首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Zebrafish gastrulation entails morphogenetic cell movements that shape the body plan and give rise to an embryo with defined anterior–posterior and dorsal–ventral axes. Regulating these cell movements are diverse signaling pathways and proteins including Wnts, Src-family tyrosine kinases, cadherins, and matrix metalloproteinases. While our knowledge of how these proteins impact cell polarity and migration has advanced considerably in the last decade, almost no data exist regarding the organization of extracellular matrix (ECM) during zebrafish gastrulation. Here, we describe for the first time the assembly of a fibronectin (FN) and laminin containing ECM in the early zebrafish embryo. This matrix was first detected at early gastrulation (65% epiboly) in the form of punctae that localize to tissue boundaries separating germ layers from each other and the underlying yolk cell. Fibrillogenesis increased after mid-gastrulation (80% epiboly) coinciding with the period of planar cell polarity pathway-dependent convergence and extension cell movements. We demonstrate that FN fibrils present beneath deep mesodermal cells are aligned in the direction of membrane protrusion formation. Utilizing antisense morpholino oligonucleotides, we further show that knockdown of FN expression causes a convergence and extension defect. Taken together, our data show that similar to amphibian embryos, the formation of ECM in the zebrafish gastrula is a dynamic process that occurs in parallel to at least a portion of the polarized cell behaviors shaping the embryonic body plan. These results provide a framework for uncovering the interrelationship between ECM structure and cellular processes regulating convergence and extension such as directed migration and mediolateral/radial intercalation.  相似文献   

3.
Cell migration is a fundamental process occurring during embryonic development and tissue morphogenesis. In the nematode Caenorhabditis elegans, morphogenesis of the body-wall musculature involves short-range migrations of 81 embryonic muscle cells from the lateral surface of the embryo towards the dorsal and ventral midlines. This study shows that mutations in ina-1 (α-integrin), as well as vab-1 (Eph receptor), and vab-2 (ephrin), display defects in embryonic muscle cell migration. Furthermore, an RNAi-based enhancer screen in an ina-1 weak loss-of-function background identified mnp-1 (matrix non-peptidase homologue-1) as a previously uncharacterized gene required for promoting proper migration of the embryonic muscle cells. mnp-1 encodes a membrane associated metalloproteinase homologue that is predicted to be catalytically inactive. Our data suggest that MNP-1 is expressed in migrating muscle cells and localizes to the plasma membrane with the non-peptidase domain exposed to the extra-cellular environment. Double-mutant analysis between mnp-1(RNAi), ina-1, and vab-1 mutations; as well as tissue specific rescue experiments; indicated that each of these gene products function predominantly independent of each other and from different cell types to affect muscle cell migration. Together these results suggest complex interactions between the adjacent epidermal, neuronal, and muscle cells are required to promote proper muscle cell migration during embryogenesis.  相似文献   

4.
Many cells in a developing embryo, including neurons and their axons and growth cones, must integrate multiple guidance cues to undergo directed growth and migration. The UNC-6/netrin, SLT-1/slit, and VAB-2/Ephrin guidance cues, and their receptors, UNC-40/DCC, SAX-3/Robo, and VAB-1/Eph, are known to be major regulators of cellular growth and migration. One important area of research is identifying the molecules that interpret this guidance information downstream of the guidance receptors to reorganize the actin cytoskeleton. However, how guidance cues regulate the actin cytoskeleton is not well understood. We report here that UNC-40/DCC, SAX-3/Robo, and VAB-1/Eph differentially regulate the abundance and subcellular localization of the WAVE/SCAR actin nucleation complex and its activator, Rac1/CED-10, in the Caenorhabditis elegans embryonic epidermis. Loss of any of these three pathways results in embryos that fail embryonic morphogenesis. Similar defects in epidermal enclosure have been observed when CED-10/Rac1 or the WAVE/SCAR actin nucleation complex are missing during embryonic development in C. elegans. Genetic and molecular experiments demonstrate that in fact, these three axonal guidance proteins differentially regulate the levels and membrane enrichment of the WAVE/SCAR complex and its activator, Rac1/CED-10, in the epidermis. Live imaging of filamentous actin (F-actin) in embryos developing in the absence of individual guidance receptors shows that high levels of F-actin are not essential for polarized cell migrations, but that properly polarized distribution of F-actin is essential. These results suggest that proper membrane recruitment and activation of CED-10/Rac1 and of WAVE/SCAR by signals at the plasma membrane result in polarized F-actin that permits directed movements and suggest how multiple guidance cues can result in distinct changes in actin nucleation during morphogenesis.  相似文献   

