首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Channel-kinase TRPM7/ChaK1 is a member of a recently discovered family of protein kinases called alpha-kinases that display no sequence homology to conventional protein kinases. It is an unusual bifunctional protein that contains an alpha-kinase domain fused to an ion channel. The TRPM7/ChaK1 channel has been characterized using electrophysiological techniques, and recent evidence suggests that it may play a key role in the regulation of magnesium homeostasis. However, little is known about its protein kinase activity. To characterize the kinase activity of TRPM7/ChaK1, we expressed the kinase catalytic domain in bacteria. ChaK1-cat is able to undergo autophosphorylation and to phosphorylate myelin basic protein and histone H3 on serine and threonine residues. The kinase is specific for ATP and cannot use GTP as a substrate. ChaK1-cat is insensitive to staurosporine (up to 0.1 mM) but can be inhibited by rottlerin. Because the kinase domain is physically linked to an ion channel, we investigated the effect of ions on ChaK1-cat activity. The kinase requires Mg(2+) (optimum at 4-10 mM) or Mn(2+) (optimum at 3-5 mM), with activity in the presence of Mn(2+) being 2 orders of magnitude higher than in the presence of Mg(2+). Zn(2+) and Co(2+) inhibited ChaK1-cat kinase activity. Ca(2+) at concentrations up to 1 mM did not affect kinase activity. Considering intracellular ion concentrations, our results suggest that, among divalent metal ions, only Mg(2+) can directly modulate TRPM7/ChaK1 kinase activity in vivo.  相似文献   

2.
TRPM7 is a Ca(2+)- and Mg(2+)-permeable cation channel that also contains a protein kinase domain. While there is general consensus that the channel is inhibited by free intracellular Mg(2+), the functional roles of intracellular levels of Mg.ATP and the kinase domain in regulating TRPM7 channel activity have been discussed controversially. To obtain insight into these issues, we have determined the effect of purine and pyrimidine magnesium nucleotides on TRPM7 currents and investigated the possible involvement of the channel's kinase domain in mediating them. We report here that physiological Mg.ATP concentrations can inhibit TRPM7 channels and strongly enhance the channel blocking efficacy of free Mg(2+). Mg.ADP, but not AMP, had similar, albeit smaller effects, indicating a double protection against possible Mg(2+) and Ca(2+) overflow during variations of cell energy levels. Furthermore, nearly all Mg-nucleotides were able to inhibit TRPM7 activity to varying degrees with the following rank in potency: ATP > TTP > CTP > or = GTP > or = UTP > ITP approximately free Mg(2+) alone. These nucleotides also enhanced TRPM7 inhibition by free Mg(2+), suggesting the presence of two interacting binding sites that jointly regulate TRPM7 channel activity. Finally, the nucleotide-mediated inhibition was lost in phosphotransferase-deficient single-point mutants of TRPM7, while the Mg(2+)-dependent regulation was retained with reduced efficacy. Interestingly, truncated mutant channels with a complete deletion of the kinase domain regained Mg.NTP sensitivity; however, this inhibition did not discriminate between nucleotide species, suggesting that the COOH-terminal truncation exposes the previously inaccessible Mg(2+) binding site to Mg-nucleotide binding without imparting nucleotide specificity. We conclude that the nucleotide-dependent regulation of TRPM7 is mediated by the nucleotide binding site on the channel's endogenous kinase domain and interacts synergistically with a Mg(2+) binding site extrinsic to that domain.  相似文献   

