首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Linkage analysis in familial breast and ovarian cancer and studies of allelic deletion in sporadic ovarian tumors have identified a region on chromosome 17q containing a candidate tumor-suppressor gene (referred to as BRCA1) of likely importance in ovarian carcinogenesis. We have examined normal and tumor DNA samples from 32 patients with sporadic and 8 patients with familial forms of the disease, for loss of heterozygosity (LOH) at 21 loci on chromosome 17 (7 on 17p and 14 on 17q). LOH on 17p was 55% (22/40) for informative 17pl3.1 and 17pl3.3 markers. When six polymorphic markers flanking the familial breast/ovarian cancer susceptibility locus on 17ql2-q21 were used, LOH was 58% (23/40), with one tumor showing telomeric retention. Evaluation of a set of markers positioned telomeric to BRCA1 resulted in the highest degree of LOH, 73% (29/40), indicating that a candidate locus involved in ovarian cancer may reside distal to BRCA1. Five of the tumors demonstrating allelic loss for 17q markers were from individuals with a strong family history of breast and ovarian cancer. More important, two of these tumors (unique patient number [UPN] 57 and UPN 79) retained heterozygosity for all informative markers spanning the BRCA1 locus but showed LOH at loci distal to but not including the anonymous markers CMM86 (D17S74) and 42D6 (D17S588), respectively. Deletion mapping of seven cases (two familial and five sporadic) showing limited LOH on 17q revealed a common region of deletion, distal to GH and proximal to D17S4, that spans −25 cM. These results suggest that a potential tumor-suppressor gene involved in both sporadic and familial ovarian cancer may reside on the distal portion of chromosome 17q and is distinct from the BRCA1 gene.  相似文献   

2.
Deletions of the short arm of chromosome 9 have been reported in different types of malignancies. This chromosomal region contains a number of known tumour suppressor genes, including the p16INK4A (CDKN2A), p15INK4B and MTAP tumour suppressor genes located at 9p21. In this study twenty-two paraffin embedded invasive cutaneous SCC were examined for allelic imbalance/ loss of heterozygosity (AI/LOH) of the 9p region (in particular 9p21), and for p16 protein expression. DNA was isolated from microdissected sections of normal and tumour cells and analysed for AI/LOH by using six fluorescently labelled microsatellite markers that map to the 9p region. P16 protein expression was examined by immunohistochemistry. At each of the six microsatellite markers the majority of SCC analysed showed AI/LOH. Overall both AI/LOH within the CDKN2A locus and absence of p16 protein expression were frequent among the cutaneous SCC analysed, suggesting that p16 inactivation may play a role in cutaneous SCC development. The majority of the SCC analysed also had AI/LOH of the marker within the MTAP gene, and at markers flanking the CDKN2A gene; thus further investigation as to a possible role for these genes in the development of cutaneous SCC is warranted.  相似文献   

3.
Huang XP  Zhao CX  Li QJ  Cai Y  Liu FX  Hu H  Xu X  Han YL  Wu M  Zhan QM  Wang MR 《Gene》2006,366(1):161-168
  相似文献   

4.
Although the occurrence of bladder cancer is common, the molecular events underlying the pathogenesis of this cancer remain ill-defined. A loss of heterozygosity (LOH) at specific chromosomal loci may predispose individuals to the development of bladder cancer but this has not been examined in detail. Furthermore, the role that deletion or inactivation of putative tumour suppressor genes might play in the genesis of bladder cancer has not been established. In this study, allelic deletion analysis on the short arm of chromosome 17 of patients with primary bladder tumours failed to show deletion at 17p13 (0/7), a region known to contain the p53 tumour suppressor gene. Chromosome 11p15 showed allelic deletion at the IGF2 locus (2/7: 29%) and the PTH locus (1/11: 9%). However, no deletion was observed at the CALCA locus (0/6). LOH at 11p13, a region containing the Wilm's tumour suppressor gene (WT1), was also studied. Analysis of LOH at 11p13 showed deletion at the CAT locus (13/18: 72%), the J/D11S414 locus (5/15: 33%), the WT1 locus (7/14: 50%) and the FSHB locus (6/16: 38%). The significance of these findings is discussed.  相似文献   

