首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: BACKGROUND: Minocycline has proven anti-nociceptive effects, and delays the development of allodynia/hyperalgesia after peripheral nerve injury. However, the mechanism by which this occurs remains unclear. Inflammatory cells, in particular macrophages, are critical components of the response to nerve injury. Using ultrasmall superparamagnetic iron oxide-magnetic resonance imaging (USPIO-MRI) to monitor macrophage trafficking, the purpose of this project is to determine whether minocycline modulates macrophage trafficking to the site of nerve injury in vivo and, in turn, results in altered pain thresholds. RESULTS: Animal experiments were approved by Stanford IACUC. A model of neuropathic pain was created using the Spared Nerve Injury (SNI) model that involves ligation of the left sciatic nerve in the left thigh of adult Sprague-Dawley rats. Animals with SNI and uninjured animals (control) were then injected with/without USPIOs (300umol/kg IV) and with/without minocycline (50mg/kg IP). Bilateral sciatic nerves were scanned with a volume coil in a 7T magnet 7 days after USPIO administration. Fluid-sensitive MR images were obtained, and ROIs were placed on bilateral sciatic nerves to quantify signal intensity. Pain behavior modulation by minocycline was measured using the Von Frey filament test. Sciatic nerves were ultimately harvested at day 7, fixed in 10% buffered formalin and stained for the presence of iron oxide-laden macrophages. Behavioral measurements confirmed the presence of allodynia in the neuropathic pain model while the uninjured and minocycline-treated injured group had significantly higher paw withdrawal thresholds (p<0.011). Decreased MR signal is observed in the SNI group that received USPIOs (3.3+/-0.5%) compared to the minocycline-treated SNI group that received USPIOs (15.2+/-4.5%) and minocycline-treated group (no USPIOs; 41.2+/-2.3%) (p<0.04). Histology of harvested sciatic nerve specimens confirmed the presence USPIOs at the nerve injury site in the SNI group without minocycline treatment. CONCLUSION: Animals with neuropathic pain in the left hindpaw show increased trafficking of USPIO-laden macrophages to the site of sciatic nerve injury. Minocycline appears to retard the migration of macrophages to the nerve injury site, which may partly explain its anti-nociceptive effects. USPIO-MRI is an effective in vivo imaging tool to study the role of macrophages in the development of neuropathic pain.  相似文献   

2.
Axon injury and degeneration is a common consequence of diverse neurological conditions including multiple sclerosis, traumatic brain injury and spinal cord injury. The molecular events underlying axon degeneration are poorly understood. We have developed a novel method to enrich for axoplasm from rodent optic nerve and characterised the early events in Wallerian degeneration using an unbiased proteomics screen. Our detergent-free method draws axoplasm into a dehydrated hydrogel of the polymer poly(2-hydroxyethyl methacrylate), which is then recovered using centrifugation. This technique is able to recover axonal proteins and significantly deplete glial contamination as confirmed by immunoblotting. We have used iTRAQ to compare axoplasm-enriched samples from naïve vs injured optic nerves, which has revealed a pronounced modulation of proteins associated with the actin cytoskeleton. To confirm the modulation of the actin cytoskeleton in injured axons we focused on the RhoA pathway. Western blotting revealed an augmentation of RhoA and phosphorylated cofilin in axoplasm-enriched samples from injured optic nerve. To investigate the localisation of these components of the RhoA pathway in injured axons we transected axons of primary hippocampal neurons in vitro. We observed an early modulation of filamentous actin with a concomitant redistribution of phosphorylated cofilin in injured axons. At later time-points, RhoA is found to accumulate in axonal swellings and also colocalises with filamentous actin. The actin cytoskeleton is a known sensor of cell viability across multiple eukaryotes, and our results suggest a similar role for the actin cytoskeleton following axon injury. In agreement with other reports, our data also highlights the role of the RhoA pathway in axon degeneration. These findings highlight a previously unexplored area of axon biology, which may open novel avenues to prevent axon degeneration. Our method for isolating CNS axoplasm also represents a new tool to study axon biology.  相似文献   

