首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resonance Raman scattering experiments on CO-complexed cytochrome P-450scc from bovine adrenocortical mitochondria demonstrate the simultaneous enhancement of v(Fe-CO) stretching and bound v(C-O) stretching frequencies at 477 and 1953 cm-1, respectively. These assignments were made on the basis of frequency shifts with the isotope 12C18O. This unusually low v(Fe-CO) stretching frequency in cytochrome P-450scc, compared with other CO-complexed hemoproteins such as CO-hemoglobin and -myoglobin, is presumably due to the thiolate ligation to the heme iron trans to CO and due to the linear and perpendicular configuration of CO binding to the heme.  相似文献   

2.
Resonance Raman spectra of the ferrous CO complex of cytochrome P-450cam have been observed both in its camphor-bound and free states. Upon excitation at 457.9 nm, near the absorption maximum of the Soret band, the ferrous CO complex of the camphor-bound enzyme showed an anomalously intense Raman line at 481 cm-1 besides the strong Raman lines at 1366 and 674 cm-1 for the porphyrin vibrations. The Raman line at 481 cm-1 (of the 12C16O complex) shifted to 478 cm-1 upon the substitution by 13C16O and to 473 cm-1 by 12C18O without any detectable shift in porphyrin Raman lines. This shows that the line at 481 cm-1 is assignable to Fe-CO stretching vibration. By the excitation at 457.9 nm, a weak Raman line was also observed at 558 cm-1, which was assigned to the Fe-C-O bending vibration, because it was found to shift by -14 cm-1 on 13C16O substitution while only -3 cm-1 on 12C18O substitution. These stretching and bending vibrations of the Fe-CO bond were not detected with the excitation at 413.1 nm, though the porphyrin Raman lines at 1366 and 674 cm-1 were clearly observed. When the substrate, camphor, was removed from the enzyme, the Fe-CO stretching vibration was found to shift to 464 cm-1 from 481 cm-1, while no detectable changes were found in porphyrin Raman lines. This means that the bound substrate interacts predominantly with the Fe-CO portion of the enzyme molecule.  相似文献   

3.
M Tsubaki  A Hiwatashi  Y Ichikawa 《Biochemistry》1986,25(12):3563-3569
The effects of cholesterol and adrenodoxin binding on resonance Raman spectra of cytochrome P-450scc in both oxidized and CO-reduced states were examined. Upon cholesterol binding, oxidized cytochrome P-450scc showed a significant shift of spin equilibrium from low-spin to high-spin state. Addition of adrenodoxin caused a complete conversion of cholesterol-bound oxidized cytochrome P-450scc to a pure high-spin state that was considered to be in the hexacoordinated state judged by the v10 mode at 1620 cm-1 and v3 mode around 1485 cm-1. Cholesterol in substrate binding site may oppose a linear and perpendicular binding of carbon monoxide to the reduced heme iron, leading to the distorted Fe-C-O linkage. This is based on the following observations: (1) an increase of the Fe-CO stretching frequency to 483 from 477 cm-1 upon addition of cholesterol; (2) an enhanced photodissociability of bound carbon monoxide of CO complex of cytochrome P-450scc in the presence of cholesterol. As another aspect of the effect of cholesterol on the CO complex form of cytochrome P-450scc, the enhanced stability of the native form ("P-450" form) was observed. There was no additional effect of reduced adrenodoxin on the Raman spectra of the CO-reduced form of cytochrome P-450scc.  相似文献   

4.
The active site of the oxygen-avid truncated hemoglobin from Bacillus subtilis has been characterized by infrared absorption and resonance Raman spectroscopies, and the dynamics of CO rebinding after photolysis has been investigated by picosecond transient absorption spectroscopy. Resonance Raman experiments on the CO bound adduct revealed the presence of two Fe-CO stretching bands at 545 and 520 cm-1, respectively. Accordingly, two C-O stretching bands at 1924 and 1888 cm-1 were observed in infrared absorption and resonance Raman measurements. The very low C-O stretching frequency at 1888 cm-1 (corresponding to the extremely high RR stretching frequency at 545 cm-1) indicates unusually strong hydrogen bonding between CO and distal residues. On the basis of a comparison with other truncated hemoglobin it is envisaged that the two CO conformers are determined by specific interactions with the TrpG8 and TyrB10 residues. Mutation of TrpG8 to Leu deeply alters the hydrogen-bonding network giving rise mainly to a CO conformer characterized by a Fe-CO stretching band at 489 cm-1 and a CO stretching band at 1958 cm-1. Picosecond laser photolysis experiments carried out on the CO bound adduct revealed dynamical processes that take place within a few nanoseconds after photolysis. Picosecond dynamics is largely dominated by CO geminate rebinding and is consistent with strong H-bonding contributions of TyrB10 and TrpG8 to ligand stabilization.  相似文献   

