首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Awareness of cannabis dependence as a clinically relevant issue has grown in recent years. Clinical and laboratory studies demonstrate that chronic marijuana smokers can experience withdrawal symptoms upon cessation of marijuana smoking and have difficulty abstaining from marijuana use. This paper will review data implicating the cannabinoid CB1 receptor in regulating the behavioral effects of Delta(9)-tetrahydrocannobinol (THC), the primary psychoactive component of cannabis, across a range of species. The behavioral effects that will be discussed include those that directly contribute to the maintenance of chronic marijuana smoking, such as reward, subjective effects, and the positive and negative reinforcing effects of marijuana, THC and synthetic cannabinoids. The role of the CB1 receptor in the development of marijuana dependence and expression of withdrawal will also be discussed. Lastly, treatment options that may alleviate withdrawal symptoms and promote marijuana abstinence will be considered.  相似文献   

2.
3.
K2 or Spice products are emerging drugs of abuse that contain synthetic cannabinoids (SCBs). Although assumed by many teens and first time drug users to be a “safe” and “legal” alternative to marijuana, many recent reports indicate that SCBs present in K2 produce toxicity not associated with the primary psychoactive component of marijuana, ?9-tetrahydrocannabinol (Δ9-THC). This mini-review will summarize recent evidence that use of K2 products poses greater health risks relative to marijuana, and suggest that distinct pharmacological properties and metabolism of SCBs relative to Δ9-THC may contribute to the observed toxicity. Studies reviewed will indicate that in contrast to partial agonist properties of Δ9-THC typically observed in vitro, SCBs in K2 products act as full cannabinoid receptor type 1 (CB1R) and type 2 (CB2R) agonists in both cellular assays and animal studies. Furthermore, unlike Δ9-THC metabolism, several SCB metabolites retain high affinity for, and exhibit a range of intrinsic activities at, CB1 and CB2Rs. Finally, several reports indicate that although quasi-legal SCBs initially evaded detection and legal consequences, these presumed “advantages” have been limited by new legislation and development of product and human testing capabilities. Collectively, evidence reported in this mini-review suggests that K2 products are neither safe nor legal alternatives to marijuana. Instead, enhanced toxicity of K2 products relative to marijuana, perhaps resulting from the combined actions of a complex mixture of different SCBs present and their active metabolites that retain high affinity for CB1 and CB2Rs, highlights the inherent danger that may accompany use of these substances.  相似文献   

4.
The principal psychoactive component of marijuana, Δ(9)-tetrahydrocannabinol (THC), activates CB1 cannabinoid receptors (CB1Rs). Unfortunately, pharmacological research into the design of effective THC analogs has been hampered by psychiatric side effects. THC-based drug design of a less academic nature, however, has led to the marketing of "synthetic marijuana," labeled as K2 or "Spice," among other terms, which elicits psychotropic actions via CB1R activation. Because of structural dissimilarity to THC, the active ingredients of K2/Spice preparations are widely unregulated. The K2/Spice "phenomenon" provides a context for considering whether marijuana-based drugs will truly provide innovative therapeutics or merely perpetuate drug abuse.  相似文献   

5.
Endocannabinoids (eCBs) act as modulators of synaptic transmission through activation of a number of receptors, including, but not limited to, cannabinoid receptor 1 (CB1). eCBs share CB1 receptors as a common target with Δ9-tetrahydrocannabinol (THC), the main psychoactive ingredient in marijuana. Although THC has been used for recreational and medicinal purposes for thousands of years, little was known about its effects at the cellular level or on neuronal circuits. Identification of CB1 receptors and the subsequent development of its specific ligands has therefore enhanced our ability to study and bring together a substantial amount of knowledge regarding how marijuana and eCBs modify interneuronal communication. To date, the eCB system, composed of cannabinoid receptors, ligands and the relevant enzymes, is recognized as the best-described retrograde signalling system in the brain. Its impact on synaptic transmission is widespread and more diverse than initially thought. The aim of this review is to succinctly present the most common forms of eCB-mediated modulation of synaptic transmission, while also illustrating the multiplicity of effects resulting from specializations of this signalling system at the circuital level.  相似文献   

