首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 192 毫秒
1.
Shear stress, a mechanical force created by blood flow, is known to affect the developing cardiovascular system. Shear stress is a function of both shear rate and viscosity. While established techniques for measuring shear rate in embryos have been developed, the viscosity of embryonic blood has never been known but always assumed to be like adult blood. Blood is a non-Newtonian fluid, where the relationship between shear rate and shear stress is nonlinear. In this work, we analyzed the non-Newtonian behavior of embryonic chicken blood using a microviscometer and present the apparent viscosity at different hematocrits, different shear rates, and at different stages during development from 4 days (Hamburger-Hamilton stage 22) to 8 days (about Hamburger-Hamilton stage 34) of incubation. We chose the chicken embryo since it has become a common animal model for studying hemodynamics in the developing cardiovascular system. We found that the hematocrit increases with the stage of development. The viscosity of embryonic avian blood in all developmental stages studied was shear rate dependent and behaved in a non-Newtonian manner similar to that of adult blood. The range of shear rates and hematocrits at which non-Newtonian behavior was observed is, however, outside the physiological range for the larger vessels of the embryo. Under low shear stress conditions, the spherical nucleated blood cells that make up embryonic blood formed into small aggregates of cells. We found that the apparent blood viscosity decreases at a given hematocrit during embryonic development, not due to changes in protein composition of the plasma but possibly due to the changes in cellular composition of embryonic blood. This decrease in apparent viscosity was only visible at high hematocrit. At physiological values of hematocrit, embryonic blood viscosity did not change significantly with the stage of development.  相似文献   

2.
We have shown previously that the survival of human red blood cells during slow freezing at 2% hematocrit is dependent more on the magnitude of the unfrozen fraction than on the salt concentration in that unfrozen fraction. In parallel, first Nei and more recently Pegg and colleagues have shown that survival is affected by the hematocrit of the suspension. Freezing at hematocrits above 30% becomes increasingly damaging. The present studies were designed to see whether there is a link between the two phenomena. Cells were suspended at nominal hematocrits of 0.4, 2, 8, 40, or 60% in five test solutions of glycerol-NaCl. The test solutions were of such composition that when frozen to a specified temperature, the magnitude of the unfrozen fraction differed but the NaCl concentration (ms) remained constant. At low hematocrits (0.4 to 8%), red cell survival was dependent predominantly on the unfrozen fraction and was relatively independent of the salt concentration in that fraction. This we term the "rheological" effect because injury appears to be related to interaction with the ice walls and perhaps is due to shearing forces or cell deformation. But at high hematocrits (40 or 60%), cell survival became dependent on both the unfrozen fraction and the salt concentration in that fraction. When freezing occurs at high hematocrits, increasing numbers of cells are presumably brought into contact with their neighbors. Furthermore, they are increasingly shrunken cells, for the progressive removal of liquid water, which is responsible for the crowding, also causes a rise in ms and the consequent osmotic shrinkage of cells. Our data suggest that at unfrozen fractions above those producing injurious rheological forces, the tight packing of less shrunken cells (i.e., high hematocrit, low ms) and the extensive shrinking of loosely packed cells (high ms, low hematocrit) are both quite innocuous. Injury becomes substantial only when extensively shrunken cells are brought into close contact (i.e., high ms, high hematocrit). At high hematocrit the cells occupy a substantial fraction of the unfrozen space, and the water that they lose during slow freezing adds substantially to the volume of extracellular ice. Accordingly, we defined other measures of unfrozen fraction that include these perturbations. However, we found that the conclusions on the relation between survival, unfrozen fraction, and hematocrit were not affected by the method of expressing the unfrozen fraction. Freezing at high hematocrit to high ms and low values of unfrozen fraction is one way to produce contact between shrunken cells at low temperatures.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Blood viscosity and optimal hematocrit in narrow tubes   总被引:1,自引:0,他引:1  
Blood viscosity in normal adults was measured in glass tubes with diameters of 50, 100 and 500 microns for a wide range of adjusted feed hematocrits (15-70%). Blood viscosity decreased at each of the adjusted feed hematocrits when going from a 500-micron tube to a 50-micron tube. The viscosity reduction increased with increasing hematocrit. The steepness in the hematocrit-viscosity curves decreased with decreasing tube diameter. Erythrocyte transport efficiency (hematocrit/blood viscosity) was calculated to estimate the optimal hematocrit for oxygen transport. Optimal hematocrit averaged 38% in 500-micron tubes, 44% in 100-micron tubes and 51% in 50-micron tubes. Our results suggest that the strong F?hraeus-Lindqvist effect at high hematocrits may help to maintain oxygen transport in polycythemic patients as long as the driving pressure is sufficient.  相似文献   

