which suggests that the mutation of Smoothened might be involved in the aetiology of congenital heart diseases related to the cardiac conduction system and heart valves.  相似文献   

8.
As heart failure due to myocardial infarction remains a leading cause of morbidity worldwide, cell-based cardiac regenerative therapy using cardiac progenitor cells (CPCs) could provide a potential treatment for the repair of injured myocardium. As adult CPCs may have limitations regarding tissue accessibility and proliferative ability, CPCs derived from embryonic stem cells (ESCs) could serve as an unlimited source of cells with high proliferative ability. As one of the CPCs that can be derived from embryonic stem cells, Isl1 expressing cardiac progenitor cells (Isl1-CPCs) may serve as a valuable source of cells for cardiac repair due to their high cardiac differentiation potential and authentic cardiac origin. In order to generate an unlimited number of Isl1-CPCs, we used a previously established an ESC line that allows for isolation of Isl1-CPCs by green fluorescent protein (GFP) expression that is directed by the mef2c gene, specifically expressed in the Isl1 domain of the anterior heart field. To improve the efficiency of cardiac differentiation of Isl1-CPCs, we studied the role of Bmp4 in cardiogenesis of Isl1-CPCs. We show an inductive role of Bmp directly on cardiac progenitors and its enhancement on early cardiac differentiation of CPCs. Upon induction of Bmp4 to Isl1-CPCs during differentiation, the cTnT+ cardiomyocyte population was enhanced 2.8±0.4 fold for Bmp4 treated CPC cultures compared to that detected for vehicle treated cultures. Both Bmp4 treated and untreated cardiomyocytes exhibit proper electrophysiological and calcium signaling properties. In addition, we observed a significant increase in Tbx5 and Tbx20 expression in differentiation cultures treated with Bmp4 compared to the untreated control, suggesting a link between Bmp4 and Tbx genes which may contribute to the enhanced cardiac differentiation in Bmp4 treated cultures. Collectively these findings suggest a cardiomyogenic role for Bmp4 directly on a pure population of Isl1 expressing cardiac progenitors, which could lead to enhancement of cardiac differentiation and engraftment, holding a significant therapeutic value for cardiac repair in the future.  相似文献   

9.
During secondary palate development, two shelves are elevated to a horizontal position above the tongue through a process involving many cellular mechanisms, including proliferation. In particular, the expression patterns of Tbx3 and Bmp4, which are colocalized at embryonic day 13.5 (E13.5) and have unique expression patterns in specific regions at E14.5, have been investigated in early mouse palatogenesis. Tbx3 expression is reported to be associated with Bmp4 signaling during the process of organogenesis in other areas, such as limb development. However, the function of Tbx3 and the relationship between Tbx3 and Bmp4 in palate development have not been determined. We have examined the gene expression pattern and cell proliferation in order to understand the mutual interactions and function of Tbx3 and Bmp4. An electroporation method was used to investigate the altered pattern of these genes after their over-expression in organ cultures. NOGGIN protein-soaked beads were also implanted into the cultured palate to determine the function of Bmp4 in palatogenesis. After electroporation and NOGGIN bead implantation, the number of PCNA-positive cells was counted. The results showed that Tbx3 and Bmp4 strongly up- and down-regulated each other in order to control the proliferation of the palatal shelf. Thus, Tbx3 expression is induced by Bmp4 in the mesenchyme of the anterior palatal shelves, whereas mesenchymal expression of Tbx3 down-regulates Bmp4 expression in the mesenchyme of the palate. The harmonization between Tbx3 and Bmp4 therefore controls cell proliferation to regulate secondary palate development. This research was supported by the International Cooperation Research Program of the Ministry of Science & Technology (M6-0302-00-0044).  相似文献   