5.
Drosophila embryo dorsoventral (DV) polarity is defined by serine protease activity in the perivitelline space (PVS) between the embryonic membrane and the inner layer of the eggshell. Gastrulation Defective (GD) cleaves and activates Snake (Snk). Activated Snk cleaves and activates Easter (Ea), exclusively on the ventral side of the embryo. Activated Ea then processes Sp?tzle (Spz) into the activating ligand for Toll, a transmembrane receptor that is distributed throughout the embryonic plasma membrane. Ventral activation of Toll depends upon the activity of the Pipe sulfotransferase in the ventral region of the follicular epithelium that surrounds the developing oocyte. Pipe transfers sulfate residues to several protein components of the inner vitelline membrane layer of the eggshell. Here we show that GD protein becomes localized in the ventral PVS in a Pipe-dependent process. Moreover, ventrally concentrated GD acts to promote the cleavage of Ea by Snk through an extracatalytic mechanism that is distinct from GD's proteolytic activation of Snk. Together, these observations illuminate the mechanism through which spatially restricted sulfotransferase activity in the developing egg chamber leads to localization of serine protease activity and ultimately to spatially specific activation of the Toll receptor in the Drosophila embryo.  相似文献   

6.
The arthropod head is a complex metameric structure. In insects, orthodenticle (otd) functions as a ‘head gap gene’ and plays a significant role in patterning and development of the anterior head ectoderm, the protocerebrum, and the ventral midline. In this study, we characterize the structure and developmental deployment of two otd paralogs in the amphipod crustacean, Parhyale hawaiensis. Photd1 is initially expressed at gastrulation through germband stages in a bilaterally symmetric, restricted region of the anterior head ectoderm and also in a single column of cells along the ventral midline. Late in embryogenesis, Photd1 is expressed within the developing anterior brain and the expression along the embryonic midline has become restricted to a stereotypic group of segmentally reiterated cells. The second ortholog Photd2, however, has a unique temporal–spatial expression pattern and is not detected until after the head lobes have been organized in the developing ectoderm of the germband during late germband stages. Anteriorly, Photd2 is coincident with the Photd1 head expression domain; however, Photd2 is not detected along the ventral midline during formation of the germband and only appears in the ventral midline late in embryonic development in a restricted group of cells distinct from those expressing Photd1. The early expression of Photd1 in the anterior head ectoderm is consistent with a role as a head gap gene. The more posterior expression of Photd1 is suggestive of a role in patterning the embryonic ventral midline. Photd2 expression appears too late to play a role in early head patterning but may contribute to latter patterning in restricted regions of both the head and the ventral midline. The comparative analysis of otd reveals the divergence of gene expression and gene function associated with duplication of this important developmental gene.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

7.
8.
Summary In Locusta migratoria and Schistocerca gregaria, the projection areas and branching patterns of the tympanal receptor cells in the thoracic ganglia were revealed. Four auditory neuropiles can be distinguished on each side of the ventral cord, always located in the anterior part of the ring tract in each neuromere (two in the meta-, one in the meso-, and one in the prothoracic ganglion). Some of the receptor fibres ascend to the suboesophageal ganglion. There are distinct subdivisions within the auditory, frontal metathoracic and mesothoracic neuropiles. The arrangement of the terminal arborisations of the four types of tympanal receptor cells according to their different frequency-intensity responses is somatotopic and similar in the two ganglia. Here the receptor cells of type-1 form a restricted lateroventral arborisation. Cells of type-4 occupy the caudal part with a dorsorostral extension. Cells of type-2 and -3 arborise in a subdivision between both. Most of the stained low-frequency receptors (type-1, -2, and -3) terminate either in the metathoracic or, predominantly, in the mesothoracic ganglion. In contrast, the high-frequency cells (type-4) ascend to the prothoracic ganglion. The receptor fibres of the different types of receptor cells differ in diameter.Abbreviations aRT anterior part of the ring tract - cf characteristic frequency - MVT median ventral tract - SEG suboesophageal ganglion - SMC supramedian commissure - VMT ventral median tract - VIT ventral intermediate tract Supported by the Deutsche Forschungsgemeinschaft; part of program A7 in Sonderforschungsbereich 305 (Ecophysiology)  相似文献   

