首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Certain oxysterols are capable of suppressing the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase. We have previously demonstrated that treatment of P815 cells with 1 microgram 25-hydroxycholesterol/ml culture results in a rapid influx of 45Ca, and supplemental cholesterol prevents this from occurring. In this paper, we report on investigations into the means whereby this influx of calcium takes place. Through the use of respiratory inhibitors which prevent mitochondrial retention of calcium it was determined that the large increase in slow phase (intracellular) calcium uptake caused by 25-hydroxycholesterol treatment was related to mitochondrial uptake. The effects of various inhibitors of calcium uptake into cells, including verapamil, diltiazem, quinidine, ruthenium red, Co++, Mn++, were tested. Of these only Co++ and ruthenium red had any effect on 45Ca uptake. 25-Hydroxycholesterol has been shown to be capable of membrane insertion and this could result in plasma membrane permeability changes. To test this hypothesis P815 cells were treated with 1 microgram 25-hydroxycholesterol/ml or 5 micrograms mevinolin/ml culture. Mevinolin, being a water soluble competitive inhibitor of HMG-CoA reductase, should be unable to disrupt membrane architecture in a manner analogous to 25-hydroxycholesterol. While both inhibitors rapidly suppressed the synthesis of digitonin-precipitable sterols, only 25-hydroxycholesterol was able to increase 45Ca influx. The implications of these findings are discussed.  相似文献   

2.
Liposomes prepared with 25-hydroxycholesterol and egg phosphatidylcholine (PC) were incubated with bovine arterial smooth muscle cells for 8 h at 37 degrees C. Cells incubated in the absence of liposomes or with liposomes containing cholesterol and PC were used as controls. The results indicated that calcium accumulated in the smooth muscle cells incubated in the presence of 25-hydroxycholesterol containing liposomes in an amount proportional to the time of incubation. The calcium accumulation, as indicated by kinetic analysis, resulted from an increased compartment size. (Ca(2+)+Mg2+)-ATPase exhibited decreased activity after pretreatment with 25-hydroxycholesterol containing liposomes and the increased intracellular calcium content was directly proportional to the decreased (Ca(2+) + Mg2+)-ATPase activity. When lipids in the cell membrane were examined, a failure to change the cholesterol/phospholipids ratio in the membrane was noted. The 25-hydroxycholesterol content in the membrane determined by HPLC did not increase. An increase in sphingomyelin and a decrease in phosphatidylethanolamine and acidic phospholipids in the membrane was noted. We suggest that the accumulation of intracellular calcium comes from both an increase of calcium influx and a decrease of (Ca(2+) + Mg2+)-ATPase activity, which may be the consequence of changes in membrane phospholipid composition.  相似文献   

3.
The relationships between cholesterogenesis and cell division were studied by using two inhibitors of hydroxymethylglutaryl-CoA reductase activity — 25-hydroxycholesterol and compactin. The effects of both compounds on DNA synthesis were compared in synchronized rat fibroblasts cultured in a cholesterol-containing medium. Compactin did not inhibit DNA synthesis, except after a long time of contact and at high and almost cytotoxic concentrations. 25-Hydroxycholesterol inhibited DNA synthesis (without cytotoxic effects) after only 9–16 h of contact, depending on the phase of the cell cycle at which this compound was added to the culture medium. Sensitivity of cells to 25-hydroxycholesterol was maximal at the end of the S phase/beginning of the G2M phase. The rapid effect of 25-hydroxycholesterol on DNA synthesis appears to be separate from the inhibitory effect on sterol or non-sterol mevalonate-derived compound synthesis. Indeed, under our experimental conditions, the suppression of cholesterol biosynthesis is compensated by the presence of cholesterol in the culture medium, as demonstrated by the lack of effect of compactin on DNA synthesis; moreover, addition of mevalonolactone to the culture medium did not reverse the effect of 25-hydroxycholesterol. 25-Hydroxycholesterol could inhibit DNA synthesis by a direct action on the nucleus, after transfer by the intermediary of a specific hydroxysterol-binding protein.  相似文献   