5.
The presence of at least two types of conformers in the ferrous CO complex of horseradish peroxidase has been demonstrated with the use of native and deuteroheme-substituted enzymes. Type I conformers, predominant in acidic pH, exhibited both an Fe-CO stretching and an Fe-C-O bending Raman line together with an infrared C-O stretch band below 1920 em-1. On the other hand, type II conformers, dominant species in alkaline pH, showed only an Fe-CO stretching Raman line with the C-O stretch above 1930 cm-1. They were interconvertible either by the changes in pH or by the binding of benzhydroxamate, a substrate for the enzyme. The pKa value for the pH-dependent interconversion of CO complex of deuteroheme-substituted enzyme was 8.3. These findings were interpreted to mean that the bound CO molecule in type I conformers was more tilted over the heme-plane than that in type II conformers. A steric hindrance by the bound substrate or the protonated form of a distal amino acid residue, presumably of histidine, is considered to be the cause for the isomerization. By summarizing present and previous data on the vibrational frequencies of heme-carbonyl complexes, we found that there are inverse-linear relationships between the square of Fe-CO and that of C-O stretching frequencies, while squares of Fe-CO stretching and Fe-C-O bending frequencies were linearly correlated with each other. Also found is that the dissociation rate constant of CO molecule from heme-carbonyl complexes is a linear function of the Fe-CO stretching frequency. The significance of these results is discussed.  相似文献   

6.
M Tsubaki  A Hiwatashi  Y Ichikawa 《Biochemistry》1987,26(14):4535-4540
Interactions of cholesterol analogues and inhibitors with the heme moiety of cytochrome P-450scc were examined by resonance Raman spectroscopy. The Raman spectra of ferric cytochrome P-450scc complexed with inhibitors such as cyanide, phenyl isocyanide, aminoglutethimide, and metyrapone were characteristic of low-spin state and were very similar. However, the effect of exchange of the sixth ligand from the oxygen atom (ferric low-spin state) to the nitrogen atom upon aminoglutethimide and metyrapone binding was seen as down-frequency shifts of the v3 band from 1503 to 1501 and 1502 cm-1, respectively, while cyanide and phenyl isocyanide binding caused an up-frequency shift of the v3 band to 1505 cm-1. The effects of cholesterol analogues [22(R)-hydroxycholesterol, 22(S)-hydroxycholesterol, 22-ketocholesterol, 20(S)-hydroxycholesterol, and 25-hydroxycholesterol] on a Fe2+-CO stretching frequency of cytochrome P-450scc in ferrous CO form were examined. The 22(R)-hydroxycholesterol complex could not give a clear Fe2+-CO stretching Raman band due to a strong photodissociability. 22(S)-Hydroxycholesterol and 25-hydroxycholesterol complexes gave the Raman bands at 487 and 483 cm-1, respectively, whereas 20(S)-hydroxycholesterol and 22-ketocholesterol complexes gave Fe2+-CO stretching frequencies (478 cm-1) almost identical with that without substrate (477 cm-1). These findings suggest the existence of the following physiologically important natures of the cytochrome P-450scc active site: (1) there is a strong steric interaction between heme-bound carbon monoxide and the 22(R)-hydroxyl group or the 22(R)-hydrogen of the steroid side chain and (2) the hydroxylation at the 20S position may cause a conformational change of the side-chain group relative to the heme.  相似文献   