9.
We have recently reported the method by which embryonic stem (ES) cells were induced into Pdx1‐expressing cells. To gain insights into the ES cell‐derived Pdx1‐expressing cells, we examined gene expression profiles of the cells by microarray experiments. Microarray analyses followed by a comparison with the data of the cells in developing pancreatic and adult islet suggested that the ES cell‐derived Pdx1‐positive cells were immature pancreatic progenitor cells with endodermal characteristics. The analyses of the genes upregulated in the ES cell‐derived Pdx1‐positive cells would give us knowledge on early pancreatic development. Here, we first listed the genes and found that these contained not only those known to be expressed in the endoderm or pancreatic progenitor cells, but also those known to be involved in left–right axis formation. Second, we examined the gene expression patterns and found that several genes were expressed in the ventral foregut lip at the anterior intestinal portal in E8.5 embryo. Given that the Pdx1/GFP‐expressing cells are first observed in the same region at the anterior intestinal portal, these results suggest that the pancreatic progenitor cells first give rise at the ventral endoderm prior to the formation of dorsal and ventral pancreatic buds.  相似文献   

10.
11.
Caenorhabditis elegans embryonic elongation depends on both epidermal and muscle cells. The hemidesmosome-like junctions, commonly called fibrous organelles (FOs), that attach the epidermis to the extracellular matrix ensure muscle anchoring to the cuticular exoskeleton and play an essential role during elongation.To further define how hemidesmosomes might control elongation, we searched for factors interacting with the core hemidesmosome component, the spectraplakin homolog VAB-10. Using the VAB-10 plakin domain as bait in a yeast two-hybrid screen, we identified the novel protein T17H7.4. We also identified T17H7.4 in an independent bioinformatic search for essential nematode-specific proteins that could define novel anti-nematode drug or vaccine targets. Interestingly, T17H7.4 corresponds to the C. elegans equivalent of the parasitic OvB20 antigen, and has a characteristic hemidesmosome distribution. We identified two mutations in T17H7.4, one of which defines the uncharacterized gene pat-12, previously identified in screens for genes required for muscle assembly. Using isoform-specific GFP constructs, we showed that one pat-12 isoform with a hemidesmosome distribution can rescue a pat-12 null allele. We further found that lack of pat-12 affects hemidesmosome integrity, with marked defects at the apical membrane. PAT-12 defines a novel component of C. elegans hemidesmosomes, which is required for maintaining their integrity. We suggest that PAT-12 helps maintaining VAB-10 attachment with matrix receptors.  相似文献   

12.
13.
In eukaryotes, membrane trafficking is regulated by the small monomeric GTPases of Rab protein family. Rab11, an evolutionary conserved, ubiquitously expressed subfamily of the Rab GTPases, has been implicated in the regulation of vesicular trafficking through the recycling of endosomes. To dissect out the role of this protein during embryonic nervous system development, we have studied the expression pattern of Rab11 in the ventral nerve cord during neuronal differentiation in the Drosophila embryo. When the dominant-negative or constitutively-active mutant DRab11 proteins are expressed in neurons, or when homozygous mutant Rab11 embryos are analyzed, defects are found in the developing central nervous system, along with disorganization and misrouting of embryonic axons. Our results provide the first in vivo evidence that Rab11 is involved in the development of the nervous system during Drosophila embryogenesis. This work was supported by the DST (to J.K.R.) and SRF from ICMR, New Delhi (to T.B.).  相似文献   