4.
The response of leukemic cells from AKR/J mice to phytohemagglutinin (PHA) was compared with that of normal lymphocytes. PHA stimulated first cholesterol synthesis and then DNA synthesis in both lymphocytes and leukemic cells. The neoplastic cells were, however, much more sensitive to PHA, requiring less time and a lower concentration of the lectin for optimum stimulation as compared to lymphocytes. In fact, the amount of PHA which was required to activate lymphocytes to proliferate, as measured by increases in sterol and DNA synthesis, was inhibitory to leukemic cells. The basal level of cholesterol synthesis and the induction of cholesterol synthesis following PHA activation were depressed in lymphocytes and leukemic cells by treatment with 25-hydroxycholesterol and 7-ketocholesterol. These two oxygenated derivatives of cholesterol are known to be potent and specific inhibitors of sterol synthesis. Blockage of sterol synthesis by these reagents also abolished PHA-activated DNA synthesis in lymphocytes and leukemic cells. The results support the hypothesis that the synthesis of cholesterol is an important event leading to cell proliferation.  相似文献   

5.
Pure cholesterol associated in complexes with lipoproteins (whole serum and human low density lipoproteins) or esterified with succinic acid (cholesteryl succinate) and bound to albumin effectively suppresses 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity in hepatoma tissue culture (HTC) cells grown in lipoprotein-poor serum medium during short 4-hour) incubation periods. Simultaneous measurments of the kinetics of uptake of radioactive unesterified cholesterol of whole serum and cholesteryl succinate, their conversion to lipid products, and the decay in enzyme activity, suggest that the cholesterol-induced suppression is mediated by the sterol itself rather than by inhibitory lipid products derived from its metabolism. Several cholesterol derivatives such as cholestenone, 7-ketocholesterol, and 7alpha-and 25-hydroxycholesterol also suppress reductase activiy in HTC cells and are significantly more inhibitory than the pure cholesterol preparations. The decrease in enzyme activity produced by cholesterol and its derivatives is concentration-dependent and specific. [1-14C]Oleate incorporation experiments indicate that cholesterol ester formation in HTC cells is not increased at inhibitory concentrations of the steroids. These data suggest that sterol ester formation is not an obligatory process in the feedback control of HMG-CoA reductase activity. The half-life of the reductase (3 to 4 hours) is not significantly changed by cycloheximide, plus or minus whole serum, and cholesteryl succinate. In contrast, the half-life is strongly reduced when HTC cells are incubated with cycloheximide plus maximal concentrations of 25-hydroxycholesterol, 7-ketocholesterol, or cholestenone, resulting in t1/2 values of 24, 36, and 60 min, respectively. Increasing concentrations of whole serum and cholesteryl succinate have no significant effect on the apparent rate constant of inactivation of the enzyme, whereas its apparent rate of synthesis is decreased 3- and 10-fold, respectively. These results are reversed with oxygenated steroid inhibitors. The rate of synthesis of reductase is essentially unchanged as the concentrations of 25-hydroxycholesterol, 7-ketocholesterol, and cholestenone are increased in the culture medium, whereas the apparent rate constant for degradation is increased 9-, 7-, and 3-fold, respectively. HMG-CoA reductase activity in HTC cells thus appears to be modulated by two different mechanisms in which steroid structure is important. Whole serum and cholesteryl succinate specifically decrease the rate of enzyme synthesis, while 25-hydroxycholesterol, 7-ketocholesterol, and cholestenone increase the rate of inactivation of the reductase.  相似文献   