4.
We found a difference between the venous hematocrits of immersed and nonimmersed arms during immersion of the lower body in cold water but not during a comparable exposure to warm water. Fourteen healthy men were exposed to three different experimental conditions: arm immersion, body immersion, and control. The men always sat upright while both upper extremities hung vertically at their sides. During arm immersion, one forearm was completely immersed for 30 min in either cold water (28 degrees C, n = 7) or warm water (38 degrees C, n = 7). This cold-warm water protocol was repeated on separate days for exposure to the remaining conditions of body immersion (immersion of 1 forearm and all tissues below the xiphoid process) and control (no immersion). Blood samples were simultaneously drawn from cannulated veins in both antecubital fossae. Hematocrit difference (Hct diff) was measured by subtracting the nonimmersed forearm's hematocrit (Hct dry) from the immersed forearm's hematocrit (Hct wet). Hct diff was approximately zero when the men were exposed to the control condition and body immersion in warm water. In the remaining conditions, Hct wet dropped below Hct dry (P less than 0.01, 3-way analysis of variance). The decrements of Hct diff showed there were differences between venous hematocrits in immersed and nonimmersed regions of the body, indicating that changes of the whole-body hematocrit cannot be calculated from a large-vessel hematocrit soon after immersing the lower body in cold water.  相似文献   

5.
Polycythemia increases blood viscosity so that systemic O2 delivery (QO2) decreases and its regional distribution changes. We examined whether hypoxia, by promoting local vasodilation, further modified these effects in resting skeletal muscle and gut in anesthetized dogs after hematocrit had been raised to 65%. One group (CON, n = 7) served as normoxic controls while another (HH, n = 6) was ventilated with 9% O2--91% N2 for 30 min between periods of normoxia. Polycythemia decreased cardiac output so that QO2 to both regions decreased approximately 50% in both groups. In compensation, O2 extraction fraction increased to 65% in muscle and to 50% in gut. When QO2 was reduced further during hypoxia, blood flow increased in muscle but not in gut. Unlike previously published normocythemic studies, there was no initial hypoxic vasoconstriction in muscle. Metabolic vasodilation during hypoxia was enhanced in muscle when blood O2 reserves were first lowered by increased extraction with polycythemia alone. The increase in resting muscle blood flow during hypoxia with no change in cardiac output may have decreased O2 availability to other more vital tissues. In that sense and under these experimental conditions, polycythemia caused a maladaptive response during hypoxic hypoxia.  相似文献   

6.
To study the distribution of blood flow after blood volume expansion, seven miniature swine ran at high speed (17.6-20 km/h, estimated to require 115% of maximal O2 uptake) on a motor-driven treadmill on two occasions: once during normovolemia and once after an acute 15% blood volume expansion (homologous whole blood). O2 uptake, cardiac output, heart rate, mean arterial pressure, and distribution of blood flow (with radiolabeled microspheres) were measured at the same time during each of the exercise bouts. Maximal heart rate was identical between conditions (mean 266); mean arterial pressure was elevated during the hypovolemic exercise (149 +/- 5 vs. 137 +/- 6 mmHg). Although cardiac output was higher and arterial O2 saturation was maintained during the hypervolemic condition (10.5 +/- 0.7 vs. 9.3 +/- 0.6 l/min), O2 uptake was not different (1.74 +/- 0.08 vs. 1.74 +/- 0.09 l/min). Mean blood flows to cardiac (+12.9%), locomotory (+9.8%), and respiratory (+7.5%) muscles were all elevated during hypervolemic exercise, while visceral and brain blood flows were unchanged. Calculated resistances to flow in skeletal and cardiac muscle were not different between conditions. Under the experimental conditions of this study, O2 uptake in the miniature swine was limited at the level of the muscles during hypervolemic exercise. The results also indicate that neither intrinsic contractile properties of the heart nor coronary blood flow limits myocardial performance during normovolemic exercise, because both the pumping capacity of the heart and the coronary blood flow were elevated in the hypervolemic condition.  相似文献   