7.
Understanding of the chemical nature of the dioxygen and nitric oxide moiety of ba3-cytochrome c oxidase from Thermus thermophilus is crucial for elucidation of its physiological function. In the present work, direct resonance Raman (RR) observation of the Fe-C-O stretching and bending modes and the C-O stretching mode of the CuB-CO complex unambiguously establishes the vibrational characteristics of the heme-copper moiety in ba3-oxidase. We assigned the bands at 507 and 568 cm(-1) to the Fe-CO stretching and Fe-C-O bending modes, respectively. The frequencies of these modes in conjunction with the C-O mode at 1973 cm(-1) showed, despite the extreme values of the Fe-CO and C-O stretching vibrations, the presence of the alpha-conformation in the catalytic center of the enzyme. These data, distinctly different from those observed for the caa3-oxidase, are discussed in terms of the proposed coupling of the alpha-and beta-conformations that occur in the binuclear center of heme-copper oxidases with enzymatic activity. The CuB-CO complex was identified by its nu(CO) at 2053 cm(-1) and was strongly enhanced with 413.1 nm excitation indicating the presence of a metal-to-ligand charge transfer transition state near 410 nm. These findings provide, for the first time, RR vibrational information on the EPR silent CuB(I) that is located at the O2 delivery channel and has been proposed to play a crucial role in both the catalytic and proton pumping mechanisms of heme-copper oxidases.  相似文献   

8.
The effects of protein-protein interactions and substrate binding on the structure of the active site of rabbit liver microsomal cytochrome P-450 LM2 have been analyzed by resonance Raman spectroscopy of the monomeric and oligomeric protein in solution. Also H2O2-dependent catalytic activities of the two states have been compared. The two vinyl substituents of the heme exhibit different orientations, as indicated by the frequencies and intensities of their stretching vibrations. One group lies in the plane of the heme and remains unchanged in the two states of cytochrome P-450 LM2, the other is tilted out of the plane. The tilting angle in oligomers was smaller than in monomers. These vinyl stretching modes together with some porphyrin modes, were found to be sensitive indicators of the quaternary structure and of substrate binding. In both the oligomer and the monomer, substrate binding causes changes of the relative intensities of some porphyrin modes and the vinyl stretching vibrations which may reflect modifications of the electronic transitions due to hydrophobic interactions between the bound substrate and the heme. In contrast to the monomeric cytochrome P-450 LM2, benzphetamine binding to the oligomers of this isozyme additionally produces a shift of the spin-state equilibrium. This indicates that in the oligomer the substrate-binding pocket is converted by protein-protein interaction to a structure that forces substrates to interfere with the sixth ligands, inducing an increase of the five-coordinated high-spin configuration. In the monomer the substrate-binding pocket can accommodate benzphetamine without affecting the spin state. Binding of imidazole to the monomeric and oligomeric cytochrome P-450 LM2 produces essentially the same resonance Raman spectra. Apparently the replacement of the native sixth ligand by imidazole disturbs the structure of the active site in such a way that it becomes insensitive to protein-protein interactions. H2O2-dependent N-demethylation of benzphetamine and aniline p-hydroxylation by cytochrome P-450 LM2 did not depend on its state of aggregation.  相似文献   

9.
C H Barlow  P I Ohlsson  K G Paul 《Biochemistry》1976,15(10):2225-2229
Infrared difference spectra, FeIIICO vs. FeIII of horseradish peroxidase isoenzymes A2 and C were recorded from 2000 to 1800 cm-1. Under alkaline conditions, pH 9, both isoenzymes exhibit two CO stretching bands, at 1938 and 1925 cm-1 for A2 and at 1933 and 1929 cm-1 for C. As the pH is lowered the low-frequency band for each isoenzyme decreases in intensity with a concommitant appearance and increase in intensity of a band at 1906 and 1905 cm-1 for the A2 and C isoenzymes, respectively. These changes conform to pK values of 6.7 for the A2 and 8.8 for the C isoenzymes of horseradish peroxidase. The interpretation of the infrared results was simplified by the observation that a linear relationship exists between the redox potential, Em7, for the FeIII/FeII system vs. the infrared CO stretching frequency, vCO, for cytochrome a3, hemoglobin, myoglobin, and cytochrome P-450 cam with substrate. This relationship suggests that the primary force altering vCO in these heme proteins is a variation in electron density at the heme iron and not direct protein interactions with the CO ligand. The horseradish peroxidase infrared bands in the 1930-cm-1 region correlate well with this relationship. The large deviation of the 1905-cm-1 band from the linear relationship and its dependence upon hydrogen ion concentration are consistent with horseradish peroxidase having a single CO binding site which can hold in two geometries, one of which contains an amino acid moiety capable of forming a hydrogen bond to the carbonyl oxygen.  相似文献   