5.
A tissue field of somatic genetic alterations precede the histopathological phenotypic changes of carcinoma. Loss of Heterozygosity (LOH) at the sites of known or putative tumor suppressor genes is a common genetic abnormality detected in precancerous conditions. These genomic changes could be of potential use in the diagnosis and prognosis of pre-malignant laryngeal lesions. Recently the concept of laryngeal intraepithelial neoplasia (LIN) was introduced. To evaluate patients with an increased risk of developing invasive laryngeal carcinoma via a dysplasia-carcinoma progression we investigated 102 microdissected cell populations. Cell populations were procured from 15 laryngectomy specimens with different peritumoral histological changes adjacent to the squamous cell carcinoma cells and 15 laryngeal endoscopic biopsies with no evidence of malignant transformation in a 6-10-year follow-up period. Histological diagnoses were subdivided into keratosis without dysplasia (KWD), with mild dysplasia (LIN 1), with moderate dysplasia (LIN 2), and with severe dysplasia or carcinoma in situ (LIN 3). Microsatellite analysis was performed with the aim of studying LOH of 5q21 (APC), 9p21 (p16), 3p21 and 17p13 (p53) chromosomal regions. Frequent allelic losses were found in carcinoma cells at p53 (54%), p16 (66%), 3p21(87%) and 5q21(58%). Identical LOH patterns were determined in 100% of the LIN3 peritumoral cells, 60% of LIN2, 50% of LIN 1 and 25% of KWD. In contrast, histologically normal mucosae, KWD and LIN1 lesions without malignant progression showed no allelic loss. These results show that dysplasia correlates with LOH at 3p21, 5q21, 9p21 and 17p13 in early laryngeal carcinogenesis. These genomic changes in pre-malignant laryngeal lesions could be of potential use as markers for cancer risk assessment.  相似文献   

6.
Chromatin can be analysed by assaying its sensitivity to DNase I or other nucleases in purified nuclei. Usually, this is performed by Southern analysis of genomic DNA extracted from nuclease-treated nuclei, a methodology that requires many cells. Applying restriction fragment length polymorphisms (RFLPs), this methodology has been used for parental allele-specific chromatin studies on imprinted mammalian genes. However, such allelic studies are limited by the availability of suitable RFLPs. We therefore developed an alternative, PCR and single strand conformation polymorphism (SSCP)-based assay with which allelic sensitivity to nucleases can be determined in virtually all localised regions that have nucleotide polymorphisms. We also demonstrate that analysis of DNase I sensitivity can be performed on permeabilised cells. Combining the two approaches, in the imprinted mouse U2af1-rs1 gene we analysed parental allele-specific chromatin conformation in limited numbers of cultured cells. We also applied the PCR-SSCP approach to assay allelic DNA methylation at specific restriction enzyme sites. In summary, we developed an allele-specific assay that should be useful for biochemical and developmental investigation of chromatin, in particular for studies on genomic imprinting and X-chromosome inactivation.  相似文献   

7.
OBJECTIVE: Atherosclerosis is a fibroproliferative disease which has been attributed to several factors including genetic and molecular alterations. Initial studies have shown genetic alterations at the microsatellite level in the DNA of atherosclerotic plaques. Extending our initial findings, we performed a microsatellite analysis on cerebral atherosclerotic plaques. METHODS: Twenty-seven cerebral atherosclerotic plaques were assessed for loss of heterozygosity (LOH) and microsatellite instability (MI) using 25 microsatellite markers located on chromosomes 2, 8, 9 and 17. DNA was extracted from the vessels as well as the respective blood from each patient and subjected to polymerase chain reaction. RESULTS: Our analyses revealed that specific loci on chromosomes 2, 8, 9 and 17 exhibited a significant incidence of LOH. Forty-six percent of the specimens showed loss of heterozygosity at 2p13-p21, 48% exhibited LOH at 8p12-q11.2, while allelic imbalance was detected in 47% of the cases. The LOH incidence was 39%, 31% and 27% at 17q21, 9q31-34 and 17p13, respectively. Genetic alterations were detected at a higher rate as compared to the corresponding alterations observed in plaques from other vessels. DISCUSSION: This is the first microsatellite analysis using atherosclerotic plaques obtained from cerebral vessels. Our results indicate an elevated mutational rate on specific chromosomal loci, suggesting a potential implication of these regions in atherogenesis.  相似文献   

