首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new method for the concentration of Cryptosporidium oocysts from water   总被引:9,自引:1,他引:8  
A novel method for the concentration of Cryptosporidium oocysts from water has been developed, based upon the precipitation of calcium carbonate. A 10 1 water sample is treated by adding solutions of calcium chloride and sodium bicarbonate and raising the pH value to 10 with sodium hydroxide. Crystals of calcium carbonate form and enmesh particles in the Cryptosporidium oocyst size range. The crystals are allowed to settle, the supernatant fluid is discarded and the calcium carbonate precipitate dissolved in sulphamic acid. The sample can be concentrated further by centrifugation. Recoveries of oocysts from seeded samples of deionized, tap and river water were in excess of 68%.  相似文献   

2.
U.S. Environmental Protection Agency methods for analysis of water for Cryptosporidium and Giardia stipulate maximum sample holding times which are not always practical to comply with. A spiking experiment indicated that holding times of up to 2 weeks had no significant effect on recovery of these parasites from 10-liter samples of raw water in plastic carboys.  相似文献   

3.
When determining the recovery efficiency of a procedure for the detection of Cryptosporidium or the removal efficiency of a treatment process, it is necessary to accurately enumerate a 'seed dose'. Conventional techniques for this are highly variable and consequently, can result in misleading data. In this study, a flow cytometric method was developed for the production of suspensions of Cryptosporidium oocysts in which the number of organisms could be precisely determined. A Becton Dickinson FACScalibur flow cytometer was employed to produce oocyst suspensions containing 100 oocysts. Analysis of these suspensions resulted in a mean dose of 99.5 oocysts (S.D. = 1.1, %cv = 1.1). These results indicate that the use of such suspensions to seed test systems generates far more accurate data than is presently possible using conventional techniques. In addition, the use of immunomagnetic separation (IMS) for the isolation of oocysts from three different water matrices, after seeding with oocysts counted using flow cytometry, was investigated. The recovery efficiency of the IMS procedure was found to be high, with the percentage recovery of oocysts ranging from 82.3 to 86.3%, and the use of precise numbers of oocysts allowed accurate recovery efficiency data to be generated. A laser scanning instrument (ChemScan RDI) was employed for the rapid detection and enumeration of oocysts after capture using membrane filtration. This technique was found to be faster and easier to perform than conventional epifluorescence microscopy. These findings demonstrate that the ChemScan RDI system may be used as alternative procedure for the routine examination of IMS supernatant fluids for the presence of Cryptosporidium.  相似文献   

4.
Identification of Cryptosporidium oocysts in river water   总被引:9,自引:0,他引:9  
Water samples were collected from four rivers in Washington State and two rivers in California and examined for the presence of Cryptosporidium oocysts. Oocyst-sized particles were concentrated from 20-liter samples of water by membrane filtration, centrifugation, and differential sedimentation. The particle concentrate was then deposited on a 25-mm-diameter membrane filter for oocyst identification by indirect immunofluorescence assay. The identification procedure had a limit of detection of about five oocysts per liter. Cryptosporidium oocysts were found in each of 11 river water samples examined. Concentrations ranged from 2 to 112 oocysts per liter. The finding of Cryptosporidium oocysts in all samples examined from six western rivers is noteworthy in light of recent reports indicating that Cryptosporidium sp. is a significant agent of human and animal disease. This finding suggests that waterborne oocysts of this parasite are more important than was previously recognized. More detailed studies are needed to define geographical and temporal distribution, to assess the viability of waterborne oocysts, and to determine the importance of water as a means of transmission.  相似文献   

5.
Identification of Cryptosporidium oocysts in river water.   总被引:5,自引:7,他引:5       下载免费PDF全文
Water samples were collected from four rivers in Washington State and two rivers in California and examined for the presence of Cryptosporidium oocysts. Oocyst-sized particles were concentrated from 20-liter samples of water by membrane filtration, centrifugation, and differential sedimentation. The particle concentrate was then deposited on a 25-mm-diameter membrane filter for oocyst identification by indirect immunofluorescence assay. The identification procedure had a limit of detection of about five oocysts per liter. Cryptosporidium oocysts were found in each of 11 river water samples examined. Concentrations ranged from 2 to 112 oocysts per liter. The finding of Cryptosporidium oocysts in all samples examined from six western rivers is noteworthy in light of recent reports indicating that Cryptosporidium sp. is a significant agent of human and animal disease. This finding suggests that waterborne oocysts of this parasite are more important than was previously recognized. More detailed studies are needed to define geographical and temporal distribution, to assess the viability of waterborne oocysts, and to determine the importance of water as a means of transmission.  相似文献   