6.
The coordinated control of cholesterol biosynthesis and esterification by 25-hydroxycholesterol was studied in the macrophage-like cell line P388D1. Since 25-hydroxycholesterol rapidly stimulated incorporation of [3H]oleate into the cholesteryl ester fraction of these cells, we have tested the possibility that the well-known inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) by 25-hydroxycholesterol might be the indirect consequence of an increased cholesterol esterification rather than a direct effect on HMG-CoA reductase. The experimental results show that progesterone, an inhibitor of acyl-CoA:cholesterol acyltransferase (ACAT), when added together with 25-hydroxycholesterol, abolished the increased cholesterol esterification without affecting the inhibition of HMG-CoA reductase by 25-hydroxycholesterol. Thus, uncoupling cholesterol esterification had no effect on 25-hydroxycholesterol's ability to inhibit HMG-CoA reductase. Unexpectedly, pretreatment of P388D1 cells with 25-hydroxycholesterol resulted in no elevation of ACAT activity as measured in broken cell preparations. Therefore, the possibility that 25-hydroxycholesterol stimulated cholesteryl ester formation by increasing the amount of cholesterol available for esterification, rather than by acting directly on ACAT activity, was considered. Labeling experiments using [14C]-cholesterol have provided evidence for this assumption.  相似文献   

7.
The mRNA levels for HMG-CoA reductase were measured in Chinese hamster lung Dede cells or ovary CHO cells by Northern blot analysis. It was observed that 25-hydroxycholesterol decreased the level of reductase mRNA by 40 to 70% in a 6 hour treatment. Inclusion of cycloheximide in the culture prevented the decrease observed with 25-hydroxycholesterol alone. Pretreatment of cells with 25-hydroxycholesterol for 6 hours prior to cycloheximide addition reveals that the protein synthesis inhibitor can return the suppressed levels of reductase mRNA back to control levels. Thus, protein synthesis is required for 25-hydroxycholesterol dependent suppression of HMG-CoA reductase mRNA.  相似文献   

8.
9.
We have studied the relationship between differentiation capacity, plasma membrane composition, and epidermal growth factor (EGF) receptor expression of normal keratinocytes in vitro. The plasma membrane composition of the cells was modulated experimentally by cholesterol depletion, using specific inhibitors of cholesterol synthesis, such as 25-hydroxycholesterol and mevinolin. Exposure of the cells towards these inhibitors resulted in a drastic decrease of cholesterol biosynthesis, as determined from 14C-acetate incorporation into the various lipid fractions. This effect on cholesterol biosynthesis was reflected by changes in plasma membrane composition, as determined by lipid analysis of isolated plasma membrane fractions, these resulting in a decreased cholesterol-phospholipid ratio. The experimental modulation of plasma membrane composition by 25-hydroxycholesterol or mevinolin were accompanied by a decreased cornified envelope formation and by high expression of EGF binding sites. These phenomena were more pronounced in cells induced to differentiate by exposure of cells grown under low Ca2+ to normal Ca2+ concentrations, as compared to cells grown persistently under low Ca2+ concentrations. These results suggest a close correlation between plasma membrane composition, differentiation capacity, and EGF receptor expression.  相似文献   

10.
During development, the chick embryo mobilizes the calcium it needs from two extraembryonic sources, initially from the yolk and later from the eggshell. Calcium may be hormonally regulated during avian embryogenesis, but details of this regulation are lacking. We investigated the effects of 1,25-dihydroxycholecalciferol [1,25(OH)2D3], bovine parathyroid hormone [bPTH], and vehicle [ethanol or saline] on blood calcium values and incorporation of 45Ca into the yolk sac membrane of 9, 12, and 15 day chick embryos. Control data were also collected from uninjected 6 day embryos. Solutions were injected directly into the yolk sac compartment 48 and 24 hours prior to the experiment. Exogenous 1,25(OH)2D3 induced hypercalcemia in all age groups examined, while exogenous PTH induced hypercalcemia in day 12 and 15 embryos. Small disks of yolk sac membrane were incubated in medium to which 45Ca was added and assayed for 45Ca content at various intervals after start of incubation. In control yolk sac tissue, the uptake of 45Ca was greatest in younger embryos with decreasing uptake at developmentally more advanced ages; 1,25(OH)2D3 treatment significantly enhanced the uptake of 45Ca into yolk sac tissue in all groups (9, 12, and 15 day embryos). PTH treatment caused a significant elevation in 45Ca uptake in the day 12 and 15 embryos.  相似文献   