3.
TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions   总被引:18,自引:0,他引:18  
Trace metal ions such as Zn(2+), Fe(2+), Cu(2+), Mn(2+), and Co(2+) are required cofactors for many essential cellular enzymes, yet little is known about the mechanisms through which they enter into cells. We have shown previously that the widely expressed ion channel TRPM7 (LTRPC7, ChaK1, TRP-PLIK) functions as a Ca(2+)- and Mg(2+)-permeable cation channel, whose activity is regulated by intracellular Mg(2+) and Mg(2+).ATP and have designated native TRPM7-mediated currents as magnesium-nucleotide-regulated metal ion currents (MagNuM). Here we report that heterologously overexpressed TRPM7 in HEK-293 cells conducts a range of essential and toxic divalent metal ions with strong preference for Zn(2+) and Ni(2+), which both permeate TRPM7 up to four times better than Ca(2+). Similarly, native MagNuM currents are also able to support Zn(2+) entry. Furthermore, TRPM7 allows other essential metals such as Mn(2+) and Co(2+) to permeate, and permits significant entry of nonphysiologic or toxic metals such as Cd(2+), Ba(2+), and Sr(2+). Equimolar replacement studies substituting 10 mM Ca(2+) with the respective divalent ions reveal a unique permeation profile for TRPM7 with a permeability sequence of Zn(2+) approximately Ni(2+) > Ba(2+) > Co(2+) > Mg(2+) >/= Mn(2+) >/= Sr(2+) >/= Cd(2+) >/= Ca(2+), while trivalent ions such as La(3+) and Gd(3+) are not measurably permeable. With the exception of Mg(2+), which exerts strong negative feedback from the intracellular side of the pore, this sequence is faithfully maintained when isotonic solutions of these divalent cations are used. Fura-2 quenching experiments with Mn(2+), Co(2+), or Ni(2+) suggest that these can be transported by TRPM7 in the presence of physiological levels of Ca(2+) and Mg(2+), suggesting that TRPM7 represents a novel ion-channel mechanism for cellular metal ion entry into vertebrate cells.  相似文献   

4.
Transient receptor potential melastatin 7 (TRPM7) channels are divalent cation-selective ion channels that are permeable to Ca(2+) and Mg(2+). TRPM7 is ubiquitously expressed in vertebrate cells and contains both an ion channel and a kinase domain. TRPM7 plays an important role in regulating cellular homeostatic levels of Ca(2+) and Mg(2+) in mammalian cells. Although studies have shown that the kinase domain of TRPM7 is required for channel activation and can phosphorylate other target proteins, a systematic analysis of intact TRPM7 channel phosphorylation sites expressed in mammalian cells is lacking. We applied mass spectrometric proteomic techniques to identify and characterize the key phosphorylation sites in TRPM7 channels. We identified 14 phosphorylation sites in the cytoplasmic domain of TRPM7, eight of which have not been previously reported. The identification of phosphorylation sites using antibody-based immunopurification and mass spectrometry is an effective approach for defining the phosphorylation status of TRPM7 channels. The present results show that TRPM7 channels are phosphorylated at multiple sites, which serves as a mechanism to modulate the dynamic functions of TRPM7 channels in mammalian cells.  相似文献   

5.
Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7   总被引:7,自引:0,他引:7  
TRPM7 is a polypeptide with intrinsic ion channel and protein kinase domains whose targeted deletion causes cells to experience growth arrest within 24 hr and eventually die. Here, we show that while TRPM7's kinase domain is not essential for activation of its channel, a functional coupling exists such that structural alterations of the kinase domain alter the sensitivity of channel activation to Mg(2+). Investigation of the relationship between Mg(2+) and the cell biological role of TRPM7 revealed that TRPM7-deficient cells become Mg(2+) deficient, that both the viability and proliferation of TRPM7-deficient cells are rescued by supplementation of extracellular Mg(2+), and that the capacity of heterologously expressed TRPM7 mutants to complement TRPM7 deficiency correlates with their sensitivity to Mg(2+). Overall, our results indicate that TRPM7 has a central role in Mg(2+) homeostasis as a Mg(2+) uptake pathway regulated through a functional coupling between its channel and kinase domains.  相似文献   