7.
Direct measurements from many laboratories indicate that the oxygen tension in skeletal muscle is significantly less than in the large veins draining these tissues. Harris (1986) has proposed that because of the parallel anatomic arrangement of large arterioles and venules in skeletal muscle, a counter-current exchange between these vessels can occur. He theorized that diffusion of O2 between arteriole and venule would lower the PO2 in the blood as it enters capillaries and result in a decreased tissue PO2 and an increase in large vein PO2. Calculations (Appendix) show that the amount of O2 transferred between arteriole and venule is inadequate to account for this difference in PO2 between tissue and veins due to the small surface area that is involved. It is well documented that the microcirculatory hematocrit ranges between 20 and 50% of that in the supply vessels. The reduced hematocrit lowers the oxygen content in these vessels and results in a low oxygen tension in the surrounding tissue. True arteriovenous shunts are not present in most skeletal muscles, but 15-20% of the microvessels represent thoroughfare or preferential flow channels. It is suggested that these vessels contain a greater than normal hematocrit to account for a conservation of red cell mass across the microcirculation. Furthermore, it is shown that the hematocrit in the preferential flow channels is an inverse function of the flow rate for any level of the microcirculatory hematocrit. The increased hematocrit raises the flow resistance in these vessels which reduces flow further and represents a positive feedback condition which may contribute to the intermittent and uneven flow patterns which are present within the microcirculation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A non-Newtonian shear-thinning constitutive relation is proposed to study pulsatile flow of whole blood in a cylindrical tube. The constitutive relation, which satisfies the principle of material frame indifference, is derived from viscometric data obtained from whole blood over a range of hematocrits. Assuming axisymmetric flow in a rigid cylindrical tube of constant diameter, a second-order, nonlinear partial differential equation governing the axial velocity component is obtained. Imposing a periodic pressure gradient, the governing equation was solved numerically using finite difference methods over a range of Stokes values and hematocrits. For a forcing frequency of 1 Hz, results are presented over tube diameters ranging between 0.1 and 2 cm and over hematocrits ranging between 10 and 80%. For a given hematocrit, velocity profiles predicted for the non-Newtonian model under sinusoidal forcing reveal attenuated volume flow rate and enhanced vorticity transport over the tube cross-section relative to a Newtonian fluid having a viscosity corresponding to the high shear-rate limit. For moderate to high Stokes numbers, consistent with flow in large arteries, our results revealed a viscosity distribution that was nearly time invariant. An analytic solution was obtained for a fluid having arbitrarily prescribed radially varying, temporally invariant viscosity and density distributions under arbitrary periodic pressure forcing. Close agreement was observed between our numerical and analytical results when the imposed viscosity distribution was chosen to approximate the time-averaged viscosity distribution predicted by the shear-thinning non-Newtonian model. For St > or approximately= 100, the disparity between our results and those of a Newtonian fluid of constant viscosity grows with a decreasing ratio of the DC to AC components of the pressure-gradient amplitude below 50%. In particular, for any purely oscillatory pressure-gradient (vanishing DC component), the Womersley solution is a particularly poor predictor of the amplitude and phase of wall shear rate for over half of the flow cycle. Under such circumstances, the analytical models presented here provide a simple and accurate means of estimating instantaneous wall shear rate, knowing only the pressure gradient and hematocrit.  相似文献   