10.
M Tsubaki  Y Ichikawa  Y Fujimoto  N T Yu  H Hori 《Biochemistry》1990,29(37):8805-8812
Cytochrome P-45011 beta was purified as the 11-deoxycorticosterone-bound form from bovine adrenocortical mitochondria and its active site was investigated by resonance Raman and EPR spectroscopies. Resonance Raman spectra of the purified sample revealed that the heme iron adopts the pure pentacoordinated ferric high-spin state on the basis of the nu 10 (1629cm-1) and nu 3 (1490 cm-1) mode frequencies, which are higher than those of the hexacoordinated ferric high-spin cytochrome P-450scc-substrate complexes. In the ferrous-CO state, a Fe2(+)-CO stretching mode was identified at 481.5 cm-1 on the basis of an isotopic substitution technique; this frequency is very close to that of cytochrome P-450scc in the cholesterol-complexed state (483 cm-1). The EPR spectra of the purified sample at 4.2 K showed ferric high-spin signals (at g = 7.98, 3.65, and 1.71) that were clearly distinct from the cytochrome P-450scc ferric high-spin signals (g = 8.06, 3.55, and 1.68) and confirmed previous assignments of ferric high-spin signals in adrenocortical mitochondria. The EPR spectra of the nitric oxide (NO) complex of ferrous cytochrome P-45011 beta showed EPR signals with rhombic symmetry (gx = 2.068, gz = 2.001, and gy = 1.961) very similar to those of the ferrous cytochrome P-450scc-NO complex in the presence of 22(S)-hydroxycholesterol and 20(R),22-(R)-dihydroxycholesterol at 77 K.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
T Tanaka  N T Yu    C K Chang 《Biophysical journal》1987,52(5):801-805
We report resonance Raman studies of the iron-carbon bond stretching vibrations, nu(Fe-CN), in sterically hindered and unhindered heme (FeIII)-CN- complexes. The sterically hindred "strapped hemes" are equipped with a covalently linked 13-, 14-, or 15-atom hydrocarbon chain across one face of the heme; these are called FeSP-13, FeSP-14, and FeSP-15, respectively. These straps would presumably exert a sideway shearing strain to force the linear ligands (e.g., CN- and CO) to be tilted and/or bent. The shorter the chain length, the weaker the ligand binding affinity because of a greater steric hindrance. This study reveals that the nu(Fe-CN) frequency decreases as the chain length is decreased, in contrast with the CO complexes, where the nu(Fe-CO) frequency increases as the chain length is decreased. For the heme-CN- complexes (with N-methylimidazole as a base), the nu(Fe-CN) frequencies are: heme 5 (unhindered), 451 cm-1; FeSP-15, 447 cm-1; FeSP-14, 447 cm-1; FeSP-13, 445 cm-1. For the heme-CO complexes (with N-methylimidazole as a base), the nu(Fe-CO) frequencies are: heme 5, 495 cm-1; FeSP-15, 509 cm-1; FeSP-14, 512 cm-1; FeSP-13, 514 cm-1 (Yu, N.-T., E. A. Kerr, B. Ward, and C. K. Chang, 1983, Biochemistry, 22:4534-4540). We have also studied the cyanide complexes with three different bases (pyridine, N-methylimidazole and 1,2-dimethylimidazole), and found that the trans-effect of cyanide complex is different from that of CO complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Resonance Raman spectra were observed for the threonine-301 to serine or valine mutant as well as the wild type of rabbit liver microsomal cytochrome P-450 [laurate(omega-1)-hydroxylase] (P-450(omega-1], which were prepared through site-directed mutagenesis. The high-spin marker resonance Raman (RR) bands became similarly stronger for all the P-450s examined in the oxidized form upon addition of laurate, and the RR spectra in the higher frequency region of the oxidized, reduced and CO-adduct forms did not distinctly differ among the P-450s examined. Nevertheless, the Fe-CO stretching mode (vFe-CO) of the CO adduct exhibited an upshift for the valine mutant, suggesting positional proximity of Thr-301 to bound CO like Thr-252 of P-450cam, in agreement with the expectation from the sequence analysis. The vFe-CO band was shifted to higher frequency upon binding of normal alkyl fatty acids with C10 or longer alkyl chain but little affected by binding of shorter fatty acids.  相似文献   

