首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth physiology of the iron-reducing bacteria Thermoterrabacterium ferrireducens and Thermoanaerobacter siderophilus was investigated. The stimulation of the organotrophic growth of T. ferrireducens and T. siderophilusin the presence of Fe(III) was shown to be due to the utilization of ferric iron as an electron acceptor in catabolic processes and not to the effect exerted on the metabolism by Fe(II) or by changes in the redox potential. It was established that Fe(III) reduction in T. ferrireducens is not a detoxication strategy. In T. siderophilus, this process is carried out to alleviate the inhibitory effect of hydrogen. T. ferrireducens was shown to be capable of lithoautotrophic growth with molecular hydrogen as an electron donor and amorphous ferric oxide as an electron acceptor, in the absence of any organic substances. The minimum threshold of H2 consumption was 3 × 10–5 vol % of H2. The presence of CO dehydrogenase activity in T. ferrireducens suggests that CO2 fixation in this organism involves the anaerobic acetyl-CoA pathway. T. siderophilus failed to grow under lithoautotrophic conditions. The fact that T. ferrireducens contains c-type cytochromes and T. siderophilus lacks them confirms the operation of different mechanisms of ferric iron reduction in these species.  相似文献   

2.
Microbial metal reduction forms the basis of alternate bioremediation strategies for reductive precipitation and immobilization of toxic metals such as the radionuclide technetium [Tc(VII)]. A rapid mutant screening technique was developed to identify Shewanella oneidensis MR-1 respiratory mutants unable to reduce Tc(VII) as anaerobic electron acceptor. The Tc(VII) reduction-deficient (Tcr) mutant screening technique was based on the observation that wild-type S. oneidensis produced a black Tc(IV) precipitate on its colony surface during growth on Tc(VII)-amended agar, while colonies arising from mutagenized cells did not. Tcr mutants unable to produce the black precipitate were subsequently tested for anaerobic growth on an array of three electron donors and 13 alternate electron acceptors. The Tcr mutants displayed a broad spectrum of anaerobic growth deficiencies, including several that were unable to reduce Tc(VII) with hydrogen or lactate as electron donor, yet retained the ability to reduce Tc(VII) with formate. This report describes the development of a novel Tcr mutant screening technique and its application to identify the first set of Tcr mutants in a metal-reducing member of the genus Shewanella.  相似文献   

3.
Physiological strategies driving the reduction of poorly crystalline Fe(III) oxide by the thermophilic Gram-positive dissimilatory Fe(III)-reducing bacterium C. ferrireducens were evaluated. Direct cell-to-mineral contact appears to be the major physiological strategy for ferrihydrite reduction. This strategy is promoted by cell surface-associated c-type cytochromes, and the extracellular electron transfer to ferrihydrite is linked to energy generation via a membrane-bound electron transport chain. The involvement of pili-like appendages in ferrihydrite reduction has been detected for the first time in a thermophilic microorganism. A supplementary strategy for the utilization of a siderophore (DFO) in dissimilatory ferrihydrite reduction has also been characterized.  相似文献   

4.
An NAD(P)H-dependent oxidoreductase has been purified approximately 40-fold from the soluble protein fraction of the dissimilatory iron-reducing, anaerobic, thermophilic bacterium Carboxydothermus ferrireducens. The enzyme, a flavoprotein, has broad-substrate specificity—reducing Fe3+, Cr6+, and AQDS with rates of 0.31, 0.33, and 3.3 U mg−1 protein and calculated NADH oxidation turnover numbers of 0.25, 0.25, and 2.5 s−1, respectively. Numerous quinones are reduced via a two-electron transfer from NAD(P)H to quinone, thus participating in managing oxidative stress by avoiding the formation of semiquinone radicals.  相似文献   

5.
Carboxydothermus hydrogenoformans is able to grow by conversion of CO to H2 and CO2. Besides CO, only pyruvate was described as serving as an energy source. Based on 16S rRNA gene sequence similarity, C. hydrogenoformans is closely related to Thermoterrabacterium ferrireducens. T. ferrireducens is like C. hydrogenoformans a gram-positive, thermophilic, strict anaerobic bacterium. However, it is capable of using various electron donors and acceptors for growth. Growth of C. hydrogenoformans with multiple electron donors and acceptors was tested. C. hydrogenoformans oxidized formate, lactate, glycerol, CO, and H2 with 9,10-anthraquinone-2,6-disulfonate as an electron acceptor. Sulfite, thiosulfate, sulfur, nitrate, and fumarate were reduced with lactate as an electron donor. T. ferrireducens oxidized CO with 9,10-anthraquinone-2,6-disulfonate as an electron acceptor but did not produce H2 from CO. In contrast to what was published before, T. ferrireducens was able to grow on lactate with sulfite, sulfur, and nitrate as electron acceptors.  相似文献   