8.
Molecular cytogenetic and LOH analyses of non-small cell lung cancer (NSCLC) have shown frequent allelic deletions in a variety of chromosomes where tumour suppressor genes are located. Allelic loss at 9p21 (p16 locus), 17p13 (p53) and 5q21(APC) has been frequently described in NSCLC and has also been described in premalignant epithelial lesions of the bronchus and normal bronchial cells. These findings suggest that a tissue field of somatic genetic alterations precedes the histopathological phenotypic changes of carcinoma. Similar changes have been described in oral and laryngeal epithelial tumours associated with smoke exposure. We previously reported frequent LOH at 5q21, 9p21 and TP53 in tumor cells and peritumoral normal bronchial cells from surgically resected NSCLC. We now analyze 96 cases of normal oral exfoliative cytology in which normal epithelial cells were obtained: 43 cases from smoker patients with NSCLC diagnosis, 33 smoker patients with no evidence of malignancy and 20 non-smoker patients with no evidence of tumour. All groups had a similar age and sex distribution. PCR amplification was performed utilising the specific markers D5S346, D9S157 and TP53. In normal oral mucosae cells from patients with NSCLC, we found that 21% of the informative cases showed LOH at any of the three analyzed loci distributed as follows: 14.3% of the informative cases showed LOH at 5q21, 7.7% at 9p21 and 22.2% at TP53. Within the smoker risk group only one case (4% of the informative cases) showed LOH at TP53, while no LOH was found at 5q21 or 9p21. No LOH was found in non-smokers. In conclusion, our results show that a significant number of patients with NSCLC have LOH at TP53, 5q21 and 9p21 in normal oral mucosae, while LOH at these loci is unusual in similar cells obtained from patients with no evidence of malignancy. Our study demonstrates that LOH studies can detect smoker patients with a mutated genotype in normal epithelial cells. Further prospective studies may confirm whether LOH studies can detect patients with a higher risk of NSCLC.  相似文献   

9.
Copy-number variations (CNV), loss of heterozygosity (LOH), and uniparental disomy (UPD) are large genomic aberrations leading to many common inherited diseases, cancers, and other complex diseases. An integrated tool to identify these aberrations is essential in understanding diseases and in designing clinical interventions. Previous discovery methods based on whole-genome sequencing (WGS) require very high depth of coverage on the whole genome scale, and are cost-wise inefficient. Another approach, whole exome genome sequencing (WEGS), is limited to discovering variations within exons. Thus, we are lacking efficient methods to detect genomic aberrations on the whole genome scale using next-generation sequencing technology. Here we present a method to identify genome-wide CNV, LOH and UPD for the human genome via selectively sequencing a small portion of genome termed Selected Target Regions (SeTRs). In our experiments, the SeTRs are covered by 99.73%~99.95% with sufficient depth. Our developed bioinformatics pipeline calls genome-wide CNVs with high confidence, revealing 8 credible events of LOH and 3 UPD events larger than 5M from 15 individual samples. We demonstrate that genome-wide CNV, LOH and UPD can be detected using a cost-effective SeTRs sequencing approach, and that LOH and UPD can be identified using just a sample grouping technique, without using a matched sample or familial information.  相似文献   

10.
To detect the incidence of loss of heterozygosity (LOH) in DNA mismatch repair genes (MMR) occurring in atherosclerosis, fifty human autopsy cases of atherosclerosis were examined for LOH using 19 microsatellite markers, in three single and four tetraplex microsatellite assays. The markers used are located on or close to MMR genes. Fourteen specimens (28%) showed allelic imbalance in at least one locus. Loci hMSH2 (2p22.3–p16.1), hPMS1 (2q24.1–q32.1), and hMLH1 (3p21.32–p21.1) exhibited LOH (10, 10, and 12% respectively). We found that loss of heterozygosity on hMSH2, hPMS1, and hMLH1, occurs in atherosclerosis. The occurrence of such genomic alterations may represent important events in the development of atherosclerosis.  相似文献   