13.
The resonance Raman spectra of met-, deoxy-, and (carbonmonoxy)myoglobin (MbCO) are studied as a function of amino acid replacement at the distal histidine-E7 position. The synthetic wild type is found to be spectroscopically identical with the native material. The methionine and glycine replacements do not affect the met or deoxy spectra but do lead to distinct changes in the nu Fe-CO region of the MbCO spectrum. The native MbCO displays a pH-dependent population redistribution of the nu Fe-CO modes, while the analogous population in the mutant systems is found to be pH independent. This indicates that histidine-E7 is the titratable group in native MbCO. Moreover, the pH dependence of the population dynamics is found to be inconsistent with a simple two-state Henderson-Hasselbalch analysis. Instead, we suggest a four-state model involving the coupling of histidine protonation and conformational change. Within this model, the pK of the distal histidine is found to be 6.0 in the "open" configuration and 3.8 in the "closed" conformation. This corresponds to a 3 kcal/mol destabilization of the positively charged distal histidine within the hydrophobic pocket and suggests how protonation can lead to a larger population of the "open" conformation. At pH 7, the pocket is found to be "open" approximately 3% of the time. Further work, involving both IR and Raman measurements, allows the electron-nuclear coupling strengths of the various nu Fe-CO and nu C-O Raman modes to be determined. The slowly rebinding conformational state, corresponding to nu Fe-CO = 518 cm-1 (nu C-O = 1932 cm-1), displays unusually weak coupling of the Fe-CO mode to the Soret transition. Studies of the nu Fe-CO region as a function of temperature reveal that the equilibria between the conformational states are quenched in both the native and glycine mutant below the freezing point of the solvent. Unusual line narrowing of the nu Fe-CO modes at the phase transition is also observed in all samples studied. This line narrowing stands in marked contrast to the other heme Raman modes and suggests that Fe-CO librational motion and/or distal pocket vibrational (or conformational) excitations are involved in the line broadening at room temperature.  相似文献   

14.
Specific substrate-induced structural changes in the heme pocket are proposed for human cytochrome P450 aromatase (P450arom) which undergoes three consecutive oxygen activation steps. We have experimentally investigated this heme environment by resonance Raman spectra of both substrate-free and substrate-bound forms of the purified enzyme. The Fe-CO stretching mode (nu(Fe)(-)(CO)) of the CO complex and Fe(3+)-S stretching mode (nu(Fe)(-)(S)) of the oxidized form were monitored as a structural marker of the distal and proximal sides of the heme, respectively. The nu(Fe)(-)(CO) mode was upshifted from 477 to 485 and to 490 cm(-)(1) by the binding of androstenedione and 19-aldehyde-androstenedione, substrates for the first and third steps, respectively, whereas nu(Fe)(-)(CO) was not observed for P450arom with 19-hydroxyandrostenedione, a substrate for the second step, indicating that the heme distal site is very flexible and changes its structure depending on the substrate. The 19-aldehyde-androstenedione binding could reduce the electron donation from the axial thiolate, which was evident from the low-frequency shift of nu(Fe)(-)(S) by 5 cm(-)(1) compared to that of androstenedione-bound P450arom. Changes in the environment in the heme distal site and the reduced electron donation from the axial thiolate upon 19-aldehyde-androstenedione binding might stabilize the ferric peroxo species, an active intermediate for the third step, with the suppression of the formation of compound I (Fe(4+)=O porphyrin(+)(*)) that is the active species for the first and second steps. We, therefore, propose that the substrates can regulate the formation of alternative reaction intermediates by modulating the structure on both the heme distal and proximal sites in P450arom.  相似文献   