9.
The effects of aging on muscle microvascular structure and function may play a key role in performance deficits and impairment of O2 exchange within skeletal muscle of senescent individuals. To determine the effects of aging on capillary geometry, red blood cell (RBC) hemodynamics, and hematocrit in a muscle of mixed fiber type, spinotrapezius muscles from Fischer 344 x Brown Norway hybrid rats aged 6-8 mo [young (Y); body mass 421 +/- 10 g, n = 6] and 26-28 mo [old (O); 561 +/- 12 g, n = 6] were observed by high-resolution transmission light microscopy under resting conditions. The percentage of RBC-perfused capillaries (Y: 78 +/- 3%; O: 75 +/- 2%) and degree of tortuosity and branching (Y: 13 +/- 2%; O: 13 +/- 2%, additional capillary length) were not different in O vs. Y muscles. Lineal density of RBC-perfused capillaries in O was significantly reduced (Y: 30.7 +/- 1.8, O: 22.8 +/- 3.1 capillaries/mm; P < 0.05). However, RBC-perfused capillaries from O rats (n = 78) exhibited increased RBC velocity (VRBC) (Y: 219 +/- 12, O: 310 +/- 14 microm/s; P < 0.05) and RBC flux (FRBC) (Y: 27 +/- 2, O: 41 +/- 2 RBC/s; P < 0.05) vs. Y rats (n = 66). Thus O2 delivery per unit of muscle was not different between groups (Y: 894 +/- 111, O: 887 +/- 118 RBC. s-1. mm muscle-1). Capillary hematocrit was not different in Y vs. O rats (Y: 26 +/- 1%, O: 28 +/- 1%: P > 0.05). These data indicate that in resting spinotrapezius muscle, aging decreases the lineal density of RBC-perfused capillaries while increasing mean VRBC and FRBC within those capillaries. Whereas muscle conductive O2 delivery and capillary hematocrit were unchanged, elevated VRBC reduces capillary RBC transit time and may impair the diffusive transport of O2 from blood to myocyte particularly under exercise conditions.  相似文献   

10.
Calculations of intracapillary oxygen tension distributions in muscle   总被引:1,自引:0,他引:1  
Characterizing the resistances to O(2) transport from the erythrocyte to the mitochondrion is important to understanding potential transport limitations. A mathematical model is developed to accurately determine the effects of erythrocyte spacing (hematocrit), velocity, and capillary radius on the mass transfer coefficient. Parameters of the hamster cheek pouch retractor muscle are used in the calculations, since significant amounts of experimental physiological data and mathematical modeling are available for this muscle. Capillary hematocrit was found to have a large effect on the PO(2) distribution and the intracapillary mass transfer coefficient per unit capillary area, k(cap), increased by a factor of 3.7 from the lowest (H=0.25) to the highest (H=0.55) capillary hematocrits considered. Erythrocyte velocity had a relatively minor effect, with only a 2.7% increase in the mass transfer coefficient as the velocity was increased from 5 to 25 times the observed velocity in resting muscle. The capillary radius is varied by up to two standard deviations of the experimental measurements, resulting in variations in k(cap) that are <15% at the reference case. The magnitude of these changes increases with hematocrit. An equation to approximate the dependence of the mass transfer coefficient on hematocrit is developed for use in simulations of O(2) transport from a capillary network.  相似文献   

11.
In an attempt to approach a system of isolated exercising muscle in humans, a model has been developed that enables the study of muscle activity and metabolism over the quadriceps femoris (QF) muscles while the rest of the body remains relaxed. The simplest version includes the subject sitting on a table with a rod connecting the ankle and the pedal arm of a bicycle ergometer placed behind the subject. Exercise is performed by knee extension from a knee angle of 90 to approximately 170 degrees while flywheel momentum repositions the relaxed leg during flexion. Experiments where electromyographic recordings have been taken from biceps femoris, gastrocnemius, tibialis anterior, and other muscles in addition to QF indicate that only the QF is active and that there is an equal activation of the lateral, medial, and rectus femoris heads relative to maximum. Furthermore, virtually identical pulmonary O2 uptake (Vo2) during and without application of a pressure cuff below the knee emphasizes the inactivity of the lower leg muscles. The advantages of the model are that all external work can be localized to a single muscle group suitable for taking biopsies and that the blood flow in and sampling from the femoral vein are representative of the active muscles. Thus all measurements can be closely related to changes in the working muscle. Using this model we find that a linear relationship exists between external work and pulmonary Vo2 over the submaximal range and the maximal Vo2 per kilogram of muscle may be as much as twice as high as previously estimated.  相似文献   