11.
Mutation of the human genome ranges from single base-pair changes to whole-chromosome aneuploidy. Karyotyping, fluorescence in situ hybridization, and comparative genome hybridization are currently used to detect chromosome abnormalities of clinical significance. These methods, although powerful, suffer from limitations in speed, ease of use, and resolution, and they do not detect copy-neutral chromosomal aberrations--for example, uniparental disomy (UPD). We have developed a high-throughput approach for assessment of DNA copy-number changes, through use of high-density synthetic oligonucleotide arrays containing 116,204 single-nucleotide polymorphisms, spaced at an average distance of 23.6 kb across the genome. Using this approach, we analyzed samples that failed conventional karyotypic analysis, and we detected amplifications and deletions across a wide range of sizes (1.3-145.9 Mb), identified chromosomes containing anonymous chromatin, and used genotype data to determine the molecular origin of two cases of UPD. Furthermore, our data provided independent confirmation for a case that had been misinterpreted by karyotype analysis. The high resolution of our approach provides more-precise breakpoint mapping, which allows subtle phenotypic heterogeneity to be distinguished at a molecular level. The accurate genotype information provided on these arrays enables the identification of copy-neutral loss-of-heterozygosity events, and the minimal requirement of DNA (250 ng per array) allows rapid analysis of samples without the need for cell culture. This technology overcomes many limitations currently encountered in routine clinical diagnostic laboratories tasked with accurate and rapid diagnosis of chromosomal abnormalities.  相似文献   

12.
Microsatellite markers are used for loss-of-heterozygosity, allelic imbalance and clonality analyses in cancers. Usually, tumor DNA is compared to corresponding normal DNA. However, normal DNA is not always available and can display aberrant allele ratios due to copy number variations in the genome. Moreover, stutter peaks may complicate the analysis. To use microsatellite markers for diagnosis of recurrent bladder cancer, we aimed to select markers without stutter peaks and a constant ratio between alleles, thereby avoiding the need for a control DNA sample. We investigated 49 microsatellite markers with tri- and tetranucleotide repeats in regions commonly lost in bladder cancer. Based on analysis of 50 blood DNAs the 12 best performing markers were selected with few stutter peaks and a constant ratio between peaks heights. Per marker upper and lower cut off values for allele ratios were determined. LOH of the markers was observed in 59/104 tumor DNAs. We then determined the sensitivity of the marker panel for detection of recurrent bladder cancer by assaying 102 urine samples of these patients. Sensitivity was 63% when patients were stratified for LOH in their primary tumors. We demonstrate that up-front selection of microsatellite markers obliterates the need for a corresponding blood sample. For diagnosis of bladder cancer recurrences in urine this significantly reduces costs. Moreover, this approach facilitates retrospective analysis of archival tumor samples for allelic imbalance.  相似文献   

13.
Allelic loss and translocation are critical mutational events in human tumorigenesis. Allelic loss, which is usually identified as loss of heterozygosity (LOH), is frequently observed at tumor suppressor loci in various kinds of human tumors. It is generally thought to result from deletion or mitotic recombination between homologous chromosomes. In this report, we demonstrate that illegitimate (nonhomologous) recombination strongly contributes to the generation of allelic loss in p53-mutated cells. Spontaneous and X-ray-induced LOH mutations at the heterozygous thymidine kinase (tk) gene, which is located on the long arm of chromosome 17, from normal (TK6) and p53-mutated (WTK-1) human lymphoblastoid cells were cytogenetically analyzed by chromosome 17 painting. We observed unbalanced translocations in 53% of LOH mutants spontaneously arising from WTK-1 cells but none spontaneously arising from TK6 cells. We postulate that illegitimate recombination was occurring between nonhomologous chromosomes after DNA replication, leading to allelic loss and unbalanced translocations in p53-mutated WTK-1 cells. X-ray irradiation, which induces DNA double-strand breaks (DSBs), enhanced the generation of unbalanced translocation more efficiently in WTK-1 than in TK6 cells. This observation implicates the wild-type p53 protein in the regulation of homologous recombination and recombinational DNA repair of DSBs and suggests a possible mechanism by which loss of p53 function may cause genomic instability.  相似文献   

