首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Kitayama  Kanehiro  Iwamoto  Kojiro 《Plant and Soil》2001,229(2):203-212
We investigated the natural abundance of 15N in sun leaves and other components of tropical rain forests on altitudinal sequences of eight sites that form a gradient of soil N availability with varying ectomycorrhizal abundances on Mt. Kinabalu, Borneo. We investigated how soil N availability and ectomycorrhizal abundance related to the 15N abundance of ecosystem components. 15N values (15N abundance relative to 14N) increased consistently in the following order at each site: sun leaves, leaf litter, fine roots and from shallower organic to deeper mineral soil horizons. Enrichment (3–6 15N) of 15N occurred at the litter–topsoil interface at all sites, and the magnitude of the enrichment correlated negatively with 15N depletion in the foliage, irrespective of ectomycorrhizal abundance. Foliar 15N values significantly positively correlated with their N concentrations. Foliar (and litter and root) 15N values correlated positively with NO3 availability, and negatively with NH4 availability. The two positive correlations of foliar 15N with foliar N and NO3 availability were inconsistent with the assumption that stronger nitrification (hence a greater nitrate availability) produced a more 15N-depleted active inorganic N pool. The isotopic fractionation during the passage of N through ectomycorrhizas to plants might explain the positive correlation of foliar 15N and N concentration; however, this mechanism could not fully explain the correlation in our case because strong foliar 15N depletions occurred at the sites that lacked ectomycorrhizas. Alternatively, the positive correlation across sites reflected the tightness of N cycling. Strong nitrification and associated isotopic fractionation might have occurred at N-richer sites and the subsequent removal of NO3 from the system could decrease isotopically `lighter' N at these sites.  相似文献   

3.
We investigated how temperature and nutrient availability regulate fine-root productivity in nine tropical rainforest ecosystems on two altitudinal gradients with contrasting soil phosphorus (P) availabilities on Mount Kinabalu, Borneo. We measured the productivity and the nutrient contents of fine roots, and analyzed the relationships between fine-root parameters and environmental factors. The fine-root net primary productivity (NPP), total NPP, and ratio of fine-root NPP to total NPP differed greatly among the sites, ranging from 72 to 228 (g m?2 year?1), 281–2240 (g m?2 year?1), and 0.06–0.30, respectively. A multiple-regression analysis suggested a positive effect of P availability on total NPP, whereas fine-root NPP was positively correlated with mean annual temperature and with P and negatively correlated with N. The biomass and longevity of fine roots increased in response to the impoverishment of soil P. The carbon (C) to P ratio (C/P) of fine roots was significantly and positively correlated with the P-use efficiency of above-ground litter production, indicating that tropical rainforest trees dilute P in fine roots to maintain the C allocation ratio to these roots. We highlighted the mechanisms regulating the fine-root productivity of tropical rainforest ecosystems in relation to the magnitude of nutrient deficiency. The trees showed C-conservation mechanisms rather than C investment as responses to decreasing soil P availability, which demonstrates that the below-ground systems at these sites are strongly limited by P, similar to the above-ground systems.  相似文献   

4.
Species composition and forest structure change with topography.However, mechanisms for topographical vegetation changes are still not wellunderstood, because a topographical gradient is a complex environmentalgradientinclusive of many factors. The foot of Mt. Kinabalu is covered with three typesof geological substrates, i.e. Quaternary and Tertiary sedimentary rocks andultrabasic (serpentine) rock. Quaternary and Tertiary sedimentaryrocks are different in site age, but controlled in primary minerals. Tertiarysedimentary and ultrabasic rocks are contrasting in primary minerals, but arecomparable in age. This setting provides an opportunity to examine thevegetation differentiation along topographical gradients that are contrastinginmajor-nutrient supply due to the difference in site age and parent rock.We established a total of nine study plots by choosing three topographicalunits(ridge, middle- and lower-slope) on each substrate inthe tropical lower montane forest. Pool size and supply of soil N and Pdecreased upslope on each substrate, and the magnitude of the reduction fromslope to ridge decreased in the order of Quaternary sedimentary > Tertiarysedimentary > ultrabasic rock. Between-substrate difference in soilnutrient condition was greater on the lower-slopes than the ridges.Maximum tree size decreased and stem density increased upslope on eachsubstrate. Detrended correspondence analysis demonstrated that speciescomposition also changed along topographical gradients on all substrates.However, the magnitude of topographical changes in forest structure and speciescomposition varied with substrate and decreased from Quaternary sedimentary>Tertiary sedimentary > ultrabasic rock. The greatest between-substratedifference in vegetation occurred on the lower-slopes. Accordingly, ourresults suggest that the magnitude of vegetation changes due to topographybecomes smaller with decreasing pool size and supply of nutrients.  相似文献   