3.
In the present experiments the effect of systemic capsaicin treatment on the retrograde labelling of sensory ganglion cells was studied following the injection of choleratoxin B subunit-horseradish peroxidase conjugate (CTX-HRP) into intact and chronically transected peripheral nerves. In the control rats CTX-HRP injected into intact sciatic nerves labelled medium and large neurons with a mean cross-sectional area of 1,041 +/- 39 gm2. However, after injection of the conjugate into chronically transected sciatic nerves of the control rats, many small cells were also labelled, shifting the mean cross-sectional area of the labelled cells to 632 +/- 118 microm2. Capsaicin pretreatment per se induced a moderate but significant decrease in the mean cross-sectional area of the labelled neurons (879 +/- 79 microm2). More importantly, systemic pretreatment with capsaicin prevented the peripheral nerve lesion-induced labelling of small cells. Thus, the mean cross-sectional areas of labelled neurons relating to the intact and transected sciatic nerves, respectively, did not differ significantly. These findings provide direct evidence for a phenotypic switch of capsaicin-sensitive nociceptive neurons after peripheral nerve injury, and suggest that lesion-induced morphological changes in the spinal cord may be related to specific alterations in the chemistry of C-fibre afferent neurons rather than to a sprouting response of A-fibre afferents.  相似文献   

4.
A reconstituted model was devised to study the mechanisms of fast axonal transport in the squid Loligo pealei. Axonal vesicles were isolated from axoplasm of the giant axon and labeled with rhodamine-conjugated octadecanol, a membrane-specific fluorescent probe. The labeled vesicles were then injected into a fresh preparation of extruded axoplasm in which endogenous vesicle transport was occurring normally. The movement of the fluorescent, exogenous vesicles was observed by epifluorescence microscopy for as long as 5 min without significant photobleaching, and the transport of endogenous, nonfluorescent vesicles was monitored by video-enhanced differential interference-contrast microscopy. The transport of fluorescent, exogenous vesicles was shown to be bidirectional and ATP-dependent and occurred at a mean rate of 6.98 +/- 4.11 micron/s (mean +/- standard deviation, n = 41). In comparison, the mean rate of transport of nonfluorescent, endogenous vesicles in control axoplasm treated with vesicle buffer alone was 4.76 +/- 1.60 micron/s (n = 64). These rates are slightly higher than the mean rate of endogenous vesicle movement in extruded axoplasm (3.56 +/- 1.05 micron/s, n = 40) not subject to vesicles or vesicle buffer. Not all vesicles and organelles, exogenous or endogenous, were observed to move. In experiments in which proteins of the surface of the fluorescent vesicles were digested with trypsin before injection, no movement of the fluorescent vesicles was observed, although the transport of endogenous vesicles and organelles appeared to proceed normally. The results summarized above indicate that isolated vesicles, incorporated into axoplasm, move with the characteristics of fast axonal transport. Because the vesicles are fluorescent, they can be readily distinguished from nonfluorescent, endogenous vesicles. Moreover, this system permits vesicle characteristics to be experimentally manipulated, and therefore may prove valuable for the elucidation of the mechanisms of fast axonal transport.  相似文献   

5.
The distribution of leucine-3H in neurons was determined by electron-microscope radioautography after infusion of label into the spinal cord or sensory ganglia of regenerating newts. In the nerve cell bodies 3 days after infusion, the highest concentration of label per unit area occurred over the rough-surfaced endoplasmic reticulum. In the large brachial nerves, the silver grains were not distributed uniformly in the axoplasm, indicating that the labeled materials are restricted in their movement to certain regions of the axon. Almost all of the radioautographic grains observed in myelinated nerves could be accounted for by the presence of a uniformly labeled band occupying the area 1500–9000 A inside the axolemma. This region of the axon was rich in microtubules and organelles while the unlabeled central core of the axon contained mainly neurofilaments. This observation supports the hypothesis that microtubules are related to axonal transport. In small, vesicle-filled nerve terminals in the blastema, labeled material was restricted to a thin zone a short distance beneath the plasma membrane while the central region of the terminal was largely unlabeled. The peripheral pattern of labeling in the nerve endings is consistent with successive addition of newly synthesized proteins at the periphery of the growth cone and release of substances such as trophic factors at the nerve terminal.  相似文献   