11.
Fifteen oxygenated sterols at the concentration of 25 μg/ml were tested on DNA synthesis of phytohemagglutinin stimulated human lymphocytes. In a cholesterol containing medium, the inhibitory effect was strictly dependent of the side chain structure of the sterol and only due to an hydroxylation at position 25. Three oxygenated sterols, which slightly inhibited DNA synthesis, strongly suppressed the peak of 3-hydroxy-3-methylglutaryl CoA reductase activity that normally precedes DNA synthesis. The 25-hydroxycholesterol suppressed the reductase activity even at 5 μg/ml, but was active on DNA synthesis only at 25 μg/ml; at this concentration, the later the 25-hydroxycholesterol was added, the weaker the inhibition of DNA synthesis was. Hence the sterol synthesis related to the early increase of 3-hydroxy-3-methylglutaryl CoA reductase activity is probably not essential to the cellular division. Several hypothesis on the mechanism of action of the 25-hydroxycholesterol are discussed.  相似文献   

12.
In addition to suppressing cholesterol synthesis and uptake, oxysterols also activate glycerophospholipid and SM (sphingomyelin) synthesis, possibly to buffer cells from excess sterol accumulation. In the present study, we investigated the effects of oxysterols on the CDP-choline pathway for PtdCho (phosphatidylcholine) synthesis using wild-type and sterol-resistant CHO (Chinese-hamster ovary) cells expressing a mutant of SCAP [SREBP (sterol-regulatory-element-binding protein) cleavage-activating protein] (CHO-SCAP D443N). [(3)H]Choline-labelling experiments showed that 25OH (25-hydroxycholesterol), 22OH (22-hydroxycholesterol) and 27OH (27-hydroxycholesterol) increased PtdCho synthesis in CHO cells as a result of CCTalpha (CTP:phosphocholine cytidylyltransferase alpha) translocation and activation at the NE (nuclear envelope). These oxysterols also activate PtdCho synthesis in J774 macrophages. in vitro, CCTalpha activity was stimulated 2- to 2.5-fold by liposomes containing 5 mol% 25OH, 22OH or 27OH. Inclusion of up to 5 mol% cholesterol did not further activate CCTalpha. 25OH activated CCTalpha in CHO-SCAP D443N cells leading to a transient increase in PtdCho synthesis and accumulation of CDP-choline. CCTalpha translocation to the NE and intranuclear tubules in CHO-SCAP D443N cells was complete after 1 h exposure to 25OH compared with only partial translocation by 4-6 h in CHO-Mock cells. These enhanced responses in CHO-D443N cells were sterol-dependent since depletion with cyclodextrin or lovastatin resulted in reduced sensitivity to 25OH. However, the lack of effect of cholesterol on in vitro CCT activity indicates an indirect relationship or involvement of other sterols or oxysterol. We conclude that translocation and activation of CCTalpha at nuclear membranes by side-chain hydroxylated sterols are regulated by the cholesterol status of the cell.  相似文献   

13.
Studies were conducted in C57BL/6N Crj male mice and in cultured hepatocytes to clarify the relationship between galactosamine (GaIN) induced apoptosis and [Ca2+]i kinetics. Chlorpromazine (CPZ), a Ca(2+)-calmodulin antagonist, and verapamil (VR), a Ca(2+)-channel blocker each inhibited GaIN-induced DNA fragmentation and the appearance of apoptotic bodies. The kinetics of calcium uptake were evaluated using a calcium analyzer with the acetoxymethyl ester of fura-PE3 (fura-PE3/AM, 2.5 microM) as the calcium reporter. An increase in [Ca2+]i was detected in the cultured hepatocytes within 3 hours after treatment with 20 mM GaIN; this increase was inhibited by pretreatment with either 20 microM CPZ or 30 microM VR. Ca2+ imaging by confocal laser scanning microscopy showed that increase in [Ca2+]i after treatment with GaIN was initially localized around nuclei, while [Ca2+]i signals were later diffuse and observed throughout the cytoplasm. The activities of lactate dehydrogenase (LDH) and serum glutamate-pyruvate transaminase (sGPT), used as indicators of plasma membrane damage and leakage, however, were not reduced by pretreatment with CPZ or VR. From these findings, we infer that the DNA fragmentation in GaIN-induced hepatocyte apoptosis is associated with an elevation in the perinuclear concentration of Ca2+, but GaIN-induced necrotic cell death is triggered through pathway(s) that are insensitive to blockage of Ca2+ influx and therefore appear to occur independently of elevation in [Ca2+]i. These results help to clarify the role of calcium flux in hepatocyte apoptosis and necrosis induced by exposure to hepatotoxins in vivo and in vitro.  相似文献   