5.
We studied soil phosphorus (P) fractionation and P-use efficiencies (PUEs) of rainforests along altitudinal gradients (700–3100 m) on two types of parental rocks (sedimentary versus ultrabasic) on Mount Kinabalu, Borneo. Sedimentary rocks were known to contain more quartz (which does not adsorb P) than ultrabasic rocks. The pool (top 30 cm) of total P was always greater on sedimentary (ranging from 34.9 to 72.6 g m–2) than on ultrabasic (9.0–29.2 g m–2) rocks at comparable altitudes. Accordingly, the pools of organic P and labile inorganic P were always greater on sedimentary than on ultrabasic rocks. The pool of primary mineral, calcium P increased upslope from 1.7 to 4.3 g m–2 on sedimentary rock, suggesting that the altitudinal sequence of the sites reflected a decreasing magnitude of soil weathering upslope. The pool of calcium P on ultrabasic rock did not vary consistently with altitude (1.2–2.8 g m–2), probably reflecting the greater between-site variability of primary mineral P in parent rocks. When all sites were compared, the pool of most labile, bicarbonate-extracted inorganic P increased (ranging from 0.02 to 1.85 g m–2) with increasing calcium P. Calcium P was therefore considered to be an important P source to the biota on Kinabalu. Gross patterns in the variation of PUE (indexed as the reciprocal of the P concentration in litter) were best explained by the pool size of actively cycling P (total P minus occluded inorganic P). PUE, however, demonstrated distinct altitudinal patterns to generate an intricate conrol of P use pattern by soil P pools and altitude. Received: 2 August 1998 / Accepted: 28 November 1999  相似文献   

6.
Soil organic phosphorus (P) compounds can be the main P source for plants in P‐limited tropical rainforests. Phosphorus occurs in diverse chemical forms, including monoester P, diester P, and phytate, which require enzymatic hydrolysis by phosphatase into inorganic P before assimilation by plants. The interactions between plant interspecific differences in organic P acquisition strategies via phosphatase activities with root morphological traits would lead to P resource partitioning, but they have not been rigorously evaluated. We measured the activities of three classes of phosphatases (phosphomonoesterase, PME; phosphodiesterase, PDE; and phytase, PhT), specific root length (SRL), root diameter, and root tissue density in mature tree species with different mycorrhizal associations (ectomycorrhizal [ECM] or arbuscular mycorrhizal [AM]) and different successional status (climax or pioneer species) in Sabah, Malaysia. We studied nitrogen (N)‐ and P‐fertilized plots to evaluate the acquisition strategies for organic P under P‐limited conditions 7 years after fertilization was initiated. P fertilization reduced the PME activity in all studied species and reduced PhT and PDE activities more in climax species than in the two pioneer species, irrespective of the mycorrhizal type. PDE activity increased in some climax species after N fertilization, suggesting that these species allocate excess N to the synthesis of PDE. Moreover, PME and PhT activities, but not PDE activity, correlated positively with SRL. We suggest that climax species tend to be more strongly dependent on recalcitrant organic P (i.e., phytate and/or diester P) than pioneer species, regardless of the mycorrhizal type. We also suggest that trees in which root PME or PhT activity is enhanced can increase their SRL to acquire P efficiently. Resource partitioning of soil organic P would occur among species through differences in their phosphatase activities, which plays potentially ecologically important role in reducing the competition among coexisting tree species in lowland tropical rainforests.  相似文献   

7.
The genus Leptospermum (Mytaceae) is represented on Mount Kinabalu, Borneo, by L.flavescens (widespread on Malesian mountains and uplands) and L.recurvum (endemic to Mount Kinabalu). Analysis of the general morphology, leaf characters, leaf anatomy and flavonoid content of field collection, of both taxa at 1970–4000 m indicated that L.recuruum is a distinct species, most probably derived from L.flavescenS. L.recurvum individuals display a striking variation in leaf pubescence. Seedlings of. These plants grown under uniform conditions were not genetically variable (as seen in the uniformity of peroxidase and acid phosphatase isozymes).Variation that did occur was not correlated with altitude or any other identifiable ecological factors. The sporadic distribution of individuals producing non-viable seeds, probably an expression of genetic load, is another indication of a lack of genetic diversity. L.recurvum may have evolved from a population of L.flaurscens on Mount Kinabalu, most probably during the Pleistocene.  相似文献   