10.
张立凤  桂永浩  王跃祥  蒋璆  宋后燕 《中国实验动物学报》2009,17(5):321-325,F0002,I0001
目的采用吗啡啉修饰反义寡核苷酸显微注射方法下调斑马鱼Tbx1基因表达,研究斑马鱼Tbx1基因功能下调对其他两个T盒基因Tbx20和Tbx2表达的影响。方法采用吗啡啉修饰的反义寡核苷酸显微注射方法抑制斑马鱼Tbx1基因表达,分别将2.5、5、8、10 ng吗啡啉反义寡核苷酸在斑马鱼0-4细胞期注入胚胎,并构建Tbx20,骨形成蛋白2b(Bmp2b)和Tbx2反义RNA探针,进行整体原位杂交,观察Tbx1基因下调对Tbx20、Bmp2b及Tbx2表达的影响。结果Tbx1吗啡啉寡核苷酸显微注射组胚胎表现出鳃弓、耳囊、心血管系统和胸腺的发育异常。Tbx1基因下调导致Tbx20的表达出现改变,Tbx20在心脏的表达与对照组相比明显下调,神经元的表达范围明显缩小;Tbx1基因功能下调会导致Bmp2b在心脏和咽囊的表达减低,Bmp2b在后部咽囊的表达较前部咽囊减低得更为明显;Tbx1基因功能下调胚胎,Tbx2在鳃弓的表达模式发生改变,48 hpf,Tbx2在鳃弓的表达出现从后向前逐渐减低,鳃弓的表达范围较对照组明显缩小。结论Tbx1在发育过程中,会对其他T盒基因,如Tbx20和Tbx2具有激活或抑制的调控作用。Tbx1对Tbx20的作用可能是通过影响Bmp2b的途径,继发地影响Tbx20的表达。Tbx1基因功能下调,会改变Tbx2在鳃弓的表达模式。  相似文献   

11.
12.
13.
14.
In the developing heart, the atrioventricular canal (AVC) is essential for separation and alignment of the cardiac chambers, for valve formation, and serves to delay the electrical impulse from the atria to the ventricles. Defects in various aspects of its formation are the most common form of congenital heart defects. Using mutant and transgenic approaches in zebrafish, this study demonstrates that Wnt/β-catenin signaling is both sufficient and required for the induction of BMP4 and Tbx2b expression in the AVC and consequently the proper patterning of the myocardium. Furthermore, genetic analysis shows that Wnt/β-catenin signaling is upstream and in a linear pathway with BMP and Tbx2 during AVC specification.  相似文献   

15.
The Notch pathway is an intercellular signaling mechanism involved in multiple cell-to-cell communication processes that regulate cell fate specification, differentiation, and tissue patterning during embryogenesis and adulthood. Functional studies in the mouse have shown that a Hey-Bmp2 regulatory circuit restricts Bmp2 expression to presumptive valve myocardium (atrioventricular canal and outflow tract). Likewise, a Notch-Hey-Bmp2 axis represses Bmp2 in the endocardium. During cardiac valve formation, endocardial Notch signaling activates the epithelial-mesenchyme transition (EMT) that will give rise to the cardiac valve primordia. During this process, Notch integrates with myocardially derived signals (Bmp2 or Bmp4) to promote, via Snail1/2 activation a complete, invasive EMT in presumptive valve tissue. In humans, mutations in Notch signaling components are associated with several congenital disorders involving malformed valves, aortic arch, and defective chamber septation. Data suggest that the same embryonic Notch-Hey-Bmp2 regulatory axis is active in the adult valve. This review examines the experimental evidence supporting a role for Notch in heart valve development and homeostasis, and how altered Notch signaling may lead to valve disease in the newborn and adult.  相似文献   