14.
We have previously reported that progesterone synthesis in the bovine placenta is regulated by Ca2+ dependent and cyclic nucleotide independent mechanism. In studies conducted to further define the role of Ca2+ in the synthesis of progestins in bovine placental tissue, it was found that both protein kinase C (PKC), as determined by phosphorylation, and cytochrome P-450 side chain cleavage, as determined by Western blot analysis, were detectable in the steroidogenetically active portion of the placentome. To determine the site of action of PKC, fetal cotyledon cells were incubated in media containing 25-hydroxycholesterol in the absence or or presence of 10 ng/ml 12-O-tetradecanoyl-phorbol-13-acetate (TPA). It was found that TPA significantly (P less than 0.05) increased the conversion of the exogenous cholesterol analog to progesterone. To determine if the TPA could act synergistically with calcium activators, fetal cotyledon cells were incubated with either methyl isobutyl xanthine (MIX), an activator of intracellular calcium, or the calcium ionophore, A23187, which increases extracellular calcium influx, or both of these agents, in the presence or absence of TPA. It was found that TPA synergistically increased the conversion of sterol to progestins induced by submaximal concentrations of either MIX or A23187. In the presence of both compounds, TPA induced an even more dramatic increase in progestin synthesis. In experiments in which cyanoketone, an agent that inhibits the conversion of pregnenolone to progesterone, was added, TPA addition resulted in increased pregnenolone production, indicating that side chain cleavage of cholesterol is the site of action. The data, therefore, suggest that: (a) Ca2+ affects mechanisms regulating placental steroidogenesis; (2) one locus of Ca2+ is the cholesterol side chain cleavage reaction; and (3) PKC found in this tissue has a role in the Ca activated progestin production.  相似文献   

15.
Oxidized low density lipoprotein (oxLDL) induces apoptosis in macrophages, smooth muscle cells, and endothelial cells. To elucidate the molecular mechanism of oxLDL-induced cytotoxicity and determine its tissue specificity, we have used Chinese hamster ovary (CHO)-K1 cells expressing human CD36 (CHO/CD36). Expression of CD36 rendered these cells susceptible to killing by oxLDL. This cytotoxicity was due to the induction of apoptosis. Therefore, CD36 expression is the only requirement for oxLDL-induced apoptosis. Oxysterols apparently mediate the cytotoxicity of oxLDL in macrophage foam cells and endothelial cells. 25-Hydroxycholesterol, at concentrations higher than 1 microg/ml, killed CHO-K1 cells, by apoptosis, in medium supplemented with serum as a source of cholesterol. These effects were not seen in a 25-hydroxycholesterol-resistant CHO/CD36 mutant (OX(R)), which was otherwise capable of undergoing apoptosis in response to staurosporine. This mutant was also resistant to killing by oxLDL, suggesting that oxysterols are at least partially responsible for the toxic effects of oxLDL. Oxysterol-induced apoptosis did not involve regulation of sterol regulatory element-binding protein proteolysis or the cholesterol biosynthetic pathway. 25-Hydroxycholesterol stimulated calcium uptake by CHO-K1 cells within 2 min after addition. Treatment of CHO or THP-1 (macrophage) cells with the calcium channel blocker nifedipine prevented 25-hydroxycholesterol induction of apoptosis. OX(R) showed no enhanced calcium uptake in response to 25-hydroxycholesterol.  相似文献   