6.
Regulation of TRPM2 by extra- and intracellular calcium   总被引:2,自引:0,他引:2       下载免费PDF全文
TRPM2 is a calcium-permeable nonselective cation channel that is opened by the binding of ADP-ribose (ADPR) to a C-terminal nudix domain. Channel activity is further regulated by several cytosolic factors, including cyclic ADPR (cADPR), nicotinamide adenine dinucleotide phosphate (NAADP), Ca(2+) and calmodulin (CaM), and adenosine monophosphate (AMP). In addition, intracellular ions typically used in patch-clamp experiments such as Cs(+) or Na(+) can alter ADPR sensitivity and voltage dependence, complicating the evaluation of the roles of the various modulators in a physiological context. We investigated the roles of extra- and intracellular Ca(2+) as well as CaM as modulators of ADPR-induced TRPM2 currents under more physiological conditions, using K(+)-based internal saline in patch-clamp experiments performed on human TRPM2 expressed in HEK293 cells. Our results show that in the absence of Ca(2+), both internally and externally, ADPR alone cannot induce cation currents. In the absence of extracellular Ca(2+), a minimum of 30 nM internal Ca(2+) is required to cause partial TRPM2 activation with ADPR. However, 200 microM external Ca(2+) is as efficient as 1 mM Ca(2+) in TRPM2 activation, indicating an external Ca(2+) binding site important for proper channel function. Ca(2+) facilitates ADPR gating with a half-maximal effective concentration of 50 nM and this is independent of extracellular Ca(2+). Furthermore, TRPM2 currents inactivate if intracellular Ca(2+) levels fall below 100 nM irrespective of extracellular Ca(2+). The facilitatory effect of intracellular Ca(2+) is not mimicked by Mg(2+), Ba(2+), or Zn(2+). Only Sr(2+) facilitates TRPM2 as effectively as Ca(2+), but this is due to Sr(2+)-induced Ca(2+) release from internal stores rather than a direct effect of Sr(2+) itself. Together, these data demonstrate that cytosolic Ca(2+) regulates TRPM2 channel activation. Its facilitatory action likely occurs via CaM, since the addition of 100 microM CaM to the patch pipette significantly enhances ADPR-induced TRPM2 currents at fixed [Ca(2+)](i) and this can be counteracted by calmidazolium. We conclude that ADPR is responsible for TRPM2 gating and Ca(2+) facilitates activation via calmodulin.  相似文献   

7.
BACKGROUND: The maintenance of the body's Mg(2+) balance is of great importance because of its involvement in numerous enzymatic systems and its intervention in neuromuscular excitability, protein synthesis, and nucleic acid stability. Recently, the transient receptor potential melastatin 6 (TRPM6) was identified as the gatekeeper of active Mg(2+) transport and therefore plays a crucial role in the regulation of Mg(2+) homeostasis. Remarkably, TRPM6 combines a Mg(2+) channel with an alpha-kinase domain whose function remains elusive. RESULTS: Here, we identify the receptor for activated C-kinase 1 (RACK1) as the first regulatory protein of TRPM6 that associates with the alpha-kinase domain. RACK1 and TRPM6 are both present in renal Mg(2+)-transporting distal convoluted tubules. We demonstrate that RACK1 inhibits channel activity in an alpha-kinase activity-dependent manner, whereas small interference (si) RNA-mediated knockdown of RACK1 increases the current. Moreover, threonine(1851) in the alpha-kinase domain was identified as an autophosphorylation site of which the phosphorylation state is essential for the inhibitory effect of RACK1. Importantly, threonine(1851) was crucial for the Mg(2+) sensitivity of TRPM6 autophosphorylation and channel activity. TRPM6 channel activity was less sensitive to Mg(2+) when RACK1 was knocked down by siRNA. Finally, activation of protein kinase C by phorbol 12-myristate 13-acetate-PMA prohibited the inhibitory effect of RACK1 on TRPM6 channel activity. CONCLUSIONS: We propose a unique mode of TRPM6 regulation in which the Mg(2+) influx is controlled by RACK1 through its interaction with the alpha-kinase and the phosphorylation state of the threonine(1851) residue.  相似文献   

8.
TRPM7 channel kinase is a protein highly expressed in cells of hematopoietic lineage, such as lymphocytes. Studies performed in native and heterologous expression systems have shown that TRPM7 forms nonselective cation channels functional in the plasma membrane and activated on depletion of cellular Mg(2+). In addition to internal Mg(2+), cytosolic pH and the phospholipid phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] are potent physiological regulators of this channel: protons inhibit, while PI(4,5)P(2) is required for TRPM7 channel activity. These channels are also inhibited from inside by other metal cations and polyamines. While the regulation of TRPM7 channels by internal metal ions, acidic pH, and PI(4,5)P(2) is voltage independent, extracellular metal cations and polyamines block voltage dependently at micromolar concentrations and appear to occupy a distinct blocking site. In the present study we investigated intracellular Mg(2+) and pH dependence of native TRPM7 currents using whole cell patch-clamp electrophysiology in human Jurkat T lymphocytes and HEK293 cells. Our main findings are 1) Mg(2+) inhibition involves not one but two separate sites of high (~10 μM) and low (~165 μM) affinity; and 2) while sharing certain characteristics with Mg(2+) inhibition, protons most likely inhibit through one inhibitory site, corresponding to the low-affinity Mg(2+) site, with an estimated IC(50) of pH 6.3. Additionally, we present data on amplitude distribution of preactivated TRPM7 currents in Jurkat T lymphocytes in the absence of prior Mg(2+) or proton depletion.  相似文献   