15.
Kabir M  Sudhamsu J  Crane BR  Yeh SR  Rousseau DL 《Biochemistry》2008,47(47):12389-12397
Nitric oxide synthase (NOS) generates NO via a sequential two-step reaction [l-arginine (l-Arg) --> N-hydroxy-l-arginine (NOHA) --> l-citrulline + NO]. Each step of the reaction follows a distinct mechanism defined by the chemical environment introduced by each substrate bound to the heme active site. The dioxygen complex of the NOS enzyme from a thermophilic bacterium, Geobacillus stearothermophilus (gsNOS), is unusually stable; hence, it provides a unique model for the studies of the mechanistic differences between the two steps of the NOS reaction. By using CO as a structural probe, we found that gsNOS exhibits two conformations in the absence of substrate, as indicated by the presence of two sets of nu(Fe-CO)/nu(C-O) modes in the resonance Raman spectra. In the nu(Fe-CO) versus nu(C-O) inverse correlation plot, one set of data falls on the correlation line characterized by mammalian NOSs (mNOS), whereas the other set of data lies on a new correlation line defined by a bacterial NOS from Bacillus subtilis (bsNOS), reflecting a difference in the proximal Fe-Cys bond strength in the two conformers of gsNOS. The addition of l-Arg stabilizes the conformer associated with the mNOS correlation line, whereas NOHA stabilizes the conformer associated with the bsNOS correlation line, although both substrates introduce a positive electrostatic potential into the distal heme pocket. To assess how substrate binding affects Fe-Cys bond strength, the frequency of the Fe-Cys stretching mode of gsNOS was monitored by resonance Raman spectroscopy with 363.8 nm excitation. In the substrate-free form, the Fe-Cys stretching mode was detected at 342.5 cm(-1), similar to that of bsNOS. The binding of l-Arg and NOHA brings about a small decrease and increase in the Fe-Cys stretching frequency, respectively. The implication of these unique structural features with respect to the oxygen chemistry of NOS is discussed.  相似文献   

16.
Covalent modification of cytochrome P-450scc (purified from bovine adrenocortical mitochondria) with pyridoxal 5'-phosphate (PLP) was found to cause inhibition of the electron-accepting ability of this enzyme from its physiological electron donor, adrenodoxin, without conversion to the "P-420" form. Reaction conditions leading to the modification level of 0.82 and 2.85 PLP-Lys residues per cytochrome P-450scc molecule resulted in 60% and 98% inhibition, respectively, of electron-transfer rate from adrenodoxin to cytochrome P-450scc (with beta-NADPH as an electron donor via NADPH-adrenodoxin reductase and with phenyl isocyanide as the exogenous heme ligand of the cytochrome). It was found that covalent PLP modification caused a drastic decrease of cholesterol side-chain cleavage activity when the cholesterol side-chain cleavage enzyme system was reconstituted with native (or PLP-modified) cytochrome P-450scc, adrenodoxin, and NADPH-adrenodoxin reductase. Approximately 60% of the original enzymatic activity of cytochrome P-450scc was protected against inactivation by covalent PLP modification when 20% mole excess adrenodoxin was included during incubation with PLP. Binding affinity of substrate (cholesterol) to cytochrome P-450scc was found to be increased slightly upon covalent modification with PLP by analyzing a substrate-induced spectral change. The interaction of adrenodoxin with cytochrome P-450scc in the absence of substrate (cholesterol) was analyzed by difference absorption spectroscopy with a four-cuvette assembly, and the apparent dissociation constant (Ks) for adrenodoxin binding was found to be increased from 0.38 microM (native) to 33 microM (covalently PLP modified).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
HemAT-Bs is a heme-containing signal transducer protein responsible for aerotaxis of Bacillus subtilis. The recombinant HemAT-Bs expressed in Escherichia coli was purified as the oxy form in which oxygen was bound to the ferrous heme. Oxygen binding and dissociation rate constants were determined to be k(on) = 32 microm(-1) s(-1) and k(off) = 23 s(-1), respectively, revealing that HemAT-Bs has a moderate oxygen affinity similar to that of sperm whale myoglobin (Mb). The rate constant for autoxidation at 37 degrees C was 0.06 h(-1), which is also close to that of Mb. Although the electronic absorption spectra of HemAT-Bs were similar to those of Mb, HemAT-Bs showed some unique characteristics in its resonance Raman spectra. Oxygen-bound HemAT-Bs gave the nu(Fe-O(2)) band at a noticeably low frequency (560 cm(-1)), which suggests a unique hydrogen bonding between a distal amino acid residue and the proximal atom of the bound oxygen molecule. Deoxy HemAT-Bs gave the nu(Fe-His) band at a higher frequency (225 cm(-1)) than those of ordinary His-coordinated deoxy heme proteins. CO-bound HemAT-Bs gave the nu(Fe-CO) and nu(C-O) bands at 494 and 1964 cm(-1), respectively, which fall on the same nu(C-O) versus nu(Fe-CO) correlation line as that of Mb. Based on these results, the structural and functional properties of HemAT-Bs are discussed.  相似文献   