6.
Recovery of oocysts of Cryptosporidium parvum using 142 mm diameter 1.2 μm pore size acrylic copolymer membrane filters was evaluated. A mean recovery efficiency of 25.5% for oocyst concentrations of about 200 in 10 1 was achieved, making this method a simple and relatively efficient procedure compared with current standard methods.  相似文献   

7.
A membrane filter dissolution method was used to recover Cryptosporidium oocysts from spiked water. The average recovery rate was 70.5%.  相似文献   

8.
We developed and validated a PCR-based method for identifying Cryptosporidium species and/or genotypes present on oocyst-positive microscope slides. The method involves removing coverslips and oocysts from previously examined slides followed by DNA extraction. We tested four loci, the 18S rRNA gene (N18SDIAG and N18SXIAO), the Cryptosporidium oocyst wall protein (COWP) gene (STN-COWP), and the dihydrofolate reductase (dhfr) gene (by multiplex allele-specific PCR), for amplifying DNA from low densities of Cryptosporidium parvum oocysts experimentally seeded onto microscope slides. The N18SDIAG locus performed consistently better than the other three tested. Purified oocysts from humans infected with C. felis, C. hominis, and C. parvum and commercially purchased C. muris were used to determine the sensitivities of three loci (N18SDIAG, STN-COWP, and N18SXIAO) to detect low oocyst densities. The N18SDIAG primers provided the greatest number of positive results, followed by the N18SXIAO primers and then the STN-COWP primers. Some oocyst-positive slides failed to generate a PCR product at any of the loci tested, but the limit of sensitivity is not entirely based on oocyst number. Sixteen of 33 environmental water monitoring Cryptosporidium slides tested (oocyst numbers ranging from 1 to 130) contained mixed Cryptosporidium species. The species/genotypes most commonly found were C. muris or C. andersoni, C. hominis or C. parvum, and C. meleagridis or Cryptosporidium sp. cervine, ferret, and mouse genotypes. Oocysts on one slide contained Cryptosporidium muskrat genotype II DNA.  相似文献   

9.
Routine monitoring of Cryptosporidium oocysts in water using flow cytometry   总被引:10,自引:2,他引:8  
A flow cytometric method for the routine analysis of environmental water samples for the presence of Cryptosporidium oocysts has been developed. It uses a Coulter Epics Elite flow cytometer to examine water samples and to separate oocysts from contaminating debris by cell sorting. The sorted particles are then rapidly screened by microscopy. The method has been evaluated and compared with direct epifluorescence microscopy on 325 river, reservoir and drinking water samples. The technique was found to be more sensitive, faster and easier to perform than conventional epifluorescent microscopy for the routine examination of water samples for Cryptosporidium.  相似文献   

10.
Waterborne Cryptosporidium has been responsible for drinking water-associated disease outbreaks in a number of developed countries. As a result of the resistance of Cryptosporidium to chlorine, which is typically applied as a final barrier to protect the quality of distributed drinking water, current management practices are focused on source-water management and water treatment as ways of preventing Cryptosporidium from entering drinking-water supplies. In the event that treatment barriers fail, surprisingly little is known of the fate of oocysts once they enter a distribution system. To assess properly the risks of waterborne Cryptosporidium, a more thorough understanding of the fate of oocysts in water distribution systems, with emphasis on Cryptosporidium-biofilm interactions, is required.  相似文献   

11.
Ultrasound in a liquid phase cause mass and heat transfer across the liquid through cavitational processes which act as nanoreactors to generate unstable mechanical equilibrium. The effect of 1 MHz ultrasound on the inactivation of Cryptosporidium parvum was investigated. Continuous irradiation of ultrasound (20 min) increased temperature due to cavitational phenomena. Ultrasound irradiation of liquid containing C. parvum showed significant quantitative changes in pH, temperature and inactivation of C. parvum (102.7 oocysts killed/s) with a minimum energy consumption (0.05 oocysts/s).  相似文献   