9.
Transient receptor potential melastatin 7 (TRPM7) channels represent the major magnesium-uptake mechanism in mammalian cells and are key regulators of cell growth and proliferation. They are expressed abundantly in a variety of human carcinoma cells controlling survival, growth, and migration. These characteristics are the basis for recent interest in the channel as a target for cancer therapeutics. We screened a chemical library of marine organism-derived extracts and identified waixenicin A from the soft coral Sarcothelia edmondsoni as a strong inhibitor of overexpressed and native TRPM7. Waixenicin A activity was cytosolic and potentiated by intracellular free magnesium (Mg(2+)) concentration. Mutating a Mg(2+) binding site on the TRPM7 kinase domain reduced the potency of the compound, whereas kinase deletion enhanced its efficacy independent of Mg(2+). Waixenicin A failed to inhibit the closely homologous TRPM6 channel and did not significantly affect TRPM2, TRPM4, and Ca(2+) release-activated Ca(2+) current channels. Therefore, waixenicin A represents the first potent and relatively specific inhibitor of TRPM7 ion channels. Consistent with TRPM7 inhibition, the compound blocked cell proliferation in human Jurkat T-cells and rat basophilic leukemia cells. Based on the ability of the compound to inhibit cell proliferation through Mg(2+)-dependent block of TRPM7, waixenicin A, or structural analogs may have cancer-specific therapeutic potential, particularly because certain cancers accumulate cytosolic Mg(2+).  相似文献   

10.
TRPM7 (ChaK1, TRP-PLIK, LTRPC7) is a ubiquitous, calcium-permeant ion channel that is unique in being both an ion channel and a serine/threonine kinase. The kinase domain of TRPM7 directly associates with the C2 domain of phospholipase C (PLC). Here, we show that in native cardiac cells and heterologous expression systems, G alpha q-linked receptors or tyrosine kinase receptors that activate PLC potently inhibit channel activity. Numerous experimental approaches demonstrated that phosphatidylinositol 4,5-bisphosphate (PIP(2)), the substrate of PLC, is a key regulator of TRPM7. We conclude that receptor-mediated activation of PLC results in the hydrolysis of localized PIP(2), leading to inactivation of the TRPM7 channel.  相似文献   

11.
Potentiation of TRPM7 inward currents by protons   总被引:1,自引:0,他引:1       下载免费PDF全文
TRPM7 is unique in being both an ion channel and a protein kinase. It conducts a large outward current at +100 mV but a small inward current at voltages ranging from -100 to -40 mV under physiological ionic conditions. Here we show that the small inward current of TRPM7 was dramatically enhanced by a decrease in extracellular pH, with an approximately 10-fold increase at pH 4.0 and 1-2-fold increase at pH 6.0. Several lines of evidence suggest that protons enhance TRPM7 inward currents by competing with Ca(2+) and Mg(2+) for binding sites, thereby releasing blockade of divalent cations on inward monovalent currents. First, extracellular protons significantly increased monovalent cation permeability. Second, higher proton concentrations were required to induce 50% of maximal increase in TRPM7 currents when the external Ca(2+) and Mg(2+) concentrations were increased. Third, the apparent affinity for Ca(2+) and Mg(2+) was significantly diminished at elevated external H(+) concentrations. Fourth, the anomalous-mole fraction behavior of H(+) permeation further suggests that protons compete with divalent cations for binding sites in the TRPM7 pore. Taken together, it appears that at physiological pH (7.4), Ca(2+) and Mg(2+) bind to TRPM7 and inhibit the monovalent cationic currents; whereas at high H(+) concentrations, the affinity of TRPM7 for Ca(2+) and Mg(2+) is decreased, thereby allowing monovalent cations to pass through TRPM7. Furthermore, we showed that the endogenous TRPM7-like current, which is known as Mg(2+)-inhibitable cation current (MIC) or Mg nucleotide-regulated metal ion current (MagNuM) in rat basophilic leukemia (RBL) cells was also significantly potentiated by acidic pH, suggesting that MIC/MagNuM is encoded by TRPM7. The pH sensitivity represents a novel feature of TRPM7 and implies that TRPM7 may play a role under acidic pathological conditions.  相似文献   