18.
Resonance Raman studies of isotopically labeled chloroperoxidase   总被引:1,自引:0,他引:1  
Chloroperoxidase (CPO) and cytochrome P450cam have been shown by several techniques to have similar active site properties. Recent resonance Raman investigations using isotopically enriched 34S-labeled samples have demonstrated thiolate ligation in the P450cam system. We report here on a number of parallel studies involving CPO. On the basis of isotopic labeling (34S, 13CO), we assign the Fe-S and Fe-CO stretching frequencies of CPO at 347 (-vFe-S) and 488 cm-1 (-vFe-CO). The differences of the -vFe-S and -vFe-CO in CPO and P450cam may suggest subtle differences in the thiolate binding in the two systems.  相似文献   

19.
KatG, the catalase peroxidase from Mycobacterium tuberculosis, is important in the activation of the antitubercular drug, isoniazid. About 50% of isoniazid-resistant clinical isolates contain a mutation in KatG wherein the serine at position 315 is substituted with threonine, KatG(S315T). The heme pockets of KatG and KatG(S315T) and their interactions with isoniazid are probed using resonance Raman (rR) spectroscopy to characterize their ferrous CO complexes. Three vibrational modes, C-O and Fe-C stretching and Fe-CO bending, are assigned using 12CO and 13CO isotope shifts. Two conformers are observed for KatG-CO and KatG(S315T)-CO. Resonance Raman features assigned to form I are consistent with it having a neutral proximal histidine ligand and the Fe-C-O moiety hydrogen bonded to a distal residue. The nu(C-O) band for form I is sharp, consistent with a conformationally homogeneous Fe-CO unit. Form II also has a neutral proximal histidine ligand but is not hydrogen bonded. This appears to result in a conformationally disordered Fe-CO unit, as evidenced by a comparatively broad C-O stretching band. The 13CO-sensitive bands assigned to form II are predominant in the KatG(S315T)-CO rR spectrum. Isoniazid binding is apparent from the resonance Raman signatures of both WT KatG-CO and KatG(S315T)-CO. Moreover, isoniazid binding elicits an increase in the form I population of wild-type KatG-CO while having little, if any, effect on the already low population of form I of KatG(S315T)-CO. Since oxyKatG (compound III) also contains a low-spin diatomic ligand-heme adduct (heme-O2), it is reasonable to suggest that it too would exist as a mixture of conformers. Because the small form I population of KatG(S315T)-CO correlates with its inability to activate INH, we hypothesize that form I plays a role in INH activation.  相似文献   

20.
The regioselectivity and stereoselectivity of androgen hydroxylations catalyzed by five isozymes of cytochrome P-450 purified from phenobarbital-induced rat liver were studied in a reconstituted monooxygenase system using testosterone (T) and androst-4-ene-3,17-dione (delta 4-A) as substrates. P-450 PB-3, an isozyme exhibiting low catalytic activity with many xenobiotic substrates, catalyzed efficient (turnover = 15.7 to 18.5 min-1 P-450-1 at 25 microM substrate) and highly stereoselective B-ring hydroxylations of both steroid substrates, with the corresponding 7 alpha- and 6 alpha-hydroxy alcohols formed in ratios of approximately 20 to 30:1, respectively. P-450 PB-2c metabolized testosterone to a mixture of 16 alpha OH-T, 2 alpha OH-T, and delta 4-A (product ratio = 1.0/0.78/0.33; turnover = 10.2 min-1 P-450-1). PB-2c is present in significantly larger amounts in mature male rats as compared to immature males, and probably catalyzes the male-specific testosterone 16 alpha-hydroxylase activity known to be induced at puberty and subject to endocrine control. P-450 PB-4, the major phenobarbital-induced isozyme in rat liver, catalyzed efficient D-ring hydroxylations, yielding 16 beta OH- delta 4-A as the predominant product with delta 4-A as substrate (turnover = 12.0 min-1 P-450-1) and a mixture of 16 beta OH-T, 16 alpha OH-T, and delta 4-A (the latter compound presumably formed via 17 alpha hydroxylation) with testosterone as substrate (turnover = 5.2 min-1 P-450-1). P-450 isozymes PB-1 and PB-5 hydroxylated both steroids with essentially the same regioselectivity as PB-4 but at only 5 to 10% the catalytic rate. Cytochrome b5 stimulated most of these steroid hydroxylations up to 2-fold with no change in regio- or stereoselectivity. The identification of specific steroid metabolites as diagnostic of particular P-450 isozymes should be useful for the assessment of isozymic contributions to microsomal activities and, in addition, facilitate comparisons of P-450 isozymes isolated in different laboratories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号