6.
A new, phylogenetically distinct, dissimilatory, Fe(III)-reducing bacterium was isolated from surface sediment of a hydrocarbon-contaminated ditch. The isolate, designated strain PAL-1, was an obligately anaerobic, non-fermentative, motile, gram-negative vibrio. PAL-1 grew in a defined medium with acetate as electron donor and ferric pyrophosphate, ferric oxyhydroxide, ferric citrate, Co(III)-EDTA, or elemental sulfur as sole electron acceptor. PAL-1 also used proline, hydrogen, lactate, propionate, succinate, fumarate, pyruvate, or yeast extract as electron donors for Fe(III) reduction. It is the first bacterium known to couple the oxidation of an amino acid to Fe(III) reduction. PAl-1 did not reduce oxygen, Mn(IV), U(VI), Cr(VI), nitrate, sulfate, sulfite, or thiosulfate with acetate as the electron donor. Cell suspensions of PAL-1 exhibited dithionite-reduced minus air-oxidized difference spectra that were characteristic of c-type cytochromes. Analysis of the 16S rRNA gene sequence of PAL-1 showed that the strain is not related to any of the described metal-reducing bacteria in the Proteobacteria and, together with Flexistipes sinusarabici, forms a separate line of descent within the Bacteria. Phenotypically and phylogenetically, strain PAl-1 differs from all other described bacteria, and represents the type strain of a new genus and species, Geovibrio ferrireducens. Received: 26 September 1995 / Accepted: 28 February 1996  相似文献   

7.
The dissimilatory Fe(III)-reducing bacterium Geobacter sulfurreducens reduced and precipitated Tc(VII) by two mechanisms. Washed cell suspensions coupled the oxidation of hydrogen to enzymatic reduction of Tc(VII) to Tc(IV), leading to the precipitation of TcO2 at the periphery of the cell. An indirect, Fe(II)-mediated mechanism was also identified. Acetate, although not utilized efficiently as an electron donor for direct cell-mediated reduction of technetium, supported the reduction of Fe(III), and the Fe(II) formed was able to transfer electrons abiotically to Tc(VII). Tc(VII) reduction was comparatively inefficient via this indirect mechanism when soluble Fe(III) citrate was supplied to the cultures but was enhanced in the presence of solid Fe(III) oxide. The rate of Tc(VII) reduction was optimal, however, when Fe(III) oxide reduction was stimulated by the addition of the humic analog and electron shuttle anthaquinone-2,6-disulfonate, leading to the rapid formation of the Fe(II)-bearing mineral magnetite. Under these conditions, Tc(VII) was reduced and precipitated abiotically on the nanocrystals of biogenic magnetite as TcO2 and was removed from solution to concentrations below the limit of detection by scintillation counting. Cultures of Fe(III)-reducing bacteria enriched from radionuclide-contaminated sediment using Fe(III) oxide as an electron acceptor in the presence of 25 μM Tc(VII) contained a single Geobacter sp. detected by 16S ribosomal DNA analysis and were also able to reduce and precipitate the radionuclide via biogenic magnetite. Fe(III) reduction was stimulated in aquifer material, resulting in the formation of Fe(II)-containing minerals that were able to reduce and precipitate Tc(VII). These results suggest that Fe(III)-reducing bacteria may play an important role in immobilizing technetium in sediments via direct and indirect mechanisms.  相似文献   