12.
Muscles driving rhythmic locomotion typically show strong dependence of power on the timing or phase of activation. This is particularly true in insects' main flight muscles, canonical examples of muscles thought to have a dedicated power function. However, in the moth (Manduca sexta), these muscles normally activate at a phase where the instantaneous slope of the power-phase curve is steep and well below maximum power. We provide four lines of evidence demonstrating that, contrary to the current paradigm, the moth's nervous system establishes significant control authority in these muscles through precise timing modulation: (i) left-right pairs of flight muscles normally fire precisely, within 0.5-0.6 ms of each other; (ii) during a yawing optomotor response, left-right muscle timing differences shift throughout a wider 8 ms timing window, enabling at least a 50 per cent left-right power differential; (iii) timing differences correlate with turning torque; and (iv) the downstroke power muscles alone causally account for 47 per cent of turning torque. To establish (iv), we altered muscle activation during intact behaviour by stimulating individual muscle potentials to impose left-right timing differences. Because many organisms also have muscles operating with high power-phase gains (Δ(power)/Δ(phase)), this motor control strategy may be ubiquitous in locomotor systems.  相似文献   

13.
The transmitted light strength (TS) through a thin blood layer changes with variation in blood flow, such as positive streaming transparency for low hematocrits and negative streaming transparency for high hematocrits. These phenomena are examined theoretically and experimentally. Maxwell’s equations are solved assuming that erythrocytes are oblate spheroids to investigate these phenomena due to flowing blood. The theoretical results reveal that the scattering and absorption cross sections for flowing blood are larger than those for stagnant blood. Experimental results indicate that the TS for both oxygenated and deoxygenated flowing blood, with a hematocrit of up to approximately 20%, was stronger than that for stagnant blood. The TS decreased for flowing blood with a hematocrit of approximately 20% or greater. Applying the theoretical scattering and absorption cross sections to the absorption and multiple scattering theory of Victor Twersky, the changes in the TS due to flowing blood are obtained theoretically. From the theoretical and experimental results, the positive streaming transparency phenomenon of flowing blood with a low hematocrit and the negative streaming transparency phenomenon with a high hematocrit are found to result from increased scattering and absorption cross sections because of the orientation of flowing erythrocytes.  相似文献   

14.
《Biorheology》1995,32(1):29-42
In spite of numerous investigations of erythrocyte rheology, there is limited information about the influence of erythrocyte suspensions on whole organ pressure-flow relationships. In this study, we present whole organ pressure-flow curves for resting vasodilated gracilis muscle of the rat, in which the microanatomy and vessel properties have been determined previously. For pure erythrocyte suspensions from donor rats, the organ resistance increases only mildly with perfusion time (less than a 5% shift over a one-hour perfusion time), while in contrast, erythrocyte suspensions containing leukocytes show an increases of resistance near 100% over a period of 25 min. Variation in pressure-flow curves in the muscle at the same arterial hematocrit between different rats is less than 15%. The pressure-flow relation for pure erythrocyte suspensions depends on hematocrit. Shear thinning is exhibited at high hematocrits, while Newtonian behavior is approached at arterial hematocrits below 15%. The whole organ apparent viscosity for pure erythrocyte suspensions (normalized by cell-free plasma resistance) is a non-linear function of hematocrit; at physiological pressures, it reaches values comparable to those of apparent viscosities measured in rotational viscometers or in in vitro tube flow (diameters greater than 0.8 mm). The apparent viscosities estimated from the whole organ experiments tend to be higher than those measured in straight tubes under in vitro conditions. The pressure-flow curves for pure erythrocyte suspensions are shifted towards lower pressures than the curves for mixed suspensions of erythrocytes at the same hematocrit and with leukocytes at physiological cell counts. These acute experiments show that pure erythrocyte suspensions yield highly reproducible resistances in the skeletal muscle microcirculation with dilated arterioles. Relative apparent viscosities measured in vivo are higher than those measured in straight glass tubes of comparable dimesions.  相似文献   

