首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mouse embryos genetically null for all alphav integrins develop intracerebral hemorrhage owing to defective interactions between blood vessels and brain parenchymal cells. Here, we have used conditional knockout technology to address whether the cerebral hemorrhage is due to primary defects in vascular or neural cell types. We show that ablating alphav expression in the vascular endothelium has no detectable effect on cerebral blood vessel development, whereas deletion of alphav expression in central nervous system glial cells leads to embryonic and neonatal cerebral hemorrhage. Conditional deletion of alphav integrin in both central nervous system glia and neurons also leads to cerebral hemorrhage, but additionally to severe neurological defects. Approximately 30% of these mutants develop seizures and die by 4 weeks of age. The remaining mutants survive for several months, but develop axonal deterioration in the spinal cord and cerebellum, leading to ataxia and loss of hindlimb coordination. Collectively, these data provide evidence that alphav integrins on embryonic central nervous system neural cells, particularly glia, are necessary for proper cerebral blood vessel development, and also reveal a novel function for alphav integrins expressed on axons in the postnatal central nervous system.  相似文献   

2.
New blood vessels are initially formed through the assembly or sprouting of endothelial cells, but the recruitment of supporting pericytes and vascular smooth muscle cells (mural cells) ensures the formation of a mature and stable vascular network. Defective mural-cell coverage is associated with the poorly organized and leaky vasculature seen in tumors or other human diseases. Here we report that mural cells require ephrin-B2, a ligand for Eph receptor tyrosine kinases, for normal association with small-diameter blood vessels (microvessels). Tissue-specific mutant mice display perinatal lethality; vascular defects in skin, lung, gastrointestinal tract, and kidney glomeruli; and abnormal migration of smooth muscle cells to lymphatic capillaries. Cultured ephrin-B2-deficient smooth muscle cells are defective in spreading, focal-adhesion formation, and polarized migration and show increased motility. Our results indicate that the role of ephrin-B2 and EphB receptors in these processes involves Crk-p130(CAS) signaling and suggest that ephrin-B2 has some cell-cell-contact-independent functions.  相似文献   

3.
Choi YK  Kim KW 《BMB reports》2008,41(5):345-352
The cerebral microvessels possess barrier characteristics which are tightly sealed excluding many toxic substances and protecting neural tissues. The specialized blood-neural barriers as well as the cerebral microvascular barrier are recognized in the retina, inner ear, spinal cord, and cerebrospinal fluid. Microvascular endothelial cells in the brain closely interact with other components such as astrocytes, pericytes, perivascular microglia and neurons to form functional 'neurovascular unit'. Communication between endothelial cells and other surrounding cells enhances the barrier functions, consequently resulting in maintenance and elaboration of proper brain homeostasis. Furthermore, the disruption of the neurovascular unit is closely involved in cerebrovascular disorders. In this review, we focus on the location and function of these various blood-neural barriers, and the importance of the cell-to-cell communication for development and maintenance of the barrier integrity at the neurovascular unit. We also demonstrate the close relation between the alteration of the blood-neural barriers and cerebrovascular disorders.  相似文献   

4.
The expression of gamma-glutamyl transpeptidase (GGT) is a specific property of the brain capillary endothelium that constitutes the blood-brain barrier. We report here the detection of GGT, not only in endothelial cells, but also in pericytes, demonstrating that a brain capillary-specific pericyte population exists. We raised antibodies to GGT using a porcine brain microvessel GGT-protein-A (staphylococcal protein A) fusion protein as antigen which was expressed in Escherichia coli. The immunohistochemical analysis of the subcapillary distribution of GGT in porcine brain cortex and cerebellum sections by both light and electron microscopy revealed the expression of GGT in the capillary-adjacent pericytes in addition to the GGT-positive endothelial layer. We confirmed these data for cultured porcine brain microvascular endothelial cells and pericytes. GGT immunofluorescence could be detected in both cell types in culture. Endothelial cells exhibited a weak staining, whereas pericytes were strongly positive for GGT. Due to the high phagocytotic activity of pericytes and their location on the abluminal surface of the microvessels, we propose a possible protective or detoxifying function of GGT in cerebrovascular pericytes.  相似文献   