6.
This review examines evidence that delta(9)-tetrahydrocannabinol (THC) can regulate and suppress human immune responses. Leukocytes express both cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2), and levels of mRNA encoding for them are increased in peripheral blood leukocytes obtained from marijuana smokers, suggesting cannabinoid receptor activation in vivo. Exposure of human T-cells to THC suppresses their proliferation, inhibits the release of interferon-gamma, and skews the balance of T-helper cytokines towards a type 2 response. The majority of these effects are CB2 receptor-dependent. Consistent with an impact of THC on cell-mediated immunity, alveolar macrophages (AMs) recovered from the lungs of marijuana smokers are suppressed in their ability to release pro-inflammatory cytokines and nitric oxide (NO), and kill bacteria. Macrophage function is restored by treatment with interferon-gamma, a type 1 cytokine. Habitual exposure to THC appears capable of impacting on human cell-mediated immunity and host defense.  相似文献   

7.
Cannabinoids are a class of compound found in marijuana which have been known for their therapeutic and psychoactive properties for at least 4000 years. Isolation of the active principle in marijuana, 9-THC, provided the lead structure in the development of highly potent congeners which were used to probe for the mechanism of marijuana action. Cannabinoids were shown to bind to selective binding sites in brain tissue thereby regulating second messenger formation. Such studies led to the cloning of three cannabinoid receptor subtypes, CB1, CB2, and CB1A all of which belong to the superfamily of G protein-coupled plasma membrane receptors. Analogous to the discovery of endogenous opiates, isolation of cannabinoid receptors provided the appropriate tool to isolate an endogenous cannabimimetic eicosanoid, anandamide, from porcine brain. Recent studies indicate that anandamide is a member of a family of fatty acid ethanolamides that may represent a novel class of lipid neurotransmitters. This review discusses recent progress in cannabinoid research with a focus on the receptors for 9-THC, their coupling to second messenger responses, and the endogenous lipid cannabimimetic, anandamide.  相似文献   

8.
PURPOSE OF REVIEW: Recent findings suggesting that cannabinoid receptors are potential targets for the treatment of atherosclerosis are reviewed. RECENT FINDINGS: Cannabinoids, such as Delta9-tetrahydrocannabinol, the major psychoactive compound of marijuana, their synthetic analogs and endogenous cannabinoid ligands, produce their biological effects by interacting with specific receptors. In the apolipoprotein E knockout mouse model of atherosclerosis, Delta9-tetrahydrocannabinol was shown to inhibit disease progression through pleiotropic effects on inflammatory cells. Blocking of cannabinoid receptor CB2, the main cannabinoid receptor expressed on immune cells, abolished the observed effects. The development of novel cannabinoid receptor ligands that selectively target CB2 receptors or pharmacological modulation of the endocannabinoid system might offer novel therapeutic strategies in the treatment of atherosclerosis. Several reports demonstrating an implication of the endocannabinoid system in different inflammatory conditions support this hypothesis. SUMMARY: The immunomodulatory capacity of cannabinoids is now well established and suggests a broad therapeutic potential of cannabinoids for a variety of conditions, including atherosclerosis. New strategies based on nonpsychotropic cannabinoid receptor ligands or compounds modulating endocannabinoid synthesis or stability might solve the problem of the unwanted side effects associated with cannabinoid administration.  相似文献   