14.
15.
To analyse segmental differentiation processes in muscle development, we studied the embryogenesis of the ventral body wall muscles in thoracic and abdominal segments of the grasshopper Schistocerca gregaria at the identified cell level. We visualized differentiating muscle pioneer and muscle precursor cells by staining with a muscle-specific monoclonal antibody and with rhodamine-coupled phalloidin. Our results show that a similar pattern of serially reiterated early muscle pioneers is initially established in all segments. Subsequently, two major segmental differentiation processes occur. First, segment-specific sets of additional, later differentiating muscle pioneers are generated de novo. Second, segment-specific sets of existing early muscle precursors are eliminated through atrophy and eventual loss. These events have consequences for matching homonomy of muscles and their innervating motoneurons. Taken together, these processes in the embryo, in concert with postembryonic differentiation events, play critical roles in shaping the highly specialized muscular structures of the mature animal.  相似文献   

16.
The preoptic area/anterior hypothalamus (POA/AH) sits as a boundary region rostral to the classical diencephalic hypothalamus and ventral to the telencephalic septal region. Numerous studies have pointed to the region's importance for sex‐dependent functions. Previous studies suggested that migratory guidance cues within this region might be particularly unique in their diversity. To better understand the early development and differentiation of the POA/AH, cytoarchitectural, birthdate, immunocytochemical, and cell migration studies were conducted in vivo and in vitro using embryonic C57BL/6J mice. A medial preoptic nucleus became discernible using Nissl stain in males and females between embryonic days (E) E15 and E17. Cells containing immunoreactive estrogen receptor‐α were detected in the POA/AH by E13, and increased in number with age in both sexes. From E15 to E17, examination of the radial glial fiber pattern by immunocytochemistry confirmed the presence of dual orientations for migratory guidance ventral to the anterior commissure (medial‐lateral and dorsal‐ventral) and uniform orientation more caudally (medial‐lateral). Video microscopy studies followed the migration of DiI‐labeled cells in coronal 250‐μm brain slices from E15 mice maintained in serum‐free media for 1–3 days. Analyses showed significant migration along a dorsal‐ventral orientation in addition to medial‐lateral. The video analyses showed significantly more medial‐lateral migration in males than females in the caudal POA/AH. In vivo, changes in the distribution of cells labeled by the mitotic indicator bromodeoxyuridine (BrdU) suggested their progressive migration through the POA/AH. BrdU analyses also indicated significant movement from dorsal to ventral regions ventral to the anterior commissure. The significant dorsal‐ventral migration of cells in the POA/AH provides additional support for the notion that the region integrates developmental information from both telencephalic and diencephalic compartments. The sex difference in the orientation of migration of cells in the caudal POA/AH suggests one locus for the influence of gonadal steroids in the embryonic mouse forebrain. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 252–266, 1999  相似文献   

17.
Summary We describe a set of cells in the central nervous system of theDrosophila embryo which are restricted to the thoracic ganglia in the wildtype. Taking these cells as indication of thoracic identity, we find that the ventral cord of embryos homozygous mutant for different bithorax functions and for Polycomb undergoes homoeotic transformations equivalent to those observed in the larval cuticle.  相似文献   

18.
In this paper, we define temporal and spatial subdivisions of the embryonic head mesoderm and describe the fate of the main lineages derived from this tissue. During gastrulation, only a fraction of the head mesoderm (primary head mesoderm; PHM) invaginates as the anterior part of the ventral furrow. The PHM can be subdivided into four linearly arranged domains, based on the expression of different combinations of genetic markers (tinman, heartless, snail, serpent, mef-2, zfh-1). The anterior domain (PHMA) produces a variety of cell types, among them the neuroendocrine gland (corpus cardiacum). PHMB, forming much of the “T-bar” of the ventral furrow, migrates anteriorly and dorsally and gives rise to the dorsal pharyngeal musculature. PHMC is located behind the T-bar and forms part of the anterior endoderm, besides contributing to hemocytes. The most posterior domain, PHMD, belongs to the anterior gnathal segments and gives rise to a few somatic muscles, but also to hemocytes. The procephalic region flanking the ventral furrow also contributes to head mesoderm (secondary head mesoderm, SHM) that segregates from the surface after the ventral furrow has invaginated, indicating that gastrulation in the procephalon is much more protracted than in the trunk. We distinguish between an early SHM (eSHM) that is located on either side of the anterior endoderm and is the major source of hemocytes, including crystal cells. The eSHM is followed by the late SHM (lSHM), which consists of an anterior and posterior component (lSHMa, lSHMp). The lSHMa, flanking the stomodeum anteriorly and laterally, produces the visceral musculature of the esophagus, as well as a population of tinman-positive cells that we interpret as a rudimentary cephalic aorta (“cephalic vascular rudiment”). The lSHM contributes hemocytes, as well as the nephrocytes forming the subesophageal body, also called garland cells.  相似文献   