5.
Pericytes have been suggested to play a role in regulation of vessel stability; one mechanism for this stabilization may be via pericyte-derived vascular endothelial growth factor (VEGF). To test the hypothesis that differentiation of mesenchymal cells to pericytes/smooth muscle cells (SMC) is accompanied by VEGF expression, we used endothelial cell (EC) and mesenchymal cell cocultures to model cell-cell interactions that occur during vessel development. Coculture of EC and 10T1/2 cells, multipotent mesenchymal cells, led to induction of VEGF expression by 10T1/2 cells. Increased VEGF expression was dependent on contact between EC-10T1/2 and was mediated by transforming growth factorbeta (TGFbeta). A majority of VEGF produced in coculture was cell- and/or matrix-associated. Treatment of cells with high salt, protamine, heparin, or suramin released significant VEGF, suggesting that heparan sulfate proteoglycan might be sequestering some of the VEGF. Inhibition of VEGF in cocultures led to a 75% increase in EC apoptosis, indicating that EC survival in cocultures is dependent on 10T1/2-derived VEGF. VEGF gene expression in developing retinal vasculature was observed in pericytes contacting newly formed microvessels. Our observations indicate that differentiated pericytes produce VEGF that may act in a juxtacrine/paracrine manner as a survival and/or stabilizing factor for EC in microvessels.  相似文献   

6.
In the brain, the microvascular system is composed of endothelial cells surrounded by a layer of pericytes. The lack of smooth muscle cells in this tissue suggests that any contractile function must be performed by one or both of these cell types. The present study was undertaken in order to identify cells in terminal blood vessels that contain smooth muscle-like contractile machinery. Endothelial cells were reactive with antibodies against smooth muscle myosin but showed no other smooth muscle-related features. In contrast, pericytes of intact microvessels showed a pattern of protein expression similar to that of smooth muscle cells. Pericytes also behaved in tissue culture like cultured smooth muscle cells, with regard to the changes in expression of smooth muscle-related proteins. These data confirm the close relationship between smooth muscle cells and pericytes, and point to their contractile function in the brain microvessels.  相似文献   

7.
Cooperation between endothelial cells and pericytes is essential to the stabilization and maturation of blood microvessels. We developed a unique in vitro tissue‐engineered model to study angiogenesis. The human endothelialized reconstructed connective tissue model promotes the formation of a three‐dimensional branching network of capillary‐like tubes (CLT) with closed lumens. The purpose of this work was to investigate whether pericytes were spontaneously recruited around CLT in the model. We demonstrated that smooth muscle α‐actin (SMA)‐positive cells were found closely associated with PECAM‐1‐positive capillaries in the model. Twelve percent (±2.6) of SMA‐positive cells were detected along with 15% (±1.64) von Willebrand factor‐positive endothelial cells in the culture system after 31 days of in vitro maturation. Conversely, no SMA‐positive cells were detected in reconstructed connective tissues made solely of fibroblasts. Knowing that PDGF is a major factor in the recruitment of pericytes, we showed that blockade of the PDGFB receptor using the inhibitor AG1296 induced an overall 5, 2.6, and 2.4‐fold decrease in the SMA‐positive cells, von Willebrand factor‐positive cells, and number of capillaries, respectively. Using combinations of human GFP‐positive fibroblasts and endothelial cells, we demonstrated that pericytes were recruited from the fibroblast population in the model. In conclusion, our tissue‐engineered culture system promotes the spontaneous formation of a network of capillaries and the recruitment of pericytes derived from fibroblasts. Since pericytes are essential components of the blood microvasculature, this culture system is a powerful model to study angiogenesis and endothelial cell/pericyte interactions in vitro. J. Cell. Physiol. 227: 2130–2137, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
We used specific markers and fluorescence microscopy to identify and characterize cerebrovascular cells. Cultures were derived from brain microvessels isolated from normotensive (Wistar Kyoto, WKY) and spontaneously hypertensive (SHR) rat brains prior to, coincident with and following the onset of chronic hypertension. Endothelial cells were characterized using di-acyl LDL and non-muscle isoactin-specific antibodies. Cerebrovascular pericytes were identified with the anti-muscle and non-muscle actin antibody staining. Using this combination of cell culture and fluorescence localization, we have been able to demonstrate that brain pericytes are tightly associated with the endothelial cells of the hypertensive-prone and hypertensive cell cultures, but not with the normotensive endothelial cultures. While the endothelial-pericyte ratio in the hypertensive-prone microvascular cultures was between 5:1 and 10:1, the number of pericytes associated with the hypertensive rat brain cultures increased two to five times (2:1-1:1). Muscle and non-muscle actin antibody staining localized the spindle-shaped pericytes of the hypertensive microvascular colonies. Pericytes were found overlaying and encircling the endothelial cells. Normotensive pericytes were not endothelial-associated. Whereas the hypertensive pericyte is devoid of stress fibers, the normotensive pericyte is a larger, spread-out cell possessing numerous stress fibers rich in muscle and non-muscle actin. These results provide the first evidence that the etiology and inception of cerebrovascular disease may be pericyte-related and suggest that pericyte contraction could play a pivotal role in regulating the flow of blood within the brain microcirculation.  相似文献   