8.
To help provide a fundamental basis for use of microbial dissimilatory reduction processes in separating or immobilizing 99Tc in waste or groundwaters, the effects of electron donor and the presence of the bicarbonate ion on the rate and extent of pertechnetate ion [Tc(VII)O4] enzymatic reduction by the subsurface metal-reducing bacterium Shewanella putrefaciens CN32 were determined, and the forms of aqueous and solid-phase reduction products were evaluated through a combination of high-resolution transmission electron microscopy, X-ray absorption spectroscopy, and thermodynamic calculations. When H2 served as the electron donor, dissolved Tc(VII) was rapidly reduced to amorphous Tc(IV) hydrous oxide, which was largely associated with the cell in unbuffered 0.85% NaCl and with extracellular particulates (0.2 to 0.001 μm) in bicarbonate buffer. Cell-associated Tc was present principally in the periplasm and outside the outer membrane. The reduction rate was much lower when lactate was the electron donor, with extracellular Tc(IV) hydrous oxide the dominant solid-phase reduction product, but in bicarbonate systems much less Tc(IV) was associated directly with the cell and solid-phase Tc(IV) carbonate may have been present. In the presence of carbonate, soluble (<0.001 μm) electronegative, Tc(IV) carbonate complexes were also formed that exceeded Tc(VII)O4 in electrophoretic mobility. Thermodynamic calculations indicate that the dominant reduced Tc species identified in the experiments would be stable over a range of Eh and pH conditions typical of natural waters. Thus, carbonate complexes may represent an important pathway for Tc transport in anaerobic subsurface environments, where it has generally been assumed that Tc mobility is controlled by low-solubility Tc(IV) hydrous oxide and adsorptive, aqueous Tc(IV) hydrolysis products.  相似文献   

9.
It has recently been noted that a diversity of hyperthermophilic microorganisms have the ability to reduce Fe(III) with hydrogen as the electron donor, but the reduction of Fe(III) or other metals by these organisms has not been previously examined in detail. When Pyrobaculum islandicum was grown at 100°C in a medium with hydrogen as the electron donor and Fe(III)-citrate as the electron acceptor, the increase in cell numbers of P. islandicum per mole of Fe(III) reduced was found to be ca. 10-fold higher than previously reported. Poorly crystalline Fe(III) oxide could also serve as the electron acceptor for growth on hydrogen. The stoichiometry of hydrogen uptake and Fe(III) oxide reduction was consistent with the oxidation of 1 mol of hydrogen resulting in the reduction of 2 mol of Fe(III). The poorly crystalline Fe(III) oxide was reduced to extracellular magnetite. P. islandicum could not effectively reduce the crystalline Fe(III) oxide minerals goethite and hematite. In addition to using hydrogen as an electron donor for Fe(III) reduction, P. islandicum grew via Fe(III) reduction in media in which peptone and yeast extract served as potential electron donors. The closely related species P. aerophilum grew via Fe(III) reduction in a similar complex medium. Cell suspensions of P. islandicum reduced the following metals with hydrogen as the electron donor: U(VI), Tc(VII), Cr(VI), Co(III), and Mn(IV). The reduction of these metals was dependent upon the presence of cells and hydrogen. The metalloids arsenate and selenate were not reduced. U(VI) was reduced to the insoluble U(IV) mineral uraninite, which was extracellular. Tc(VII) was reduced to insoluble Tc(IV) or Tc(V). Cr(VI) was reduced to the less toxic, less soluble Cr(III). Co(III) was reduced to Co(II). Mn(IV) was reduced to Mn(II) with the formation of manganese carbonate. These results demonstrate that biological reduction may contribute to the speciation of metals in hydrothermal environments and could account for such phenomena as magnetite accumulation and the formation of uranium deposits at ca. 100°C. Reduction of toxic metals with hyperthermophilic microorganisms or their enzymes might be applied to the remediation of metal-contaminated waters or waste streams.  相似文献   

10.
Resting cells of the sulfate-reducing bacterium Desulfovibrio fructosovorans grown in the absence of sulfate had a very high Tc(VII)-reducing activity, which led to the formation of an insoluble black precipitate. The involvement of a periplasmic hydrogenase in Tc(VII) reduction was indicated (i) by the requirement for hydrogen as an electron donor, (ii) by the tolerance of this activity to oxygen, and (iii) by the inhibition of this activity by Cu(II). Moreover, a mutant carrying a deletion in the nickel-iron hydrogenase operon showed a dramatic decrease in the rate of Tc(VII) reduction. The restoration of Tc(VII) reduction by complementation of this mutation with nickel-iron hydrogenase genes demonstrated the specific involvement of the periplasmic nickel-iron hydrogenase in the mechanism in vivo. The Tc(VII)-reducing activity was also observed with cell extracts in the presence of hydrogen. Under these conditions, Tc(VII) was reduced enzymatically to soluble Tc(V) or precipitated to an insoluble black precipitate, depending on the chemical nature of the buffer used. The purified nickel-iron hydrogenase performed Tc(VII) reduction and precipitation at high rates. These series of genetic and biochemical approaches demonstrated that the periplasmic nickel-iron hydrogenase of sulfate-reducing bacteria functions as a Tc(VII) reductase. The role of cytochrome c3 in the mechanism is also discussed.  相似文献   