19.
Summary The development of GABA-like immunoreactivity was investigated in embryonic and juvenile locusts using an antibody raised against GABA-protein conjugates. GABA-like immunoreactivity was first detectable in the neuropile of embryonic ganglia at 55% development, and in neuronal somata at 62% development. The total number of immunoreactive somata increased between 62% and 85% embryonic development, and followed an anterio-posterior pattern of expression. At 85% development, the number of immunoreactive somata reached adult levels and no change in number was then seen. In embryonic stages and first and second juvenile instars two dorsal and four ventral groups of somata were labeled in all three thoracic ganglia, whilst in later juvenile instars one of the dorsal groups was visible as a separate entity only in the metathoracic ganglion. These early patterns were modified by alterations in the positions of some of the groups during late embryogenesis and during juvenile development to produce the adult pattern. The results show that the development of GABA expression is similar to that of other neurotransmitters. The characteristics of the development of immunoreactivity indicate that some of these immunoreactive clusters may be derived from clonally related neurones. Finally, we demonstrate the presence of immunoreactive somata and processes in embryos, which correspond to those of identified local and intersegmental interneurones studied in the adult.Abbreviations Ab1–3 first-third abdominal ganglion - CON connective - CI 1–3 common inhibitors 1–3 - CTC tract - DC I–VII dorsal commissures I–VII - DIT dorsal intermediate tract - DMT dorsal median tract - LDT lateral dorsal tract - LF lateral fibres - o, iLVT outer and inner lateral ventral tract - MVT median ventral tract - N1–5 nerves 1–5 - aPT anterior perpendicular tract - PT perpendicular tract - aRT anterior ring tract - R1–5 nerve roots 1–5 - PVC posterior ventral commissure - SMC supra-median commissure - T3 metathoracic neuromere - TT T tract - aVAC anterior ventral association centre - VC I ventral commissure I - d,vVCII dorsal and ventral parts of ventral commissure II - VF ventral fibres - VIT ventral intermediate tract - VLT ventral lateral tract - VMT ventral median tract - (d,v)LAG (dorsal and ventral) lateral anterior group - LDG lateral dorsal group - LVG lateral ventral group - MDG medial dorsal group - MPG medial posterior group - MVG medial ventral group  相似文献   

20.
Maintenance of apico-basal polarity is essential for epithelial integrity and requires particular reinforcement during tissue morphogenesis, when cells are reorganised, undergo shape changes and remodel their junctions. It is well established that epithelial integrity during morphogenetic processes depends on the dynamic exchange of adherens junction components, but our knowledge on the dynamics of other proteins and their dynamics during these processes is still limited. The early Drosophila embryo is an ideal system to study membrane dynamics during morphogenesis. Here, morphogenetic activities differ along the anterior-posterior axis, with the extending germband showing a high degree of epithelial remodelling. We developed a Fluorescence Recovery After Photobleaching (FRAP) assay with a higher temporal resolution, which allowed the distinction between a fast and a slow component of recovery of membrane proteins during the germband extension stage. We show for the first time that the recovery kinetics of a general membrane marker, SpiderGFP, differs in the anterior and posterior parts of the embryo, which correlates well with the different morphogenetic activities of the respective embryonic regions. Interestingly, absence of crumbs, a polarity regulator essential for epithelial integrity in the Drosophila embryo, decreases the fast component of SpiderGFP and of the apical marker Stranded at Second-Venus specifically in the anterior region. We suggest that the defects in kinetics observed in crumbs mutant embryos are the first signs of tissue instability in this region, explaining the earlier breakdown of the head epidermis in comparison to that of the trunk, and that diffusion in the plasma membrane is affected by the absence of Crumbs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号