9.
10.
Physiologic wound healing is highly dependent on the coordinated functions of vascular and non-vascular cells. Resolution of tissue injury involves coagulation, inflammation, formation of granulation tissue, remodeling and scarring. Angiogenesis, the growth of microvessels the size of capillaries, is crucial for these processes, delivering blood-borne cells, nutrients and oxygen to actively remodeling areas. Central to angiogenic induction and regulation is microvascular remodeling, which is dependent upon capillary endothelial cell and pericyte interactions. Despite our growing knowledge of pericyte-endothelial cell crosstalk, it is unclear how the interplay among pericytes, inflammatory cells, glia and connective tissue elements shape microvascular injury response. Here, we consider the relationships that pericytes form with the cellular effectors of healing in normal and diabetic environments, including repair following injury and vascular complications of diabetes, such as diabetic macular edema and proliferative diabetic retinopathy. In addition, pericytes and stem cells possessing "pericyte-like" characteristics are gaining considerable attention in experimental and clinical efforts aimed at promoting healing or eradicating ocular vascular proliferative disorders. As the origin, identification and characterization of microvascular pericyte progenitor populations remains somewhat ambiguous, the molecular markers, structural and functional characteristics of pericytes will be briefly reviewed.  相似文献   

11.
A method for isolating the microvessels of the human placental villi has been developed in order to culture perivascular cells. It consists of an initial selection of the villi by serial sieving. The villi retained by the 75 μm sieve were digested by collagenase-dispase. A Percoll gradient permitted the isolation of microvessels still surrounded by stromal fibres and cells. Another digestion by collagenase-dispase eliminated the contaminant elements and allowed, after a new Percoll gradient, microvessels with endothelium, basement membrane and a few perivascular cells to be obtained. Each step of the isolation of microvessels was monitored by light or electron microscopy. Our study confirms the isolation of microvessels embedded in their basement membrane and the preservation of endothelial and perivascular cells after digestion. This method, which has permitted the culture of placental endothelial cells and pericytes, appears of interest for studying microvascular angiogenesis and permeability.  相似文献   