14.
Glutathione peroxidase is a selenium-containing, antioxidant enzyme previously implicated in the risk and development of lung and breast cancer, in part the result of allelic loss at the GPx-1 locus. This study examined allelic loss at the same locus in squamous cell carcinomas of the head and neck. The frequency of a polymorphism at codon 198 resulting in either a leucine or a proline at that position was surveyed by comparing 133 DNA samples obtained from head and neck tumors and 517 samples obtained from cancer-free individuals. Tumor DNAs exhibited fewer pro/leu heterozygotes as compared to DNA obtained from the cancer-free population. Fewer GPx-1 heterozygotes were verified by determining the frequency of highly polymorphic alanine repeat sequences in the same gene. The analysis revealed an approximately 42% reduction in heterozygosity in the DNA from the tumor samples. In order to assess loss of heterozygosity (LOH) at the GPx-1 locus, DNA was genotyped from peripheral lymphocytes, tumor tissue, and microscopically normal tissues adjacent to the tumor, derived from the same patients. These studies indicated LOH at the GPx-1 locus in each of the three tumor/normal tissues sample sets examined. Furthermore, LOH in the microscopically normal tissues at the tumor margin occurred in two of the three sample sets examined. These data implicate GPx-1 in the development of squamous cell carcinoma the head and neck and suggest that allelic loss of this gene, or one tightly linked to it, is an early event in the development of this type of malignancy. Author to whom all correspondence and reprint requests should be addressed. These authors contributed equally to this work.  相似文献   

15.
A search was initiated towards the localization of novel mutated tumour suppressor genes that may be involved in adult leukaemia. For this purpose, we measured the occurrence of loss of heterozygosity (LOH) in nine patients with acute B-lineage leukaemia (ALL) and one with undifferentiated leukaemia (AUL). Eight leukaemias exhibited a diploid karyotype. For each patient, PCR products of 130 polymorphic microsatellite markers, located in subtelomeric areas of every autosomal chromosome arm were analysed to visualize LOH events resulting from reduplication of a single mutated chromosome or from mitotic recombination. These kinds of LOH events contribute most to LOH in model systems but cannot be detected by classical cytogenetic techniques. By comparing allelic PCR products in tumour cells with those in normal cells, LOH was found in tumour cells of one ALL patient at 9p which harbours the known p16INK44 tumour suppressor gene. In the AUL patient, however, LOH was detected at the telomeres of 4q and 21q, suggesting that these sites may contain novel tumour suppressor genes specifically involved in this form of leukaemia. In the DNA of tumour cells from eight out of 10 patients no LOH was detected. This is in contrast with the general assumption that LOH is a frequent phenomenon in ALL. However, some markers at telomeric regions of chromosomes were already homozygous in the control T-cells of several patients. For instance, we found in the DNA of control cells from one patient five consecutive microsatellites on 9p up to 9p43 which were homozygous and in three other patients homozygosity was observed in band 8q24, which includes the MYC gene. These observations indicate that LOH events already are present in non-cancerous putative stem cells and that mitotic recombination may be a very early event in leukaemogenesis.  相似文献   

16.
Colorectal cancer remains a significant public health challenge, despite our increased understanding of the genetic mechanisms involved in the initiation and progression of this disorder. It has become clear that multiple mechanisms lead to the tumorigenic phenotype, with familial predisposition syndromes accounting for less than 15% of all colorectal cancers. A genome-wide scan for loss of heterozygosity (LOH) was carried out with 150 highly polymorphic markers in an effort to identify additional loci involved in colorectal tumorigenesis in DNA samples from 42 colorectal cancer patients. The results confirm earlier observations that tumor DNAs from patients with hereditary nonpolyposis colon cancer (HNPCC) either maintain heterozygosity or exhibit altered or additional alleles. DNAs from patients with early onset colorectal carcinomas (diagnosed prior to age 50) revealed a higher overall degree of LOH than DNAs from patients with sporadic colorectal cancers diagnosed later in life (after age 50). While regions on 1p, 10q and 14q are suggestive, statistical analysis of LOH at these regions failed to reach significance. However, LOH at 9p did reveal a statistically significant increase in the early onset patient group, compared to the greater than age 50 group. LOH on 9p may involve inactivation of p16/CDKN2 through aberrant DNA methylation on the remaining chromosome, resulting in a situation analogous to a homozygous deletion of p16 and providing a selective growth advantage to these cells. This marker may prove to be a useful prognostic indicator for patient stratification in the design of therapy for early onset colorectal cancer patients.  相似文献   