6.
The present study was designed to investigate brain stem responses to manual acupuncture (MA) and electroacupuncture (EA) at different frequencies at pericardial P (5-6) acupoints located over the median nerve. Activity of premotor sympathetic cardiovascular neurons in the rostral ventral lateral medulla (rVLM) was recorded during stimulation of visceral and somatic afferents in ventilated anesthetized rats. We stimulated either the splanchnic nerve at 2 Hz (0.1-0.4 mA, 0.5 ms) or the median nerve for 30 s at 2, 10, 20, 40, or 100 Hz using EA (0.3-0.5 mA, 0.5 ms) or at approximately 2 Hz with MA. Twelve of 18 cells responsive to splanchnic and median nerve stimulation could be antidromically driven from the intermediolateral columns of the thoracic spinal cord, T2-T4, indicating that they were premotor sympathetic neurons. All 18 neurons received baroreceptor input, providing evidence of their cardiovascular sympathoexcitatory function. Evoked responses during stimulation of the splanchnic nerve were inhibited by 49 +/- 6% (n = 7) with EA and by 46 +/- 4% (n = 6) with MA, indicating that the extent of inhibitory effects of the two modalities were similar. Inhibition lasted for 20 min after termination of EA or MA. Cardiovascular premotor rVLM neurons responded to 2-Hz electrical stimulation at P 5-6 and to a lesser extent to 10-, 20-, 40-, and 100-Hz stimulation (53 +/- 10, 16 +/- 2, 8 +/- 2, 2 +/- 1, and 0 +/- 0 impulses/30 stimulations, n = 7). These results indicate that rVLM premotor sympathetic cardiovascular neurons that receive convergent input from the splanchnic and median nerves during low-frequency EA and MA are inhibited similarly for prolonged periods by low-frequency MA and EA.  相似文献   

7.
We demonstrate the applicability of fluorescence correlation spectroscopy (FCS) for receptor binding studies using low molecular weight ligands on the membranes of living nerve cells. The binding of the benzodiazepine Ro 7-1986/602 (N-des-diethyl-fluorazepam), labeled with the fluorophore Alexa 532, to the benzodiazepine receptor was analyzed quantitatively at the membrane of single rat hippocampal neurons. The values obtained for the dissociation constant Kd = (9.9 +/- 1.9) nm and the rate constant for ligand-receptor dissociation kdisS = (1.28 +/- 0.08) x 10(-3) s(-1) show that there is a specific and high affinity interaction between the dye-labeled ligand (Ro-Alexa) and the receptor site. The binding was saturated at approx. 100 nM and displacement of 10 nM Ro-Alexa, with a 1,000-fold excess of midazolam, showed a non-specific binding of 7-10%. Additionally, two populations of the benzodiazepine receptor that differed in their lateral mobility were detected in the membrane of rat neurons. The diffusion coefficients for these two populations [D(bound1) = (1.32 +/- 0.26) microm2/s; D(bound2) = (2.63 +/- 0.63) x 10(-2) microm2/s] are related to binding sites, which shows a mono-exponential decay in a time-dependent dissociation of the ligand-receptor complex.  相似文献   

8.
A 150,000-g supernatant from axoplasm of the giant axon of the stellate nerve of the squid and from rat sciatic and goldfish optic nerves was found to be able to incorporate covalently [3H]putrescine and [3H]spermidine into an exogenous protein (N,N'-dimethylcasein). Incorporation of radioactivity was inhibited by CuSO4, a specific inhibitor of transglutaminases, the enzymes mediating these reactions in other tissues. Analysis of pH and temperature range and enzyme kinetics displayed characteristics predicted for transglutaminase-mediated reactions. Transglutaminase activity increased during regeneration of both vertebrate nerves, but greater activity was found in segments of nerve containing no intact axons than in either intact segments or in segments containing regenerating axons. Polyacrylamide gel electrophoresis of endogenous modified proteins (in the absence of N,N'-dimethylcasein) showed labeling of 18-, 46- and 200-kilodalton proteins by both [3H]putrescine and [3H]spermidine. Analysis of the protein-bound radioactivity from intact and regenerating rat sciatic nerves demonstrated it to be predominantly in the form of the parent radioactive polyamine. These experiments demonstrate the covalent modification of proteins by polyamines at low levels in squid axoplasm and at relatively higher levels in rat sciatic and goldfish optic nerves. In the latter two cases, the activity of these modification reactions may be due in part to the modification of axonal proteins, but the majority of the activity occurs in nonneuronal cells of the nerve.  相似文献   