11.
12.
The diversity of thermophilic prokaryotes inhabiting deep-sea hot vents was actively studied over the last two decades. The ever growing interest is reflected in the exponentially increasing number of novel thermophilic genera described. The goal of this paper is to survey the progress in this field made in the years 2000–2005. In this period, representatives of several new taxa of hyperthermophilic archaea were obtained from deep-sea environments. Two of these isolates had phenotypic features new for this group of organisms: the presence of an outer cell membrane (the genus Ignicoccus) and the ability to grow anaerobically with acetate and ferric iron (the genus Geoglobus). Also, our knowledge on the diversity of thermophilic bacteria from deep-sea thermal environments extended significantly. The new bacterial isolates represented diverse bacterial divisions: the phylum Aquificae, the subclass Epsilonproteobacteria, the order Thermotogales, the families Thermodesulfobacteriaceae, Deferribacteraceae, and Thermaceae, and a novel bacterial phylum represented by the genus Caldithrix. Most of these isolates are obligate or facultative lithotrophs, oxidizing molecular hydrogen in the course of different types of anaerobic respiration or microaerobic growth. The existence and significant ecological role of some of new bacterial thermophilic isolates was initially established by molecular methods.  相似文献   

13.
The dissimilatory Fe(III)-reducing bacterium Geobacter sulfurreducens reduced and precipitated Tc(VII) by two mechanisms. Washed cell suspensions coupled the oxidation of hydrogen to enzymatic reduction of Tc(VII) to Tc(IV), leading to the precipitation of TcO(2) at the periphery of the cell. An indirect, Fe(II)-mediated mechanism was also identified. Acetate, although not utilized efficiently as an electron donor for direct cell-mediated reduction of technetium, supported the reduction of Fe(III), and the Fe(II) formed was able to transfer electrons abiotically to Tc(VII). Tc(VII) reduction was comparatively inefficient via this indirect mechanism when soluble Fe(III) citrate was supplied to the cultures but was enhanced in the presence of solid Fe(III) oxide. The rate of Tc(VII) reduction was optimal, however, when Fe(III) oxide reduction was stimulated by the addition of the humic analog and electron shuttle anthaquinone-2,6-disulfonate, leading to the rapid formation of the Fe(II)-bearing mineral magnetite. Under these conditions, Tc(VII) was reduced and precipitated abiotically on the nanocrystals of biogenic magnetite as TcO(2) and was removed from solution to concentrations below the limit of detection by scintillation counting. Cultures of Fe(III)-reducing bacteria enriched from radionuclide-contaminated sediment using Fe(III) oxide as an electron acceptor in the presence of 25 microM Tc(VII) contained a single Geobacter sp. detected by 16S ribosomal DNA analysis and were also able to reduce and precipitate the radionuclide via biogenic magnetite. Fe(III) reduction was stimulated in aquifer material, resulting in the formation of Fe(II)-containing minerals that were able to reduce and precipitate Tc(VII). These results suggest that Fe(III)-reducing bacteria may play an important role in immobilizing technetium in sediments via direct and indirect mechanisms.  相似文献   

14.
Air-side stripping without a prior solid–liquid phase separation step is a feasible and promising process to control ammonia concentration in thermophilic digesters. During the process, part of the anaerobic biomass is exposed to high temperature, high pH and aerobic conditions. However, there are no studies assessing the effects of those harsh conditions on the microbial communities of thermophilic digesters. To fill this knowledge gap, the microbiomes of two thermophilic digesters (55°C), fed with a mixture of pig manure and nitrogen-rich co-substrates, were investigated under different organic loading rates (OLR: 1.1–5.2 g COD l−1 day−1), ammonia concentrations (0.2–1.5 g free ammonia nitrogen l−1) and stripping frequencies (3–5 times per week). The bacterial communities were dominated by Firmicutes and Bacteroidetes phyla, while the predominant methanogens were Methanosarcina sp archaea. Increasing co-substrate fraction, OLR and free ammonia nitrogen (FAN) favoured the presence of genera Ruminiclostridium, Clostridium and Tepidimicrobium and of hydrogenotrophic methanogens, mainly Methanoculleus archaea. The data indicated that the use of air-side stripping did not adversely affect thermophilic microbial communities, but indirectly modulated them by controlling FAN concentrations in the digester. These results demonstrate the viability at microbial community level of air side-stream stripping process as an adequate technology for the ammonia control during anaerobic co-digestion of nitrogen-rich substrates.  相似文献   