12.
A technique was developed for immunolabeling Cryptosporidium parvum oocysts for subsequent observation by transmission electron microscopy. This method was developed to maintain architectural integrity of the oocyst wall and improve fixation of internal contents. The improved fixation and embedding method permits efficient immunolabeling of both nonexcysted and excysted C. parvum oocysts and may be applicable to other oocyst- and cyst-forming protozoa.  相似文献   

13.
Immunomagnetic separation (IMS) procedures for the simultaneous isolation of Cryptosporidium oocysts and Giardia cysts have recently become available. We validated Dynal's GC-Combo IMS kit using source water at three turbidity levels (5000, 500 and 50 nephelometric turbidity units [ntu]) obtained from different geographical locations and spiked with approximately 9--11 (oo)cysts per ml. Mean recoveries of Cryptosporidium oocysts and Giardia cysts in deionized water were 62% and 69%, respectively. In turbid water matrices, mean recoveries of Cryptosporidium oocysts were between 55.9% and 83.1% while mean recoveries of cysts were between 61.1% and 89.6%. Marginally higher recoveries of the heat inactivated (oo)cysts were observed (119.4% Cryptosporidium oocysts and 90.9% Giardia cysts) in deionized water when compared with recoveries of viable (oo)cysts (69.7% Cryptosporidium oocysts and 79% Giardia cysts). Age of (oo)cysts on recoveries using the GC-Combo IMS kit demonstrated no effects up to 20 months old. Recovery of Giardia cysts was consistent for isolates aged up to 8 months (81.4%), however, a significant reduction in recoveries was noted at 20 months age. Recoveries of low levels (5 and 10 (oo)cysts) of Cryptosporidium oocysts and Giardia cysts in deionized water using IMS ranged from 51.3% to 78% and from 47.6% to 90.0%, respectively. Results of this study indicate that Dynal's GC-Combo IMS kit is an efficient technique to separate Cryptosporidium/Giardia from turbid matrices and yields consistent, reproducible recoveries. The use of fresh (recently voided and purified) (oo)cysts, aged (oo)cysts, viable and heat-inactivated (oo)cysts indicated that these parameters do not influence IMS performance.  相似文献   

14.
15.
AIMS: Evaluation of three flocculation methods for the purification of Cryptosporidium parvum oocysts from tap water. METHODS AND RESULTS: Ferric sulphate, aluminium sulphate and calcium carbonate were compared for their recovery efficiency of C. parvum oocysts from tap water. Lower mean recovery was achieved by calcium carbonate (38.8%) compared with ferric sulphate (61.5%) and aluminium sulphate (58.1%) for the recovery of 2.5 x 10(5) oocysts l(-1); 2.5 oocysts l(-1) and 1 oocyst l(-1) were adequately purified using ferric sulphate flocculation. In vitro excystation experiments showed that ferric sulphate flocculation does not markedly reduce the viability of oocysts. CONCLUSIONS: Ferric sulphate flocculation is a simple and effective tool for the purification of C. parvum oocysts from tap water. SIGNIFICANCE AND IMPACT OF THE STUDY: The high recovery rates and low impact on oocyst viability provided by ferric sulphate flocculation might be useful for the detection of Cryptosporidium oocysts in environmental water samples.  相似文献   

16.
In Japan, only a few rivers have been inspected for Cryptosporidium parvum contamination, and the methods used had low sensitivity. In 1998 and 1999, we used a method with higher sensitivity to examine all large rivers used as sources of water supply in one prefecture (which we divided into four areas) in western Japan for Cryptosporidium oocysts. One sample was collected at each of 156 sites along 18 rivers, and samples were tested for Cryptosporidium oocysts by immunomagnetic separation. Samples were classified as being obtained on an island with livestock and fishing industries, a densely populated urban area, a western region including farming villages, or a still more rural northern area with agriculture and fishing. Restriction fragment length polymorphism analysis was used for identification of the C. parvum found as the bovine or human type. C. parvum was detected in at least one sample from 13 of the 18 rivers and in 47% (74 of 156) of the samples. One-third to all of the samples from each area contained C. parvum oocysts. The number of C. parvum oocysts per 20 liters of river water varied in the same pattern as the number of cattle kept in the four kinds of areas (as determined by the Mantel extension test). Oocysts isolated were of the bovine type; the C. parvum detected in rivers probably came from cattle kept in that valley. As we had expected, when tested with a more sensitive method, river water in western Japan was found to be greatly contaminated with C. parvum oocysts, as reported in other countries.  相似文献   