12.
Hyperglycemia-induced oxidative stress leads to diabetes-associated damage to the microvasculature of the brain. Pericytes in close proximity to endothelial cells in the brain microvessels are vital to the integrity of the blood–brain barrier and are especially susceptible to oxidative stress. According to our recently published results, streptozotocin-diabetic mouse brain exhibits oxidative stress and loose pericytes by twelve weeks of diabetes, and cerebral pericytes cultured in high glucose media suffer intracellular oxidative stress and apoptosis. Oxidative stress in diabetes is hypothesized to be caused by reactive oxygen species (ROS) produced during hyperglycemia-induced enhanced oxidative metabolism of glucose (respiration). To test this hypothesis, we investigated the effect of high glucose on respiration rate and ROS production in mouse cerebral pericytes. Previously, we showed that pharmacological inhibition of mitochondrial carbonic anhydrases protects the brain from oxidative stress and pericyte loss. The high glucose-induced intracellular oxidative stress and apoptosis of pericytes in culture were also reversed by inhibition of mitochondrial carbonic anhydrases. Therefore, we extended our current study to determine the effect of these inhibitors on high glucose-induced increases in pericyte respiration and ROS. We now report that both the respiration and ROS are significantly increased in pericytes challenged with high glucose. Furthermore, inhibition of mitochondrial carbonic anhydrases significantly slowed down both the rate of respiration and ROS production. These data provide new evidence that pharmacological inhibitors of mitochondrial carbonic anhydrases, already in clinical use, may prove beneficial in protecting the brain from oxidative stress caused by ROS produced as a consequence of hyperglycemia-induced enhanced respiration.  相似文献   

13.
Primary culture of microvascular endothelial cells from bovine retina   总被引:11,自引:0,他引:11  
Summary To provide an in vitro system for studying retinal capillary function we have developed methods for isolation and culture of microvascular endothelial cells from retina. Retinal microvessels were isolated by homogenization of the retina and collection of the microvessels onto nylon mesh. Treatment of the isolated microvessels with collagenase and dispase followed by Percoll gradient centrifugation yielded endothelial cells that were largely free of pericytes. A homogeneous population of endothelial cells that were capable of at least six population doublings was obtained by plating onto a fibronectin coated substrate in plasma derived serum. The endothelial origin of these cells was confirmed by the presence of Factor VIII antigen, angiotensin converting enzyme activity, numerous tight junctions, and a cell surface that did not bind platelets. A second cell type, which did not exhibit these cell markers and which is presumably the intramural pericyte, was obtained when the isolated microvessels were plated on tissue culture grade plastic in fetal bovine serum. Supported by Research Grants 5R01-EY03772 and 5R01-ES02380 from the U.S. Public Health Service (G. W. G.) and Established Investigator Award 31-107 from the American Heart Association (A. L. B.).  相似文献   

14.
Abstract: The aim of this study was to purify microvessels from bovine retina and also to cultivate bovine retinal endothelial cells (BRECs) or intramural pericytes, to determine their fatty acid composition. Microvessels were obtained after Dounce homogenization of the retina followed by centrifugation on albumin cushion and finally microvessels in the pellet were trapped on a 100-µm nylon filter. Contamination of microvessel preparations by neuronal tissue, assessed after both microscopic examination and western blotting with a monoclonal antibody raised against rhodopsin, was minor. In the entire bovine retina, docosahexaenoic acid (DHA) represented 23.3% of the total fatty acids and there was about three times less arachidonic acid (AA) (8.2%) than DHA. In contrast, DHA and AA levels were almost equivalent in the retinal microvessels with ∼10% of total fatty acids. When compared with intact microvessels, the DHA proportion of confluent monolayers of both BRECs or pericytes in primary cultures dropped to ∼2% of the total fatty acids, whereas AA was unchanged. Culture medium supplementation with unesterified DHA (10 µ M ) restored the DHA proportion of BRECs close to the microvascular value at the expense of linoleic acid without affecting AA very much. In contrast, DHA supplementation in pericytes increased the DHA proportion of these cells at the expense of AA. In conclusion, DHA of intact microvessels represented 10% of the total fatty acids, which was close to the AA proportion. Mild DHA supplementation of BRECs or pericytes in primary cultures restored their DHA proportion to the original microvessel value. This high percentage of polyunsaturated fatty acids in retinal microvessels should allow us to test the hypothesis that oxidation products derived from these fatty acids may be involved in the pathogenic process leading to diabetic retinopathy.  相似文献   