15.
Resting cells of Desulfovibrio desulfuricans coupled the oxidation of a range of electron donors to Tc(VII) reduction. The reduced technetium was precipitated as an insoluble low-valence oxide. The optimum electron donor for the biotransformation was hydrogen, although rapid rates of reduction were also supported when formate or pyruvate was supplied to the cells. Technetium reduction was less efficient when the growth substrates lactate and ethanol were supplied as electron donors, while glycerol, succinate, acetate, and methanol supported negligible reduction. Enzyme activity was stable for several weeks and was insensitive to oxygen. Transmission electron microscopy showed that the radionuclide was precipitated at the periphery of the cell. Cells poisoned with Cu(II), which is selective for periplasmic but not cytoplasmic hydrogenases, were unable to reduce Tc(VII), a result consistent with the involvement of a periplasmic hydrogenase in Tc(VII) reduction. Resting cells, immobilized in a flowthrough membrane bioreactor and supplied with Tc(VII)-supplemented solution, accumulated substantial quantities of the radionuclide when formate was supplied as the electron donor, indicating the potential of this organism as a biocatalyst to treat Tc-contaminated wastewaters.  相似文献   

16.
Anaeromyxobacter dehalogenans strain 2CP-C reduces U(VI) and Tc(VII) to U(IV)O2(s) (uraninite) and Tc(IV)O2(S) respectively. Kinetic studies with resting cells revealed that U(VI) or Tc(VII) reduction rates using H2 as electron donor exceeded those observed in acetate-amended incubations. The reduction of U(VI) by A. dehalogenans 2CP-C resulted in extracellular accumulation of ∼5 nm uraninite nanoparticles in association with a lectin-binding extracellular polymeric substance (EPS). The electron donor did not affect UO2(S) nanoparticle size or association with EPS, but the utilization of acetate as the source of reducing equivalents resulted in distinct UO2(S) nanoparticle aggregates that were ∼50 nm in diameter. In contrast, reduction of Tc(VII) by A. dehalogenans 2CP-C cell suspensions produced dense clusters of TcO2 particles, which were localized within the cell periplasm and on the outside of the outer membrane. In addition to direct reduction, A. dehalogenans 2CP-C cell suspensions reduced Tc(VII) indirectly via an Fe(II)-mediated mechanism. Fe(II) produced by strain 2CP-C from either ferrihydrite or Hanford Site sediment rapidly removed 99Tc(VII)O4 from solution. These findings expand our knowledge of the radionuclide reduction processes catalysed by Anaeromyxobacter spp. that may influence the fate and transport of radionuclide contaminants in the subsurface.  相似文献   

17.
Pertechnetate, 99Tc(VII)O4, is a highly mobile radionuclide contaminant at US Department of Energy sites that can be enzymatically reduced by a range of anaerobic and facultatively anaerobic microorganisms, including Shewanella oneidensis MR-1, to poorly soluble Tc(IV)O2(s). In other microorganisms, Tc(VII)O4 reduction is generally considered to be catalysed by hydrogenase. Here, we provide evidence that although the NiFe hydrogenase of MR-1 was involved in the H2-driven reduction of Tc(VII)O4[presumably through a direct coupling of H2 oxidation and Tc(VII) reduction], the deletion of both hydrogenase genes did not completely eliminate the ability of MR-1 to reduce Tc(VII). With lactate as the electron donor, mutants lacking the outer membrane c -type cytochromes MtrC and OmcA or the proteins required for the maturation of c -type cytochromes were defective in reducing Tc(VII) to nanoparticulate TcO2·nH2O(s) relative to MR-1 or a NiFe hydrogenase mutant. In addition, reduced MtrC and OmcA were oxidized by Tc(VII)O4, confirming the capacity for direct electron transfer from these OMCs to TcO4. c -Type cytochrome-catalysed Tc(VII) reduction could be a potentially important mechanism in environments where organic electron donor concentrations are sufficient to allow this reaction to dominate.  相似文献   