16.
Inhibition of esterified and non-esterified cholesterol synthesis by lovastatin in primary rat hepatocytes suppressed the net synthesis and very-low-density lipoprotein (VLDL) secretion of apolipoprotein B (apoB)-48 and apoB-100. Lovastatin did not alter the rates of apoB-48 and apoB-100 post-translational degradation. 25-Hydroxycholesterol, which inhibited non-esterified cholesterol synthesis but increased the synthesis of cholesteryl ester, showed differential effects on the metabolism of apoB-48 and apoB-100. Whereas the secretion of apoB-48 VLDL was suppressed there was no effect on the secretion of apoB-100 VLDL. The post-translational degradation of apoB-48, but not of apoB-100, was enhanced by 25-hydroxycholesterol. The net synthesis rates of apoB-48 and apoB-100 were unaffected by 25-hydroxycholesterol. The inhibitory effect of lovastatin alone on the net synthesis of apoB-48 and apoB-100 was reversed by the simultaneous presence of 25-hydroxycholesterol, suggesting a role for newly synthesised cholesteryl ester. Prevention of the reversal effect by the acyl-CoA: cholesterol acyltransferase (ACAT) inhibitor YM 17E supported this interpretation. In the presence of lovastatin, restoration of the net synthesis of apoB by 25-hydroxycholesterol was not accompanied by an increased VLDL output of apoB-48 and apoB-100. However, under these conditions there was an increased post-translational degradation of apoB-48 and apoB-100. These results suggest that interference with intracellular cholesterol and cholesteryl ester metabolism interrupts VLDL assembly at sites of both apoB net synthesis and post-translational degradation.  相似文献   

17.
We investigated the effects of 0.5, 2.5, and 10 micrograms/ml of cholesterol or 26-hydroxycholesterol on bovine aortic ECs and SMCs. Suppression of viable cell density and cytotoxic changes in both cells were induced by 2.5 and 10 micrograms/ml 26-hydroxycholesterol. ECs were more severely damaged than SMCs in the presence of 26-hydroxycholesterol. Levels of up to 10 micrograms/ml cholesterol had no effect on ECs or SMCs growth or cytotoxicity. Confluent ECs exposed to 2.5 or 10 micrograms/ml of 26-hydroxycholesterol secreted significant amounts of 6-ketoprostaglandin F1 alpha after a 24-hr incubation. An equivalent concentration of cholesterol had no such effect. SMCs cocultured with ECs exposed to 10 micrograms/ml 26-hydroxycholesterol, when compared with an equivalent level of cholesterol, synthesized DNA in significantly greater amounts during a 24-hr incubation. The cocultured ECs incubated in the presence of 2.5 and 10 micrograms/ml 26-hydroxycholesterol were partially detached due to cell death. However, no difference was observed in the DNA content of SMCs cultured without ECs in the presence of cholesterol or 26-hydroxycholesterol. The results suggest that 26-hydroxycholesterol produced not only cytotoxicity to ECs and SMCs but also stimulated DNA synthesis in SMCs through endothelial injury.  相似文献   

18.
Testicular macrophages secrete 25-hydroxycholesterol, which can be converted to testosterone by neighboring Leydig cells. The purposes of the present studies were to determine the mode of production of this oxysterol and its long-term effects on Leydig cells. Because oxysterols are produced both enzymatically and by auto-oxidation, we first determined if testicular macrophages possess cholesterol 25-hydroxylase mRNA and/or if macrophage-secreted products oxidize cholesterol extracellularly. Rat testicular macrophages had 25-hydroxylase mRNA and converted 14C-cholesterol to 14C-25-hydroxycholesterol; however, radiolabeled cholesterol was not converted to 25-hydroxycholesterol when incubated with medium previously exposed to testicular macrophages. Exposure of Leydig cells to 10 microg/ml of 25-hydroxycholesterol, a dose within the range known to result in high basal production of testosterone when tested from 1 to 6 h, completely abolished LH responsiveness after 2 days of treatment. Because 25-hydroxycholesterol is toxic to many cell types at 1-5 microg/ml, we also studied its influence on Leydig cells during 4 days in culture using a wide range of doses. Leydig cells were highly resistant to the cytotoxic effects of 25-hydroxycholesterol, with no cells dying at 10 microg/ml and only 50% of cells affected at 100 microg/ml after 2 days of treatment. Similar conditions resulted in 100% death of a control lymphocyte cell line. These results demonstrate that 1) testicular macrophages have mRNA for cholesterol 25-hydroxylase and can convert cholesterol into 25-hydroxycholesterol, 2) macrophage-conditioned medium is not capable of auto-oxidation of cholesterol, 3) Leydig cells are highly resistant to the cytotoxic influences of 25-hydroxycholesterol, and 4) long-term treatment with high doses of 25-hydroxycholesterol results in loss of LH responsiveness. These results support the concept that testicular macrophages enzymatically produce 25-hydroxycholesterol that not only is metabolized to testosterone by Leydig cells when present at putative physiological levels but also may exert inhibitory influences on Leydig cells when present for extended periods at very high concentrations that may occur under pathological conditions.  相似文献   