9.
Delta(9)-tetrahydrocannabinol (THC), the psychoactive ingredient of marijuana, has useful medicinal properties but also undesirable side effects. The brain receptor for THC, CB(1), is also activated by the endogenous cannabinoids anandamide and 2-arachidonylglycerol (2-AG). Augmentation of endocannabinoid signaling by blockade of their metabolism may offer a more selective pharmacological approach compared with CB(1) agonists. Consistent with this premise, inhibitors of the anandamide-degrading enzyme fatty acid amide hydrolase (FAAH) produce analgesic and anxiolytic effects without cognitive defects. In contrast, we show that dual blockade of the endocannabinoid-degrading enzymes monoacylglycerol lipase (MAGL) and FAAH by selected organophosphorus agents leads to greater than ten-fold elevations in brain levels of both 2-AG and anandamide and to robust CB(1)-dependent behavioral effects that mirror those observed with CB(1) agonists. Arachidonic acid levels are decreased by the organophosphorus agents in amounts equivalent to elevations in 2-AG, which indicates that endocannabinoid and eicosanoid signaling pathways may be coordinately regulated in the brain.  相似文献   

10.
Impairment of working memory is one of the most important deleterious effects of marijuana intoxication in humans, but its underlying mechanisms are presently unknown. Here, we demonstrate that the impairment of spatial working memory (SWM) and in vivo long-term depression (LTD) of synaptic strength at hippocampal CA3-CA1 synapses, induced by an acute exposure of exogenous cannabinoids, is fully abolished in conditional mutant mice lacking type-1 cannabinoid receptors (CB(1)R) in brain astroglial cells but is conserved in mice lacking CB(1)R in glutamatergic or GABAergic neurons. Blockade of neuronal glutamate N-methyl-D-aspartate receptors (NMDAR) and of synaptic trafficking of glutamate α-amino-3-hydroxy-5-methyl-isoxazole propionic acid receptors (AMPAR) also abolishes cannabinoid effects on SWM and LTD induction and expression. We conclude that the impairment of working memory by marijuana and cannabinoids is due to the activation of astroglial CB(1)R and is associated with astroglia-dependent hippocampal LTD in vivo.  相似文献   

11.
Endocannabinoids as cardiovascular modulators   总被引:8,自引:0,他引:8  
Cannabinoids, the bioactive constituents of the marijuana plant and their synthetic and endogenous analogs cause not only neurobehavioral, but also cardiovascular effects. The most important component of these effects is a profound decrease in blood pressure and heart rate. Although multiple lines of evidence indicate that the hypotensive and bradycardic effects of anandamide and other cannabinoids are mediated by peripherally located CB1 cannabinoid receptors, anandamide can also elicit vasodilation in certain vascular beds, which is independent of CB1 or CB2 receptors. Possible cellular mechanisms underlying these effects and the cellular sources of vasoactive anandamide are discussed.  相似文献   

12.
N-Acylethanolamines (NAEs) are an important family of lipid-signaling molecules. Arachidonylethanolamide (anandamide) (AEA), palmitoylethanolamide (PEA), and oleoylethanolamide (OEA) are co-produced from similar phospholipid precursors when neurons are stimulated. AEA is an endogenous agonist (endocannabinoid) for cannabinoid receptors. It binds with higher affinity to type CB1 than to type CB2 cannabinoid receptors. PEA does not bind to CB1, while the hypothesis that it reacts with putative CB2-like receptors has been questioned. OEA does not activate currently known cannabinoid receptors, but it mimics the effects of AEA and cannabinoids in reducing the fertilizing capacity of sea urchin sperm. OEA and PEA also act as entourage compounds by inhibiting the hydrolysis of AEA by fatty acid amide hydrolase. Cannabinoid receptors and/or AEA are present in mammalian reproductive organs including the testis, epididymis, prostate, ovary, uterus, sperm, preimplantation embryo and placenta, as well as prostatic and mammary carcinomas. We now report that analysis by high-performance liquid chromatography/mass spectrometry (HPLC/MS) shows the presence of AEA, PEA, and OEA in human seminal plasma, mid-cycle oviductal fluid, follicular fluid, amniotic fluid, milk, and fluids from malignant ovarian cysts. Previous studies showed that AEA-signaling via cannabinoid receptors regulates capacitation and fertilizing potential of human sperm, early embryonic development and blastocyst implantation into the uterine mucosa of rodents, as well as proliferation of human mammary and prostatic carcinomas. Current results imply that NAEs also may modulate follicular maturation and ovulation, normal and pathological ovarian function, placental and fetal physiology, lactation, infant physiology, and behavior. Collectively, these findings suggest that NAEs in human reproductive fluids may help regulate multiple physiological and pathological processes in the reproductive system, and imply that exogenous cannabinoids delivered by marijuana smoke might impact these processes. This study has potential medical and public policy ramifications because of the incidence of marijuana abuse by adolescents and adults in our society, previously documented reproductive effects of marijuana, and the ongoing debate about medicinal use of marijuana and cannabinoids.  相似文献   