16.
The epicardium is the outer epithelial covering the heart. This tissue undergoes an epithelial‐to‐mesenchymal transition (EMT) to generate mesenchymal epicardial‐derived cells (EPDCs) that populate the extracellular matrix of the subepicardium and contribute to the development of the coronary vessels and cardiac interstitial cells. Although epicardial EMT plays a crucial role in heart development, the molecular regulation of this process is incompletely understood. Here we examined the possible role of the EMT regulator Snail1 in this process. Snail1 is expressed in the epicardium and EPDCs during mouse cardiac development. To determine the function of Snail1 in epicardial EMT, we deleted Snail1 in the epicardium using Wt1‐ and Tbx18‐Cre drivers. Unexpectedly, epicardial‐specific Snail1 mutants are viable and fertile and do not display any obvious morphological or functional cardiac abnormalities. Molecular analysis of these mice reveals that epicardial EMT occurs normally, and epicardial derivatives are established in these mutants. We conclude that Snail1 is not required for the initiation and progression of embryonic epicardial EMT. genesis 51:32–40, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Mutations in T-box genes are the cause of several congenital diseases and are implicated in cancer. Tbx20-null mice exhibit severely hypoplastic hearts and express Tbx2, which is normally restricted to outflow tract and atrioventricular canal, throughout the heart. Tbx20 mutant hearts closely resemble those seen in mice overexpressing Tbx2 in myocardium, suggesting that upregulation of Tbx2 can largely account for the cardiac phenotype in Tbx20-null mice. We provide evidence that Tbx2 is a direct target for repression by Tbx20 in developing heart. We have also found that Tbx2 directly binds to the Nmyc1 promoter in developing heart, and can repress expression of the Nmyc1 promoter in transient transfection studies. Repression of Nmyc1 (N-myc) by aberrantly regulated Tbx2 can account in part for the observed cardiac hypoplasia in Tbx20 mutants. Nmyc1 is required for growth and development of multiple organs, including the heart, and overexpression of Nmyc1 is associated with childhood tumors. Despite its clinical relevance, the factors that regulate Nmyc1 expression during development are unknown. Our data present a paradigm by which T-box proteins regulate regional differences in Nmyc1 expression and proliferation to effect organ morphogenesis. We present a model whereby Tbx2 directly represses Nmyc1 in outflow tract and atrioventricular canal of the developing heart, resulting in relatively low proliferation. In chamber myocardium, Tbx20 represses Tbx2, preventing repression of Nmyc1 and resulting in relatively high proliferation. In addition to its role in regulating regional proliferation, we have found that Tbx20 regulates expression of a number of genes that specify regional identity within the heart, thereby coordinating these two important aspects of organ development.  相似文献   

18.
Thymosin beta4 (TB4) has multiple functions in cellular response in processes as diverse as embryonic organ development and the pathogeneses of disease, especially those associated with cardiac coronary vessels. However, the specific roles played by TB4 during heart valve development in vertebrates are largely unknown. Here, we identified a novel function of TB4 in endothelialmesenchymal transformation (EMT) in cardiac valve endocardial cushions in zebrafish. The expressions of thymosin family members in developing zebrafish embryos were determined by whole mount in situ hybridization. Of the thymosin family members only zTB4 was expressed in the developing heart region. Cardiac valve development at 48 h post fertilization was defected in zebrafish TB4 (zTB4) morpholino-injected embryos (morphants). In zTB4 morphants, abnormal linear heart tube development was observed. The expressions of bone morphogenetic protein (BMP) 4, notch1b, and hyaluronic acid synthase (HAS) 2 genes were also markedly reduced in atrio-ventricular canal (AVC). Endocardial cells in the AVC region were stained with anti-Zn5 antibody reactive against Dm-grasp (an EMT marker) to observe EMT in developing cardiac valves in zTB4 morphants. EMT marker expression in valve endothelial cells was confirmed after transfection with TB4 siRNA in the presence of transforming growth factor β (TGFβ) by RT-PCR and immunofluorescent assay. Zn5-positive endocardial AVC cells were not observed in zTB4 morphants, and knockdown of TB4 suppressed TGF-β-induced EMT in ovine valve endothelial cells. Taken together, our results demonstrate that TB4 plays a pivotal role in cardiac valve formation by increasing EMT.  相似文献   

19.
A hallmark of heart-valve development is the swelling and deposition of extracellular matrix in the heart-valve region. Only myocardium overlying this region can signal to underlying endothelium and cause it to lose cell-cell contacts, delaminate, and invade the extracellular space abutting myocardium and endocardium to form endocardial cushions (EC) in a process known as epithelial to mesenchymal transformation (EMT). The heart-valve myocardium expresses bone morphogenetic protein-2 (Bmp2) coincident with development of valve mesenchyme. BMPs belong to the transforming growth factor beta superfamily (TGF-beta) and play a wide variety of roles during development. We show that conditional ablation of Bmp2 in cardiac progenitors results in cell fate changes in which the heart-valve region adopts the identity of differentiated chamber myocardium. Moreover, Bmp2-deficient hearts fail to induce production and deposition of matrix at the heart-valve-forming region, resulting in the inability of the endothelium to swell and impairing the development of ECs. Furthermore, in collagen invasion assays, Bmp2 mutant endothelium is incapable of undergoing EMT, and addition of BMP2 protein to mutant heart explants rescues this phenotype. Our results demonstrate that Bmp2 is both necessary and sufficient to specify a field of cardiac progenitor cells as the heart-valve-inducing region amid developing atria and ventricles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号