9.
Neurons in the rostral medullary raphe/parapyramidal region regulate cutaneous sympathetic nerve discharge. Using focal electrical stimulation at different dorsoventral raphe/parapyramidal sites in anesthetized rabbits, we have now demonstrated that increases in ear pinna cutaneous sympathetic nerve discharge can be elicited only from sites within 1 mm of the ventral surface of the medulla. By comparing the latency to sympathetic discharge following stimulation at the ventral raphe site with the corresponding latency following stimulation of the spinal cord [third thoracic (T3) dorsolateral funiculus] we determined that the axonal conduction velocity of raphe-spinal neurons exciting ear pinna sympathetic vasomotor nerves is 0.8 +/- 0.1 m/s (n = 6, range 0.6-1.1 m/s). Applications of the 5-hydroxytryptamine (HT)(2A) antagonist trans-4-((3Z)3-[(2-dimethylaminoethyl)oxyimino]-3-(2-fluorophenyl)propen-1-yl)-phenol, hemifumarate (SR-46349B, 80 microg/kg in 0.8 ml) to the cerebrospinal fluid above thoracic spinal cord (T1-T7), but not the lumbar spinal cord (L2-L4), reduced raphe-evoked increases in ear pinna sympathetic vasomotor discharge from 43 +/- 9 to 16 +/- 6% (P < 0.01, n = 8). Subsequent application of the excitatory amino acid (EAA) antagonist kynurenic acid (25 micromol in 0.5 ml) substantially reduced the remaining evoked discharge (22 +/- 8 to 6 +/- 6%, P < 0.05, n = 5). Our conduction velocity data demonstrate that only slowly conducting raphe-spinal axons, in the unmyelinated range, contribute to sympathetic cutaneous vasomotor discharge evoked by electrical stimulation of the medullary raphe/parapyramidal region. Our pharmacological data provide evidence that raphe-spinal neurons using 5-HT as a neurotransmitter contribute to excitation of sympathetic preganglionic neurons regulating cutaneous vasomotor discharge. Raphe-spinal neurons using an EAA, perhaps glutamate, make a substantial contribution to the ear sympathetic nerve discharge evoked by raphe stimulation.  相似文献   

10.
Kitao  Y.  Robertson  B.  Kudo  M.  Grant  G. 《Brain Cell Biology》2002,31(8-9):765-776
In a previous study we provided evidence that dorsal root ganglion (DRG) neurons of different phenotypes have different birthdates. The present study aimed at determining if birthdates of DRG neurons are related to different types of peripheral nerves, namely cutaneous versus muscle, and somatic versus visceral. Pregnant rats were injected intraperitoneally with bromodeoxyuridine (BrdU) to label the neurons on one of the embryonic days E12–E16. When the progeny rats reached adulthood, a mixture of 1% B-fragment of cholera toxin and 1% isolectin B4 from Griffonia simplicifolia I was injected into the peripheral nerves, or a 5% Fluoro-Gold solution was applied to the transected end of the nerves. The saphenous and sural nerves were used as cutaneous nerves, the gastrocnemius nerve as a muscle nerve, the intercostal nerves T9–11 as somatic nerves and the greater splanchnic nerve as a visceral nerve. Cell size measurements were made of DRG neurons labeled from the two cutaneous nerves and the muscle nerve, as well as of neurons of the saphenous and gastrocnemius nerves labeled by BrdU at different embryonic stages. Most of the DRG neurons of the muscle and intercostal nerves were generated early, with peaks at E13, and those of the cutaneous and visceral afferent nerves later, with peaks at E14. The temporal differences were reflected in the cell size spectrum, the muscle nerve having a greater proportion of large neurons compared to the cutaneous nerves. The findings add to previous knowledge regarding the sequence of development of different DRG phenotypes.  相似文献   