12.
The TRPM7 (transient receptor potential melastatin 7) channel has been shown to play a pivotal role in cell survival during brain ischaemia as well as in the survival of other cell types challenged with apoptotic stimuli. Ca(2+) is thought to be central to the channel's ability to regulate ROS (reactive oxygen species) production. However, channel-mediated entry of Mg(2+) and Zn(2+) have also been implicated in cell death. In the present study, we show that depletion of TRPM7 by RNA interference in fibroblasts increases cell resistance to apoptotic stimuli by decreasing ROS levels in an Mg(2+)-dependent manner. Depletion of TRPM7 lowered cellular Mg(2+), decreased the concentration of ROS and lessened p38 MAPK (mitogen-activated protein kinase) and JNK (c-Jun N-terminal kinase) activation as well as decreased caspase 3 activation and PARP [poly(ADP-ribose) polymerase] cleavage in response to apoptotic stimuli. Re-expression of TRPM7 or of a kinase-inactive mutant of TRPM7 in TRPM7-knockdown cells increased cellular Mg(2+) and ROS levels, as did expression of the Mg(2+) transporter SLC41A2 (solute carrier family 41 member 2). In addition, expression of SLC41A2 increased the sensitivity of TRPM7-knockdown cells to apoptotic stimuli and boosted ROS generation in response to cell stress. Taken together, these data uncover an essential role for Mg(2+) in TRPM7's control of cell survival and in the regulation of cellular ROS levels.  相似文献   

13.
Magnesium (Mg(2+)) transport across membranes plays an essential role in cellular growth and survival. TRPM7 is the unique fusion of a Mg(2+) permeable pore with an active cytosolic kinase domain, and is considered a master regulator of cellular Mg(2+) homeostasis. We previously found that the genetic deletion of TRPM7 in DT40 B cells results in Mg(2+) deficiency and severe growth impairment, which can be rescued by supplementation with excess extracellular Mg(2+). Here, we show that gene expression of the Mg(2+) selective transporter MagT1 is upregulated in TRPM7(-/-) cells. Furthermore, overexpression of MagT1 in TRPM7(-/-) cells augments their capacity to uptake Mg(2+), and improves their growth behavior in the absence of excess Mg(2+).  相似文献   

14.
The actin-activated Mg(2+)-ATPase activity of Acanthamoeba myosins I depends on phosphorylation of their single heavy chains by myosin I heavy chain kinase. Kinase activity is enhanced > 50-fold by autophosphorylation at multiple sites. The rate of kinase autophosphorylation is increased approximately 20-fold by acidic phospholipids independent of the presence of Ca2+ and diglycerides. We show in this paper that Ca(2+)-calmodulin inhibits phospholipid-stimulated autophosphorylation of myosin I heavy chain kinase and hence also inhibits the catalytic activity of unphosphorylated kinase in the presence of phospholipid. Ca(2+)-calmodulin does not inhibit kinase activity in the absence of phospholipid. Micromolar Ca(2+)-calmodulin also inhibits binding of myosin I heavy chain kinase to phospholipid vesicles and purified plasma membranes. Proteolytic removal of a 7-kDa NH2-terminal segment from the 97-kDa kinase prevents binding of both calmodulin and phospholipid; therefore, we propose that they bind to the same or overlapping sites. These data provide a mechanism by which Ca2+ could inhibit the actin-activated Mg(2+)-ATPase activity of the myosin I isozymes in vivo and thus regulate myosin I-dependent motile activities.  相似文献   