15.
16.
Connexin43 (Cx43), the main protein constituting the gap junctions between astrocytes, has previously been demonstrated in endothelial cells of somatic vessels where the intercellular coupling that it provides plays a role in endothelial proliferation and migration. In this study, Cx43 expression was analysed in human brain microvascular endothelial cells of the cortical plate of 18-week foetal telencephalon, in adult cerebral cortex and glioma (astrocytomas). The study was carried out by immunocytochemistry utilizing a Cx43 monoclonal antibody and a polyclonal antibody anti-GLUT1 (glucose transporter isoform 1) to identify the endothelial cells and to localize Cx43. Endothelial Cx43 is differently expressed in the cortical plate, cerebral cortex and astrocytoma. Within the cortical plate and tumour, Cx43 is highly expressed in microvascular endothelial cells whereas it is virtually absent in the cerebral cortex microvessels. The high expression of the gap junction protein in developing brain, as well as in brain tumours, may be related to the growth status of the microvessels during brain and tumour angiogenesis. The lack of endothelial Cx43 in the cerebral cortex is in agreement with the characteristics of the mature brain endothelial cells that are sealed by tight junctions. In conclusion, the results indicate that endothelial Cx43 expression is developmentally regulated in the normal human brain and suggest that it is controlled by the microenvironment in both normal and tumour-related conditions.  相似文献   

17.
The angiogenic process is precisely regulated by different molecular mechanisms, with a balance between stimulatory and inhibitory factors in embryonic development. Transmembrane proteins of the ADAM (a disintegrin and metalloprotease) family play a critical role in embryogenesis and are involved in protein ectodomain shedding, as well as cell-cell and cell-matrix interactions. In the present study, we found that ADAM17 is expressed spatiotemporally in the tectal layers during chicken embryonic development. To investigate the effect of ADAM17 overexpression on angiogenesis, chicken ADAM17 plasmids were transfected into the developing tectum in vivo by electroporation. Results showed that overexpression of ADAM17 induces morphological changes of brain microvessels, such as an increase in diameter, of capillary sprouting from radial microvessels and an increase in the number of pericytes, but not of endothelial cells. Our data suggest that overexpression of ADAM17 in the developing tectum promotes angiogenesis by increasing the number of pericytes and capillary sprouting in the radial vessels.  相似文献   

18.
The blood-brain barrier (BBB) is composed of the cerebral microvascular endothelium, which, together with astrocytes, pericytes, and the extracellular matrix (ECM), contributes to a "neurovascular unit". It was our objective to clarify the impact of endogenous extracellular matrices on the barrier function of BBB microvascular endothelial cells cultured in vitro. The study was performed in two consecutive steps: (i) The ECM-donating cells (astrocytes, pericytes, endothelial cells) were grown to confluence and then removed from the growth substrate by a protocol that leaves the ECM behind. (ii) Suspensions of cerebral endothelial cells were seeded on the endogenous matrices and barrier formation was followed with time. In order to quantify the tightness of the cell junctions, all experiments were performed on planar gold-film electrodes that can be used to read the electrical resistance of the cell layers as a direct measure for endothelial barrier function (electric cell-substrate impedance sensing, ECIS). We observed that endogenously isolated ECM from both, astrocytes and pericytes, improved the tightness of cerebral endothelial cells significantly compared to ECM that was derived from the endothelial cells themselves as a control. Moreover, when cerebral endothelial cells were grown on extracellular matrices produced by non-brain endothelial cells (aorta), the electrical resistances were markedly reduced. Our observations indicate that glia-derived ECM - as an essential part of the BBB - is required to ensure proper barrier formation of cerebral endothelial cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号