11.
By immunohistochemistry, CGRP-like immunoreactive (CGRP-LI) nerve fibres were found in the lamina propria along small vessels and in the lamina muscularis mucosae in the porcine ileum. Immunoreactive nerve cell bodies were found in the submucous and myenteric plexus. Upon HPLC-analysis of ileal extracts, CGRP-LI corresponded entirely to porcine CGRP plus smaller amounts of oxidised CGRP. Using isolated vascularly perfused segments of the ileum, we studied the release of CGRP-LI in response to electrical stimulation of the mixed extrinsic periarterial nerves and to infusion of different neuroblockers. In addition, the effect of infusion of capsaicin was studied. The basal output of CGRP-LI was 2.9+/-0.7 pmol/5 min (mean+/-S.D.). Electrical nerve stimulation (8 Hz) significantly increased the release of CGRP-LI to 167+/-16% (mean+/-S.E.M.) of the basal output (n=13). This response was unaffected by the addition of atropine (10(-6) M). Nerve stimulation during infusion of phentolamine (10(-5) M) with and without additional infusion of atropine resulted in a significant further increase in the release of CGRP-LI to 261+/-134% (n=5) and 240+/-80% (n=9), respectively. This response was abolished by infusion of hexamethonium (3x10(-5) M). Infusion of capsaicin (10(-5) M) caused a significant increase in the release of CGRP-LI to 485+/-82% of basal output (n=5). Our results suggest a dual origin of CGRP innervation of the porcine ileum (intrinsic and extrinsic). The intrinsic CGRP neurons receive excitatory input by parasympathetic, possibly vagal, preganglionic fibres, via release of acetylcholine acting on nicotinic receptors. The stimulatory effect of capsaicin suggests that CGRP is also released from extrinsic sensory neurons.  相似文献   

12.
We tested the hypothesis that blockade of N-methyl-D-aspartate (NMDA) and non-NMDA receptors on medullary lateral tegmental field (LTF) neurons would reduce the sympathoexcitatory responses elicited by electrical stimulation of vagal, trigeminal, and sciatic afferents, posterior hypothalamus, and midbrain periaqueductal gray as well as by activation of arterial chemoreceptors with intravenous NaCN. Bilateral microinjection of a non-NMDA receptor antagonist into LTF of urethane-anesthetized cats significantly decreased vagal afferent-evoked excitatory responses in inferior cardiac and vertebral nerves to 29 +/- 8 and 24 +/- 6% of control (n = 7), respectively. Likewise, blockade of non-NMDA receptors significantly reduced chemoreceptor reflex-induced increases in inferior cardiac (from 210 +/- 22 to 129 +/- 13% of control; n = 4) and vertebral nerves (from 253 +/- 41 to 154 +/- 20% of control; n = 7) and mean arterial pressure (from 39 +/- 7 to 21 +/- 5 mmHg; n = 8). Microinjection of muscimol, but not an NMDA receptor antagonist, caused similar attenuation of these excitatory responses. Sympathoexcitatory responses to the other stimuli were not attenuated by microinjection of a non-NMDA receptor antagonist or muscimol into LTF. In fact, excitatory responses elicited by stimulation of trigeminal, and in some cases sciatic, afferents were enhanced. These data reveal two new roles for the LTF in control of sympathetic nerve activity in cats. One, LTF neurons are involved in mediating sympathoexcitation elicited by activation of vagal afferents and arterial chemoreceptors, primarily via activation of non-NMDA receptors. Two, non-NMDA receptor-mediated activation of other LTF neurons tonically suppresses transmission in trigeminal-sympathetic and sciatic-sympathetic reflex pathways.  相似文献   

13.
The turnover of soluble proteins in axons and terminals is effected by replacing used proteins with newly synthesized constituents from the cell body. To investigate this complex process, which is especially important during nerve regeneration, we microinjected proteins into varicosities on axons of Aplysia neurons in vitro. When human serum albumin (HSA) coupled to rhodamine (r) was injected, it initially filled the varicosity; within seconds, however, it began to accumulate in packets and by 15 min was punctate. A similar pattern was observed after injecting soluble proteins from extruded axoplasm. In contrast, when we injected rHSA covalently attached to the SV-40 nuclear localization sequence (sp), the distribution was never punctate and the rHSA-sp was retrogradely transported from the varicosity to the cell body and into the nucleus. Electron microscopy of varicosities injected with HSA-gold showed that >90% of the particles were inside vacuoles and multivesicular bodies. These organelles probably function as storage rather than degradatory sites since they did not contain acid phosphatase. In contrast, when HSA-sp-colloidal gold was injected, only 25% of the particles were in organelles. Thus, HSA and resident axonal proteins can be removed from axoplasm by uptake into organelles. The presence of a nuclear localization sequence (the sp) may avoid uptake by providing access to the retrograde transport/nuclear import pathway. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 151–160, 1997  相似文献   