15.
PLC-isozymes are central elements of cellular signaling downstream of numerous receptors. PLCγ2 is a pivotal component of B cell receptor (BCR) signaling. The regulation of PLCγ2-dependent signaling functions by Tyr-phosphorylation is well characterized, however, the potential role of Ser/Thr phosphorylation events remains undefined. TRPM7 is the fusion of a Ser/Thr kinase with an ion channel, and an essential component of Mg(2+)-homeostasis regulation. Although the interaction between the C2 domain of several PLC-isozymes and TRPM7 is well established, previous studies have focused on the effect of PLC-activity on TRPM7. Here, we investigated whether Ser/Thr phosphorylation sites in the C2 domain of PLCγ2 could be identified using TRPM7-kinase. We show that TRPM7-kinase phosphorylates PLCγ2 in its C2-domain at position Ser1164 and in the linker region preceding the C2-domain at position Thr1045. Using a complementation approach in PLCγ2(-/-) DT40 cells, we found that the PLCγ2-S1164A mutant fully restores BCR mediated Ca(2+)-responses under standard growth conditions. However, under hypomagnesic conditions, PLCγ2-S1164A fails to reach Ca(2+)-levels seen in cells expressing PLCγ2 wildtype. These results suggest that Mg(2+)-sensitivity of the BCR signaling pathway may be regulated by Ser/Thr phosphorylation of PLCγ2.  相似文献   

16.
Transient receptor potential melastatin 6 (TRPM6) plays an essential role in epithelial Mg(2+) transport. TRPM6 and its closest homologue, TRPM7, both combine a cation channel with an alpha-kinase domain. However, the role of this alpha-kinase domain in TRPM6 channel activity remains elusive. The aim of this study was to investigate the regulation of TRPM6 channel activity by intracellular ATP and the involvement of its alpha-kinase domain. We demonstrated that intracellular Na- and Mg-ATP decreased the TRPM6 current in HEK293 cells heterogeneously expressing the channel, whereas Na-CTP or Na-GTP had no effect on channel activity. Whole cell recordings in TRPM6-expressing HEK293 cells showed that deletion of the alpha-kinase domain prevented the inhibitory effect of intracellular ATP without abrogating channel activity. Mutation of the conserved putative ATP-binding motif GXG(A)XXG (G1955D) in the alpha-kinase domain of TRPM6 inhibited the ATP action, whereas this effect remained preserved in the TRPM6 phosphotransferase-deficient mutant K1804R. Mutation of the TRPM6 autophosphorylation site, Thr(1851), into either an alanine or an aspartate, resulted in functional channels that could still be inhibited by ATP. In conclusion, intracellular ATP regulates TRPM6 channel activity via its alpha-kinase domain independently of alpha-kinase activity.  相似文献   

17.
TRPM6 and TRPM7 are bifunctional proteins expressing a TRP channel fused to an atypical alpha-kinase domain. While the gating properties of TRPM6 and TRPM7 channels have been studied in detail, little is known about the mechanisms regulating kinase activity. Recently, we found that TRPM7 associates with its substrate myosin II via a kinase-dependent mechanism suggesting a role for autophosphorylation in substrate recognition. Here, we demonstrate that the cytosolic C-terminus of TRPM7 undergoes massive autophosphorylation (32+/-4 mol/mol), which strongly increases the rate of substrate phosphorylation. Phosphomapping by mass spectrometry indicates that the majority of autophosphorylation sites (37 out of 46) map to a Ser/Thr-rich region immediately N-terminal of the catalytic domain. Deletion of this region prevents substrate phosphorylation without affecting intrinsic catalytic activity suggesting that the Ser/Thr-rich domain contributes to substrate recognition. Surprisingly, the TRPM6-kinase is regulated by an analogous mechanism despite a lack of sequence conservation with the TRPM7 Ser/Thr-rich domain. In conclusion, our findings support a model where massive autophosphorylation outside the catalytic domain of TRPM6 and TRPM7 may facilitate kinase-substrate interactions leading to enhanced phosphorylation of those substrates.  相似文献   