17.
This correspondence describes the successful development of methods for the recovery, isolation and detection of Cryptosporidium oocysts in wastewater and biosolids. Wastewater from one plant was used to optimize methods in raw influent as well as primary, secondary and tertiary effluents. Raw influents and primary effluents were concentrated using centrifugation followed by isolation of Cryptosporidium oocysts using immunomagnetic separation (IMS) and detection of recovered organisms using epifluorescence microscopy. Mean oocyst recovery in raw influent was 29.2+/-12.8% and 38.8+/-27.9% in primary effluent at three sample volumes tested. Secondary and tertiary effluents were analyzed using a modified Method 1622 resulting in mean oocyst recoveries of 53.0+/-19.2% and 67.8+/-4.4%, respectively. In biosolids with approximately 10% total solids, mean oocyst recovery was 43.9+/-10.1% using IMS with a 5 g (wet weight) sample size. Due to the variability in these matrices, an internal microbiological standard was incorporated to serve as a tool for method performance.  相似文献   

18.
19.
U.S. Environmental Protection Agency method 1623 is widely used to monitor source waters and drinking water supplies for Cryptosporidium oocysts. Matrix spikes, used to determine the effect of the environmental matrix on the method's recovery efficiency for the target organism, require the collection and analysis of two environmental samples, one for analysis of endemic oocysts and the other for analysis of recovery efficiency. A new product, ColorSeed, enables the analyst to determine recovery efficiency by using modified seeded oocysts that can be differentiated from endemic organisms in a single sample. Twenty-nine stream water samples and one untreated effluent sample from a cattle feedlot were collected in triplicate to compare modified seeding procedures to conventional seeding procedures that use viable, unmodified oocysts. Significant negative correlations were found between the average oocyst recovery and turbidity or suspended sediment; this was especially apparent in samples with turbidities greater than 100 nephelometric turbidity units and suspended sediment concentrations greater than 100 mg/liter. Cryptosporidium oocysts were found in 16.7% of the unseeded environmental samples, and concentrations, adjusted for recoveries, ranged from 4 to 80 oocysts per 10 liters. Determining recovery efficiency also provided data to calculate detection limits; these ranged from <2 to <215 oocysts per 10 liters. Recoveries of oocysts ranged from 2.0 to 61% for viable oocysts and from 3.0 to 59% for modified oocysts. The recoveries between the two seeding procedures were highly correlated (r = 0.802) and were not significantly different. Recoveries by using modified oocysts, therefore, were comparable to recoveries by using conventional seeding procedures.  相似文献   

20.
Cryptosporidium parvum oocysts in drinking water have been implicated in outbreaks of diarrheal disease. Current methods for monitoring environmental exposures to C. parvum only account for total number of oocysts without regard for the viability of the parasite. Measurement of oocyst viability, as indicated by an oocyst's ability to excyst, is useful because over time oocysts lose the ability to excyst and become noninfective. Thus, correlating the number of viable oocysts in drinking water with incidence and risk for disease should be more reliable than using the total number of oocysts. We have developed a quantitative assay capable of detecting low numbers of excystable, sporozoite-releasing C. parvum oocysts in turbid water samples. Monoclonal (CP7) and polyclonal antibodies have been developed against a sporozoite antigen released only during excystation or when the oocyst is mechanically disrupted. CP7 is specific for C. parvum and does not react with C. baileyi, C. muris, C. serpentis, Giardia spp., Eimeria spp., or E. nieschulzi. In this assay, oocysts in the test sample are first excysted and then centrifuged. The soluble sporozoite antigen is captured by CP7 attached to a magnetic bead. The captured antigen is then detected by ruthenium-labeled polyclonal antibodies via electrochemiluminescence. The CP7 viability assay can detect as few as 50 viable oocysts in a 1-ml assay sample with a turbidity as high as 200 Nephelometric turbidity units. This sensitive, turbidity-tolerant assay for oocyst viability may permit a better assessment of the disease risk associated with the presence of environmental oocysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号