14.
Previous experiments have demonstrated that 4S RNA, (tRNA), is transported axonally during the reconnection and maturation of regenerating optic nerves of goldfish. The present experiments were performed to determine if tRNA is transported axonally during elongation of these regenerating nerves and whether, as has been demonstrated in other systems, it participates in posttranslational protein modification (PTPM). [3H]Uridine was injected into both eyes of fish with intact optic nerves and 0, 2, 4, or 8 days after bilateral optic nerve cut. Fish were killed 2 days after injection, and [3H]RNA was isolated from retinae and nerves by phenol extraction and ethanol precipitation. [3H]RNA was fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Although the percentage of [3H]4S RNA remained constant in all retinal and control nerve samples, regenerating nerves showed a twofold increase by 6 days after injury, suggesting that [3H]4S RNA is transported axonally in regenerating nerves as early as 6 days after injury. In other experiments, the 150,000-g supernatant of optic nerves was analyzed for incorporation of 3H-amino acids into proteins. No incorporation of 3H-amino acid was found in the soluble supernatant, but when the supernatant was passed through a Sephacryl S-200 column (removing molecules less than 20,000 daltons), [3H]Arg, [3H]Lys, and [3H]Leu were incorporated into proteins. This posttranslational addition of amino acids was greater (1.4-5 times for Lys and 2-13 times for Leu) in regenerating optic nerves than nonregenerating nerves, and the growing tips of regenerating nerves incorporated 5-15 times more [3H]Lys and [3H]Leu into proteins than did the shafts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
How are phosphorylated kinases transported over long intracellular distances, such as in the case of axon to cell body signaling after nerve injury? Here, we show that the MAP kinases Erk1 and Erk2 are phosphorylated in sciatic nerve axoplasm upon nerve injury, concomitantly with the production of soluble forms of the intermediate filament vimentin by local translation and calpain cleavage in axoplasm. Vimentin binds phosphorylated Erks (pErk), thus linking pErk to the dynein retrograde motor via direct binding of vimentin to importin beta. Injury-induced Elk1 activation and neuronal regeneration are inhibited or delayed in dorsal root ganglion neurons from vimentin null mice, and in rats treated with a MEK inhibitor or with a peptide that prevents pErk-vimentin binding. Thus, soluble vimentin enables spatial translocation of pErk by importins and dynein in lesioned nerve.  相似文献   

16.
Muscle metabolic by-products stimulate thin fiber muscle afferent nerves and evoke reflex increases in blood pressure and sympathetic nerve activity. Previous studies reported that chemically sensitive transient receptor potential vanilloid type 1 (TRPV1) channels present on sensory muscle afferent neurons have an important impact on sympathetically mediated cardiovascular responses. The reflex-mediated reduction in blood flow to skeletal muscle leads to limited exercise capacity in patients with peripheral arterial occlusive disease. Thus, in this study, we tested the hypothesis that the expression of enhanced TRPV1 receptor and its responsiveness in primary afferent neurons innervating muscles initiate exaggerated reflex sympathetic responses after vascular insufficiency to the muscle. Muscle vascular insufficiency was induced by the femoral artery ligation in rats for 24 h. Our data show that 1) the ligation surgery leads to the upregulation of TRPV1 expression in the dorsal root ganglion; 2) the magnitude of the dorsal root ganglion neuron TRPV1 response induced by capsaicin is greater in vascular insufficiency (4.0 +/- 0.31 nA, P < 0.05 vs. sham-operated control) than that in sham-operated control (2.9 +/- 0.23 nA); and 3) renal sympathetic nerve activity and mean arterial pressure responses to capsaicin (0.5 microg/kg body wt) are also enhanced by vascular insufficiency (54 +/- 11%, 9 +/- 2 mmHg in sham-operated controls vs. 98 +/- 13%, 33 +/- 5 mmHg after vascular insufficiency, P < 0.05). In conclusion, sympathetic nerve responses to the activation of metabolite-sensitive TRPV1 receptors are augmented in rats with the femoral artery occlusion compared with sham-operated control animals, due to alterations in the expression of TRPV1 receptor and its responsiveness in sensory neurons.  相似文献   