18.
TRPM7 is a ubiquitously expressed cation channel with a fused alpha kinase domain. It is highly permeable to magnesium and calcium, and is negatively gated by intracellular Mg(2+) and Mg-ATP. Substrates for the TRPM7 kinase domain include annexinA1 and myosin IIA heavy chain, and there is evidence to suggest a functional interaction between the channel and kinase domains. Alterations in the expression and activity of TRPM7 have profound effects on cell proliferation and differentiation. Genetic deletion of TRPM7 in model systems demonstrates that this channel is critical for cellular growth and embryonic development. Here, we provide a brief overview of the activity of TRPM7 and the associated regulatory mechanisms. We will then discuss the biological functions of TRPM7, emphasizing its role in development and the potential pathophysiological significance of TRPM7 in neurological and cardiovascular disease.  相似文献   

19.
Cardiac ryanodine receptor (RyR2) function is modulated by Ca(2+) and Mg(2+). To better characterize Ca(2+) and Mg(2+) binding sites involved in RyR2 regulation, the effects of cytosolic and luminal earth alkaline divalent cations (M(2+): Mg(2+), Ca(2+), Sr(2+), Ba(2+)) were studied on RyR2 from pig ventricle reconstituted in bilayers. RyR2 were activated by M(2+) binding to high affinity activating sites at the cytosolic channel surface, specific for Ca(2+) or Sr(2+). This activation was interfered by Mg(2+) and Ba(2+) acting at low affinity M(2+)-unspecific binding sites. When testing the effects of luminal M(2+) as current carriers, all M(2+) increased maximal RyR2 open probability (compared to Cs(+)), suggesting the existence of low affinity activating M(2+)-unspecific sites at the luminal surface. Responses to M(2+) vary from channel to channel (heterogeneity). However, with luminal Ba(2+)or Mg(2+), RyR2 were less sensitive to cytosolic Ca(2+) and caffeine-mediated activation, openings were shorter and voltage-dependence was more marked (compared to RyR2 with luminal Ca(2+)or Sr(2+)). Kinetics of RyR2 with mixtures of luminal Ba(2+)/Ca(2+) and additive action of luminal plus cytosolic Ba(2+) or Mg(2+) suggest luminal M(2+) differentially act on luminal sites rather than accessing cytosolic sites through the pore. This suggests the presence of additional luminal activating Ca(2+)/Sr(2+)-specific sites, which stabilize high P(o) mode (less voltage-dependent) and increase RyR2 sensitivity to cytosolic Ca(2+) activation. In summary, RyR2 luminal and cytosolic surfaces have at least two sets of M(2+) binding sites (specific for Ca(2+) and unspecific for Ca(2+)/Mg(2+)) that dynamically modulate channel activity and gating status, depending on SR voltage.  相似文献   

20.
Initial autophosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) occurs at Thr286 (the "autonomy" site) and converts the kinase from a Ca(2+)-dependent to a partially Ca(2+)-independent or autonomous enzyme. After removal of Ca2+/calmodulin, the autonomous kinase undergoes a "burst" of inhibitory autophosphorylation at sites distinct from the autonomy site which may be masked in the presence of bound calmodulin. This burst of Ca(2+)-independent autophosphorylation blocks the ability of calmodulin to activate the kinase. We have used site-directed mutagenesis to replace putative inhibitory autophosphorylation sites within the calmodulin binding domain of recombinant alpha-CaM kinase with nonphosphorylatable alanines and examined the effects on autophosphorylation, kinase activity, and calmodulin binding. Although prominent Ca(2+)-independent autophosphorylation occurs within the calmodulin binding domain at Thr305, Thr306, and Ser314 in wild-type alpha-CaM kinase, the inhibitory effect on kinase activity and calmodulin binding is retained in mutants lacking any one of these three sites. However, when both Thr305 and Thr306 are converted to alanines the kinase does not display inhibition of either activity or calmodulin binding. Autophosphorylation at either Thr305 or Thr306 is therefore sufficient to block both binding and activation of the kinase by Ca2+/calmodulin. Thr306 is also slowly autophosphorylated in a basal reaction in the continuous absence of Ca2+/calmodulin. Autophosphorylation of Thr306 by the kinase in either its basal or autonomous state suggests that in the absence of bound calmodulin, the region of the autoregulatory domain surrounding Thr306, rather than the region near the autonomy site, lies nearest the peptide substrate binding site of the kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号