19.
K Rajkumar  J Malinek  B D Murphy 《Steroids》1985,45(2):119-134
The roles of prolactin (Prl) and LH in the maintenance of luteal function in pregnant pigs were investigated. Luteal cells from pigs between days 70 to 95 of pregnancy were dissociated and incubated for 4 h. In the absence of exogenous cholesterol, LH exhibited a dose-dependent stimulatory effect on progesterone secretion. Prl had a mild stimulatory effect on progesterone accumulation and at lower doses Prl potentiated the response to LH. Low density lipoprotein (LDL) but not high density lipoprotein (HDL) had a mild stimulatory effect on progesterone secretion. When exogenous cholesterol was provided as the substrate in the form of LDL or HDL, Prl had a striking stimulatory effect on progesterone secretion. When 25-hydroxycholesterol which bypasses the lipoprotein receptor was provided as the substrate, Prl failed to stimulate progesterone accumulation. The stimulatory effect of LH was potentiated when LDL, HDL, or 25-hydroxycholesterol were present. The results of this study suggest that LH increases the uptake of exogenous cholesterol in the form of lipoproteins and enhances the utilization of internalized cholesterol for progesterone synthesis. Prl appears to stimulate progesterone synthesis by enhancing the uptake of lipoproteins.  相似文献   

20.
Incorporation of (14C)choline and (3H)myo-inositol into the total lipid fraction, incorporation of (14C)acetate into the sterol fraction and incorporation of (3H)thymidine into DNA were studied in human lymphocyte cultures. Concanavalin A induced an increase in the incorporation of these labels with the following features: (a) Phospholipid synthesis was increased promptly. The lag time for the increase in sterol synthesis and DNA synthesis were 5 hours and 27 hours respectively; (b) The increase in phospholipid synthesis and sterol synthesis was proportional to ConA concentration initially. Cells treated with a high concentration of ConA showed very low levels of DNA synthesis; (c) The increase in phospholipid synthesis could be abolished immediately by alpha-Methyl-Mannoside. alpha-Methyl-Mannoside blunted but did not abolish the increase in sterol synthesis. alpha-Methyl-Mannoside enhanced DNA synthesis of those cells which had been treated by a high concentration of ConA; and (d) Selective inhibition of sterol synthesis with 25-hydroxycholesterol did not prevent the increase in phospholipid synthesis, but it blocked the increase in DNA synthesis. Supplement of LDL, HDL or total lipoproteins to lymphocyte cultures was effective in preventing the inhibition of DNA synthesis by 25-hydroxy-cholesterol. These results suggest that in lymphocyte activation by ConA phospholipid synthesis, sterol synthesis and DNA synthesis were sequentially increased. The rate of cellular commitment to mitogenesis was proportional to ConA concentrations. High concentrations of ConA arrested the cell growth at a postcommitment point in the G1 phase. Enhanced phospholipid synthesis was a precommitment event. Enhanced sterol synthesis was a postcommitment event and reflected the requirement of an increased cholesterol supply for the passage of cell growth through G1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号