17.
Intracellular potassium activity, (aK)i, and axoplasmic K+ concentration, [K+]i, were measured by means of K+-selective microelectrodes and atomic absorption spectroscopy, respectively, in squid giant axons dialyzed with K+-free dialysis solution and bathed in K+-free artificial sea water. (aK)i measurements indicated that axoplasmic free K+ could be depleted by dialysis, whereas [K+]i measurements on axoplasm extruded from these axons suggest substantial retention of K+ (15.5 +/- 1.7 mmol/kg axoplasm K+; n = 9). In comparison, [K+]i in axoplasm extruded from freshly dissected axons was 330 +/- 16 mmol/kg axoplasm (n = 6). These data suggest that approximately 5% of the axoplasmic K+ ions are not easily removed by dialysis and that these ions are either bound to macromolecular sites or sequestered into membrane-enclosed organelles.  相似文献   

18.
EFFECTS OF COLCHICINE ON AXONAL TRANSPORT IN PERIPHERAL NERVES   总被引:6,自引:1,他引:5  
—Colchicine injected intracisternally markedly inhibited the rapid migration (300-400 mm/day) of labelled proteins in the hypoglossal and vagus nerve of the rabbit. The transport of acetylcholinesterase (EC 3.1.1.7) and choline acetyltransferase (EC 2.3.1.6) previously shown to move with the slow (5-26 mm/day) phase of axoplasmic transport in these nerves, was only partially blocked. In view of this differential effect on axonal flow, we suggest that the neurotubules, on which colchicine acts preferentially, are primarily involved in the rapid (300-400 mm/day) axoplasmic flow. After local injection of colchicine into the nerves both the rapidly migrating labelled proteins and the enzymes (AChE and ChAc) accumulated above the site of injection to the same degree as they accumulate above a nerve ligation. Since this blockage of enzyme transport occurred after concentrations of colchicine much higher than those used for intracisternal injections these findings after local injection may represent more severe effects on axonal transport systems.  相似文献   

19.
The regulation of the heartbeat by the two largest neurons, d-VLN and d-RPLN, on the dorsal surface of visceral and right parietal ganglia of Giant African snail, Achatina fulica, was examined. Using the new method of animal preparation, for the first time, discrete biphasic inhibitory-excitatory junction potentials (I-EJPs) in the heart and several muscles of the visceral sac were recorded. The duration of hyperpolarizing phase (H-phase) of biphasic I-EJPs was 269+/-5.6 ms (n=5), which is 2-3 times less than that of the cholinergic inhibitory JPs (682+/-68.5 ms, n=5). The H-phase of I-EJPs was not altered by the application of atropine, picrotoxine, succinylcholinchloride, D-tubocurarine and tetraethylammonium or substitution of Cl(-) ions. Even the low-frequency neuronal discharges (1-2 imp/s) evoked significant facilitation and potentiation of the H-phase. Between the multimodal neurons d-VLN/d-RPLN and mantle or visceral organs there is evidence of direct synaptic connections. These neurons were found to have no axonal branches in the intestinal nerve as once suspected but reach the heart through several other nerves. New giant heart motoneurons do not interact with previously identified cardioregulatory neurons.  相似文献   

20.
Abstract— Orthograde and retrograde axonal transport were studied in rat sciatic nerves which had been crushed and either allowed to regenerate, or prevented from doing so by tightly ligaturing the nerve. At various intervals after crushing the nerve. L-[3H]leucine was injected into the lumbosacral spinal cord. and the subsequent transport of labeled protein in motoneuron axons was quantitated by measuring the accumulation of labeled protein at collection crushes made proximal to the original nerve crush. Accumulations proximal to the collection crushes (orthograde transport) 9-11 h after injection (p.i.). decreased within I day of nerve injury, but returned to normal values as regeneration proceeded. In non-regenerating nerves accumulations remained depressed for at least 30 days. Accumulations distal to the collection crushes (retrograde transport) 9-11 h pi. increased over the first 5 days following injury but returned to normal values as regeneration proceeded. In non-regenerating nerves accumulations remained elevated. The time-course of retrograde transport of newly-synthesized protein also returned to normal during nerve regeneration. It is suggested that changes in retrograde transport during regeneration may inform the neuron cell body of the progress of regeneration and elicit appropriate metabolic responses. among which may be the changes in orthograde transport that follow axotomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号