15.
ABSTRACT.   Hematocrits may provide information about the physiological condition of birds, but, to be a useful measure, information is needed concerning how hematocrits vary among individuals and over time. We examined the repeatability of hematocrits in a population of Gray Catbirds ( Dumetella carolinensis ) in Pennsylvania at several time scales and also examined the repeatability of body mass, another measure commonly used as an indicator of condition. Both hematocrit ( r = 0.64) and mass ( r = 0.65) were repeatable ( P < 0.01) for first captures between years and between first and second captures within a year ( r = 0.41 and r = 0.50, respectively; P < 0.01), but not repeatable ( P > 0.05) between captures in different months within a year ( r = 0.11 for both). Repeatability of both measures differed by sex and age. Females exhibited repeatability of hematocrit and body mass only between years, while male hematocrits were repeatable between years and between first and second captures within a season. Male mass was repeatable for all time periods. Hematocrits of younger birds were repeatable between captures within a season and their body mass was repeatable between months and weeks while hematocrits of older birds were not repeatable and their body mass was repeatable only between captures in a season. Our results indicate that hematocrits and body mass had similar repeatability coefficients overall, but that hematocrits of Gray Catbirds were a consistent trait of individuals only across years. Because repeatability between captures and months depended on sex and age, we conclude that the hematocrit is a useful measure of individual performance only in limited circumstances.  相似文献   

16.
Blood flow and glycogen use in hypertrophied rat muscles during exercise   总被引:1,自引:0,他引:1  
Previous findings suggest that skeletal muscle that has enlarged as a result of removal of synergistic muscles has a similar metabolic capacity and improved resistance to fatigue compared with normal muscle. The purpose of the present study was to follow blood flow and glycogen loss patterns in hypertrophied rat plantaris plantaris and soleus muscles during treadmill exercise to provide information on the adequacy of perfusion of the muscles during in vivo exercise. Thirty days following surgical removal of gastrocnemius muscle, blood flows (determined with radiolabeled microspheres) and glycogen concentrations were determined in all of the ankle extensor muscles of experimental and sham-operated control rats during preexercise and after 5-6 min of treadmill exercise at 15 m/min. There were no differences (P greater than 0.05) in blood flows per unit mass or glycogen concentrations between control and hypertrophied plantaris or soleus muscles at either time, although both muscles were larger (P less than 0.05) in the experimental group (plantaris: 95%; soleus: 40%). None of the other secondary ankle extensor muscles (tibialis posterior, flexor digitorum longus or flexor hallicus longus) hypertrophied in response to removal of gastrocnemius. These results provide indirect evidence that O2 delivery in the enlarged muscles is not compromised during low-intensity treadmill exercise due to limited perfusion.  相似文献   

17.
N Ohshima  M Sato  N Oda 《Biorheology》1988,25(1-2):339-348
Velocities of the red blood cell (RBC) and the suspending medium in glass capillaries of 9 to 20 micron were measured under microscopic observation. The effects of physical factors such as driving pressure, capillary diameter, hematocrits and RBC deformability on flow velocities were studied using freshly drawn blood of the rat resuspended in phosphate buffered saline solution in the hematocrit range between 5 and 12.5%. These RBC suspensions were made to flow through the test glass capillaries under known negative driving pressures. Ratios of capillary hematocrit to feed hematocrit taken as measures of the Fahraeus effect showed almost constant value of about 0.74. While, ratios of capillary hematocrit to discharge hematocrit showed a characteristic dependence on capillary diameter, showing minimal values at about 13 micron in capillary diameter. The same hematocrit ratios were found to be well correlated with values of wall shear rates estimated from the relative RBC velocities.  相似文献   