13.
Cannabinoids, endocannabinoids and marijuana activate two well-characterized cannabinoid receptors (CB-Rs), CB1-Rs and CB2-Rs. The expression of CB1-Rs in the brain and periphery has been well studied, but neuronal CB2-Rs have received much less attention than CB1-Rs. Many studies have now identified and characterized functional glial and neuronal CB2-Rs in the central nervous system. However, many features of CB2-R gene structure, regulation and variation remain poorly characterized in comparison with the CB1-R. In this study, we report on the discovery of a novel human CB2 gene promoter transcribing testis (CB2A) isoform with starting exon located ca 45 kb upstream from the previously identified promoter transcribing the spleen isoform (CB2B). The 5' exons of both CB2 isoforms are untranslated 5'UTRs and alternatively spliced to the major protein coding exon of the CB2 gene. CB2A is expressed higher in testis and brain than CB2B that is expressed higher in other peripheral tissues than CB2A. Species comparison found that the CB2 gene of human, rat and mouse genomes deviated in their gene structures and isoform expression patterns. mCB2A expression was increased significantly in the cerebellum of mice treated with the CB-R mixed agonist, WIN55212-2. These results provide much improved information about CB2 gene structure and its human and rodent variants that should be considered in developing CB2-R-based therapeutic agents.  相似文献   

14.
In the current study, we tested the central hypothesis that exposure to Delta-9-tetrahydrocannabinol (Delta9-THC), the major psychoactive component in marijuana, can lead to enhanced growth of tumors that express low to undetectable levels of cannabinoid receptors by specifically suppressing the antitumor immune response. We demonstrated that the human breast cancer cell lines MCF-7 and MDA-MB-231 and the mouse mammary carcinoma 4T1 express low to undetectable levels of cannabinoid receptors, CB1 and CB2, and that these cells are resistant to Delta9-THC-induced cytotoxicity. Furthermore, exposure of mice to Delta9-THC led to significantly elevated 4T1 tumor growth and metastasis due to inhibition of the specific antitumor immune response in vivo. The suppression of the antitumor immune response was mediated primarily through CB2 as opposed to CB1. Furthermore, exposure to Delta9-THC led to increased production of IL-4 and IL-10, suggesting that Delta9-THC exposure may specifically suppress the cell-mediated Th1 response by enhancing Th2-associated cytokines. This possibility was further supported by microarray data demonstrating the up-regulation of a number of Th2-related genes and the down-regulation of a number of Th1-related genes following exposure to Delta9-THC. Finally, injection of anti-IL-4 and anti-IL-10 mAbs led to a partial reversal of the Delta9-THC-induced suppression of the immune response to 4T1. Such findings suggest that marijuana exposure either recreationally or medicinally may increase the susceptibility to and/or incidence of breast cancer as well as other cancers that do not express cannabinoid receptors and are resistant to Delta9-THC-induced apoptosis.  相似文献   

15.
Cannabimimetics (commonly referred to as synthetic cannabinoids), a group of compounds encompassing a wide range of chemical structures, have been developed by scientists with the hope of achieving selectivity toward one or the other of the cannabinoid receptors CB1 and CB2. The goal was to have compounds that could possess high therapeutic activity without many side effects. However, underground laboratories have used the information generated by the scientific community to develop these compounds for illicit use as marijuana substitutes. This chapter reviews the different classes of these “synthetic cannabinoids” with particular emphasis on the methods used for their identification in the herbal products with which they are mixed and identification of their metabolites in biological specimens.  相似文献   

16.
17.