18.
Resting cells of the sulfate-reducing bacterium Desulfovibrio fructosovorans grown in the absence of sulfate had a very high Tc(VII)-reducing activity, which led to the formation of an insoluble black precipitate. The involvement of a periplasmic hydrogenase in Tc(VII) reduction was indicated (i) by the requirement for hydrogen as an electron donor, (ii) by the tolerance of this activity to oxygen, and (iii) by the inhibition of this activity by Cu(II). Moreover, a mutant carrying a deletion in the nickel-iron hydrogenase operon showed a dramatic decrease in the rate of Tc(VII) reduction. The restoration of Tc(VII) reduction by complementation of this mutation with nickel-iron hydrogenase genes demonstrated the specific involvement of the periplasmic nickel-iron hydrogenase in the mechanism in vivo. The Tc(VII)-reducing activity was also observed with cell extracts in the presence of hydrogen. Under these conditions, Tc(VII) was reduced enzymatically to soluble Tc(V) or precipitated to an insoluble black precipitate, depending on the chemical nature of the buffer used. The purified nickel-iron hydrogenase performed Tc(VII) reduction and precipitation at high rates. These series of genetic and biochemical approaches demonstrated that the periplasmic nickel-iron hydrogenase of sulfate-reducing bacteria functions as a Tc(VII) reductase. The role of cytochrome c(3) in the mechanism is also discussed.  相似文献   

19.
To help provide a fundamental basis for use of microbial dissimilatory reduction processes in separating or immobilizing (99)Tc in waste or groundwaters, the effects of electron donor and the presence of the bicarbonate ion on the rate and extent of pertechnetate ion [Tc(VII)O(4)(-)] enzymatic reduction by the subsurface metal-reducing bacterium Shewanella putrefaciens CN32 were determined, and the forms of aqueous and solid-phase reduction products were evaluated through a combination of high-resolution transmission electron microscopy, X-ray absorption spectroscopy, and thermodynamic calculations. When H(2) served as the electron donor, dissolved Tc(VII) was rapidly reduced to amorphous Tc(IV) hydrous oxide, which was largely associated with the cell in unbuffered 0. 85% NaCl and with extracellular particulates (0.2 to 0.001 microm) in bicarbonate buffer. Cell-associated Tc was present principally in the periplasm and outside the outer membrane. The reduction rate was much lower when lactate was the electron donor, with extracellular Tc(IV) hydrous oxide the dominant solid-phase reduction product, but in bicarbonate systems much less Tc(IV) was associated directly with the cell and solid-phase Tc(IV) carbonate may have been present. In the presence of carbonate, soluble (<0.001 microm) electronegative, Tc(IV) carbonate complexes were also formed that exceeded Tc(VII)O(4)(-) in electrophoretic mobility. Thermodynamic calculations indicate that the dominant reduced Tc species identified in the experiments would be stable over a range of E(h) and pH conditions typical of natural waters. Thus, carbonate complexes may represent an important pathway for Tc transport in anaerobic subsurface environments, where it has generally been assumed that Tc mobility is controlled by low-solubility Tc(IV) hydrous oxide and adsorptive, aqueous Tc(IV) hydrolysis products.  相似文献   

20.
Resting cells of Escherichia coli, immobilized in a flow-through bioreactor, coupled the oxidation of formate or hydrogen to Tc(VII) reduction and removal from solution. Cells, pregrown anaerobically in a hollow-fiber membrane bioreactor, were challenged with 50 muM Tc(VII) in a carrier solution of phosphate-buffered saline. The radionuclide accumulated within the membrane component of the reactor, corresponding to the localization of the cells. Negligible Tc removal was noted in a reactor containing a mutant deficient in active Tc(VII) reductase, when supplied with formate as an electron donor. Formate or hydrogen was supplied as the electron donor for Tc(VII) reduction to cells immobilized in reactors operated in transverse (crossflow) and direct (dead-end filtration) modes, respectively. Flow-rate activity relationships were used to compare the performance of the reactors. A flow rate of 2.4 mL h(-1) supported the removal of 50% of the Tc from solution in a reactor operated in transverse mode with formate as an electron donor. In contrast, a flow rate of 0.7 mL h(-1), supported comparable Tc removal when hydrogen was introduced to a reactor operated in direct mode. The reduced reactor efficiency, when hydrogen was used as an electron donor, could be attributed, in part, to poor delivery of the gas to the cells. The biocatalyst was highly stable in the reactor; no loss in activity was noted over 200 h of continuous use. (c) 1997 John Wiley & Sons Inc. Biotechnol Bioeng 55: 505-510, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号