18.
An increased hematocrit could enhance peripheral O2 transport during exercise by improving arterial O2 content. Conversely, it could reduce maximal delivery of O2 by limiting cardiac output during exercise or by limiting the distribution of blood flow to peripheral capillaries with high O2 extractions. We studied O2 transport at rest and during graded treadmill exercise in splenectomized tracheostomized dogs at normal hematocrit (38 +/- 3%), and 48 h after transfusion of type-matched donor cells. This procedure increased hematocrit (60 +/- 3%) but also increased blood volume (P less than 0.05). Following transfusion, resting cardiac output (QT) and heart rate were not different. During exercise, QT was significantly lower at each level of O2 consumption (VO2) at high hematocrit (P less than 0.01). A reduction in QT was also seen during polycythemic exercise with hypoxemia produced by breathing 12 or 10% O2 in N2. Despite the reduction in QT, mixed venous PO2 was not lower at high hematocrit, and the increase in base deficit with VO2 was not different from control measurements. O2 delivery (QT X arterial content) was similar at each level of VO2 at both levels of hematocrit, during both normoxic and hypoxic studies. Both systemic and pulmonary arterial pressures were increased at rest after transfusion (P less than 0.05). However, pulmonary and systemic pressures were not higher than control during exercise at high hematocrit. We conclude that a hematocrit of 60% with increased blood volume is not associated with a cardiac limitation of O2 delivery, nor does it interfere with peripheral O2 extraction during exercise in the dog.  相似文献   

19.
Viscoelasticity of Human Blood   总被引:3,自引:0,他引:3  
Measurements made for oscillatory flow of blood in circular tubes show that blood possesses elastic properties which make consideration of its viscous properties alone inadequate. Results are for a frequency of 10 Hz while varying the amplitude of the velocity gradient for red blood cells in plasma at concentrations ranging from 0 to 100% apparent hematocrit. For velocity gradients less than 1-2 sec-1 both the viscous and elastic components of the shearing stress are linearly related to the gradient. For hematocrits above 20% the elastic component of the complex coefficient of viscosity increases with hematocrit approximately to the third power while the viscous component increases exponentially. Oscillatory flow measurements at very low hematocrits, when extrapolated to zero cell concentration, give the intrinsic viscosity of the average individual isolated red cell. The viscous part of this is found to be 1.7 which is compared with theoretical values from the rigid ellipsoid model for which the minimum possible value is 2.5. This difference is attributed to cell deformability. With increasing velocity gradient nonlinear properties develop. The viscous component of the complex viscosity becomes of the order of the steady flow viscosity at high gradients while the elastic component tends to decrease in inverse proportion to the gradient. Thus, the elastic component of the oscillatory stress tends to saturate, this tendency appearing at the approximate level of the yield stress.  相似文献   

20.
Normovolemic polycythemia did not improve the ability of either resting muscle or gut to maintain O2 uptake (VO2) during severe hypoxia because of the adverse effects of increased viscosity on blood flow to those regions. The present study tested whether increased metabolic demand would promote vasodilation sufficiently to overcome those effects. We measured whole body, muscle, and gut blood flow, O2 extraction, and VO2 in anesthetized dogs after increasing hematocrit to 65% and raising O2 demand with 2,4-dinitrophenol (n = 8). We also tested whether regional denervation (n = 8) and hypervolemia (n = 6) affected these responses. After raising hematocrit and metabolism, the dogs were ventilated with air, with 9% O2-91% N2, and again with air for 30-min periods. Reduced blood flow and increased O2 demand, caused by increased blood viscosity and 2,4-dinitrophenol, respectively, increased O2 extraction so that muscle VO2 was nearly supply limited in normoxia. Denervation showed that vasoconstriction had increased in gut and muscle with hypoxia onset but this was overcome after 15 min. By then, muscle was receiving a major portion of cardiac output, whereas gut showed little change. With hypervolemia cardiac output increased in hypoxia but neither gut nor muscle increased blood flow in those experiments. Because regional and whole body VO2 fell in all groups during hypoxia to the same extent found earlier in normocythemic dogs, any real benefit of polycythemia under the conditions of these experiments was dubious at best.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号