Background

K2 products are synthetic cannabinoid-laced, marijuana-like drugs of abuse, use of which is often associated with clinical symptoms atypical of marijuana use, including hypertension, agitation, hallucinations, psychosis, seizures and panic attacks. JWH-018, a prevalent K2 synthetic cannabinoid, is structurally distinct from Δ9-THC, the main psychoactive ingredient in marijuana. Since even subtle structural differences can lead to differential metabolism, formation of novel, biologically active metabolites may be responsible for the distinct effects associated with K2 use. The present study proposes that K2''s high adverse effect occurrence is due, at least in part, to distinct JWH-018 metabolite activity at the cannabinoid 1 receptor (CB1R).

Methods/Principal Findings

JWH-018, five potential monohydroxylated metabolites (M1–M5), and one carboxy metabolite (M6) were examined in mouse brain homogenates containing CB1Rs, first for CB1R affinity using a competition binding assay employing the cannabinoid receptor radioligand [3H]CP-55,940, and then for CB1R intrinsic efficacy using an [35S]GTPγS binding assay. JWH-018 and M1–M5 bound CB1Rs with high affinity, exhibiting Ki values that were lower than or equivalent to Δ9-THC. These molecules also stimulated G-proteins with equal or greater efficacy relative to Δ9-THC, a CB1R partial agonist. Most importantly, JWH-018, M2, M3, and M5 produced full CB1R agonist levels of activation. CB1R-mediated activation was demonstrated by blockade with O-2050, a CB1R-selective neutral antagonist. Similar to Δ9-THC, JWH-018 and M1 produced a marked depression of locomotor activity and core body temperature in mice that were both blocked by the CB1R-preferring antagonist/inverse agonist AM251.

Conclusions/Significance

Unlike metabolites of most drugs, the studied JWH-018 monohydroxylated compounds, but not the carboxy metabolite, retain in vitro and in vivo activity at CB1Rs. These observations, combined with higher CB1R affinity and activity relative to Δ9-THC, may contribute to the greater prevalence of adverse effects observed with JWH-018-containing products relative to cannabis.  相似文献   

18.
D Parolaro 《Life sciences》1999,65(6-7):637-644
In the last 30 years studies on drug-abusing humans and animals injected with cannabinoids, as well as in vitro models employing immune cell cultures, have demonstrated that marijuana and cannabinoids are immunomodulators. Both types of cannabinoid receptors, CB1 and CB2, have been found in immune cells, suggesting they are important in mediating the effects of cannabinoids on the immune system. This article reviews the data on the function and distribution of cannabinoid receptors in the immune system and their involvement in the immunomodulatory effect of these substances.  相似文献   

19.
Delta-9-tetrahydrocannabinol (THC), the major active component of marijuana, has a beneficial effect on the cardiovascular system during stress conditions, but the defence mechanism is still unclear. The present study was designed to investigate the central (CB1) and the peripheral (CB2) cannabinoid receptor expression in neonatal cardiomyoctes and possible function in the cardioprotection of THC from hypoxia. Pre-treatment of cardiomyocytes that were grown in vitro with 0.1 – 10 μM THC for 24 h prevented hypoxia-induced lactate dehydrogenase (LDH) leakage and preserved the morphological distribution of α-sarcomeric actin. The antagonist for the CB2 (10 μM), but not CB1 receptor antagonist (10 μM) abolished the protective effect of THC. In agreement with these results using RT-PCR, it was shown that neonatal cardiac cells express CB2, but not CB1 receptors. Involvement of NO in the signal transduction pathway activated by THC through CB2 was examined. It was found that THC induces nitric oxide (NO) production by induction of NO synthase (iNOS) via CB2 receptors. L-NAME (NOS inhibitor, 100 μM) prevented the cardioprotection provided by THC. Taken together, our findings suggest that THC protects cardiac cells against hypoxia via CB2 receptor activation by induction of NO production. An NO mechanism occurs also in the classical pre-conditioning process; therefore, THC probably pre-trains the cardiomyocytes to hypoxic conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号