17.
Whole genome sequencing of matched tumor-normal sample pairs is becoming routine in cancer research. However, analysis of somatic copy-number changes from sequencing data is still challenging because of insufficient sequencing coverage, unknown tumor sample purity and subclonal heterogeneity. Here we describe a computational framework, named SomatiCA, which explicitly accounts for tumor purity and subclonality in the analysis of somatic copy-number profiles. Taking read depths (RD) and lesser allele frequencies (LAF) as input, SomatiCA will output 1) admixture rate for each tumor sample, 2) somatic allelic copy-number for each genomic segment, 3) fraction of tumor cells with subclonal change in each somatic copy number aberration (SCNA), and 4) a list of substantial genomic aberration events including gain, loss and LOH. SomatiCA is available as a Bioconductor R package at http://www.bioconductor.org/packages/2.13/bioc/html/SomatiCA.html.  相似文献   

18.
We demonstrate proof-of-concept for the use of massively multiplexed PCR and next-generation sequencing (mmPCR-NGS) to identify both clonal and subclonal copy-number variants (CNVs) in circulating tumor DNA. This is the first report of a targeted methodology for detection of CNVs in plasma.Using an in vitro model of cell-free DNA, we show that mmPCR-NGS can accurately detect CNVs with average allelic imbalances as low as 0.5%, an improvement over previously reported whole-genome sequencing approaches. Our method revealed differences in the spectrum of CNVs detected in tumor tissue subsections and matching plasma samples from 11 patients with stage II breast cancer. Moreover, we showed that liquid biopsies are able to detect subclonal mutations that may be missed in tumor tissue biopsies. We anticipate that this mmPCR-NGS methodology will have broad applicability for the characterization, diagnosis, and therapeutic monitoring of CNV-enriched cancers, such as breast, ovarian, and lung cancer.  相似文献   

19.
Wang J  Valo Z  Smith D  Singer-Sam J 《PloS one》2007,2(12):e1293
The inheritance pattern of a number of major genetic disorders suggests the possible involvement of genes that are expressed from one allele and silent on the other, but such genes are difficult to detect. Since DNA methylation in regulatory regions is often a mark of gene silencing, we modified existing microarray-based assays to detect both methylated and unmethylated DNA sequences in the same sample, a variation we term the MAUD assay. We probed a 65 Mb region of mouse Chr 7 for gene-associated sequences that show two distinct DNA methylation patterns in the mouse CNS. Selected genes were then tested for allele-specific expression in clonal neural stem cell lines derived from reciprocal F(1) (C57BL/6xJF1) hybrid mice. In addition, using a separate approach, we directly analyzed allele-specific expression of a group of genes interspersed within clusters of OlfR genes, since the latter are subject to allelic exclusion. Altogether, of the 500 known genes in the chromosomal region surveyed, five show monoallelic expression, four identified by the MAUD assay (Agc1, p (pink-eyed dilution), P4ha3 and Thrsp), and one by its proximity to OlfR genes (Trim12). Thrsp (thyroid hormone responsive SPOT14 homolog) is expressed in hippocampus, but the human protein homolog, S14, has also been implicated in aggressive breast cancer. Monoallelic expression of the five genes is not coordinated at a chromosome-wide level, but rather regulated at individual loci. Taken together, our results suggest that at least 1% of previously untested genes are subject to allelic exclusion, and demonstrate a dual approach to expedite their identification.  相似文献   

20.
Analysis of microsatellite instability (MI) and loss of heterozygosity (LOH) is recommended for screening patients with sporadic and hereditary malignancies. This study shows an application of a fluorescent hexaplex PCR system for microsatellite typing on A.L.F. DNA Sequencer (Pharmacia Biotech). This technique detects changes in microsatellites providing a time-efficient, reliable and accurate method for MI and LOH analyses. The Fragment Manager software was used for automated size calculation and quantitation of DNA fragments, enabling rapid and precise measurement of allelic ratios. We examined 70 breast cancer and 70 control DNA specimens, classified all the patterns of microsatellite alterations, and set up MI and LOH assessment criteria for the automated multiplex fluorescent method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号