8.
Takyu M  Aiba S  Kitayama K 《Oecologia》2003,134(3):397-404
We have examined how the structure and function of a forest ecosystem change with topography (lower-slope versus ridge) and how the changes are modified by nutrient availability depending on geological substrate (Quaternary and Tertiary sedimentary rocks and ultrabasic rock) in the tropical montane rain forests of Mt. Kinabalu (Borneo) where climate is humid and aseasonal. Reflecting the difference in site age and parent rock, the pool size of soluble-P and inorganic-N in topsoil decreased from Quaternary sedimentary >Tertiary sedimentary >ultrabasic rock on the lower-slope, and they decreased from the lower-slope to the ridge on all substrates. Forest structural attributes [stature, above-ground biomass, and leaf area index (LAI)] decreased in the order of Quaternary sedimentary >Tertiary sedimentary >ultrabasic rock in association with soil nutrients on the lower-slopes, and decreased upslope consistently on each of the three substrates. Functional attributes [above-ground net primary productivity (ANPP) and decomposition rate] demonstrated similar patterns to structure. ANPP significantly correlated with LAI among the six sites, while net assimilation rate (ANPP divided by LAI assuming an even productivity between above vs below-ground system) was nearly constant. Therefore, ANPP could be explained primarily by LAI. Topographical change in LAI could be explained by leaf mass per area (LMA) combined with stand-level leaf biomass. LMA increased upslope on all substrates in association with the decrease in individual leaf area. Stand-level leaf biomass decreased upslope on all substrates but the Tertiary sedimentary rock. Our study demonstrated that topography and geological substrates interactively affected forest structure and processes. The effect of topography on forest structure and processes was greater on nutrient-rich substrates than on poor substrates, and the effect of geological substrate was greater on lower-slopes than on ridges.  相似文献   

9.
We studied the dynamics of nine tropical rainforests on Mount Kinabalu, Borneo, at four elevations (700, 1,700, 2,700 and 3,100 m) on various edaphic conditions for four 2-year periods over 8 years (1995–2003), and examined the relationships with above-ground productivity. Mean growth rate of stem diameter, basal area turnover rate and estimated recruitment rate (using growth rate and size distribution) correlated with productivity among the nine forests in all periods. These rates based on growth rates of surviving stems appeared to be good measures of stand turnover. However, observed recruitment rate and mortality (and turnover rate as mean of these rates) based on direct observation of recruits and deaths did not correlate with productivity in some periods. These rates may not be useful as measures of stand turnover given small sample size and short census interval because they were highly influenced by stochastic fluctuation. A severe drought associated with the 1997–1998 El Niño event inflated mortality and depressed mean growth rate, recruitment rate and basal area turnover rate, but had little effect on the correlations between these rates (except mortality) and productivity. Across broad elevational and edaphic gradients on Mount Kinabalu, forest turnover, productivity and species richness correlated with each other, but the causal interpretation is difficult given the different histories and species pools among forests at different elevations.  相似文献   

10.
An altitudinal transect study of the vegetation on Mount Kinabalu,Borneo   总被引:4,自引:0,他引:4  
K. Kitayama 《Plant Ecology》1992,102(2):149-171
A quantitative transect analysis of altitudinal sequences of forest canopy species from 600 to 3400 m asl on Mt. Kinabalu (4101 m), Borneo, resulted in four discrete altitudinal vegetation zones. These were made up of mutually exclusive species groups for lowland (<1200 m asl), lower montane (1200 to 2000–2350 m asl), upper montane (2000–2350 to 2800 m asl), and subalpine (2800 to the forest line, 3400 m asl) zones. Zonal soil types were correlated with the vegetation zones. In upslope sequence, these were: lowland Oxisols, montane Histosol/Spodosol complex, and subalpine Inceptisols. The highest contents of organic carbon, extractable phosphorus, and exchangeable magnesium and potassium were recorded in the lower and upper montane zones. The upper boundaries of the lowland, upper montane and subalpine zones coincided with thermal thresholds of latitudinal bioclimatic zones: 18°C TMIN (Köppen's tropical), WI 85 (Kira's warm temperate), and WI 45 (Kira's cool temperate), respectively. The upper limit of the lower montane zone was correlated with an abrupt increase of water surplus estimated from the annual rainfall minus annual potential evaporation. These climatic characteristics appear to define ecological altitudinal turnover points, so called critical altitudes, where groups of associated species are displaced by other groups.Abbreviations asl = above sea level - DBH = diameter at breast height - PHQ = Park headquarters - TMAX = Mean daily maximum air temperature - TMIN = Mean daily minimum air temperature - TWINSPAN = Two-way indicator species analysis - WI = Warmth index  相似文献   

11.
Aiba  Shin-ichiro  Kitayama  Kanehiro 《Plant Ecology》1999,140(2):139-157
We studied forest structure, composition and tree species diversity of eight plots in an environmental matrix of four altitudes (700, 1700, 2700 and 3100 m) and two types of geological substrates (ultrabasic and non-ultrabasic rocks) on Mount Kinabalu, Borneo. On both substrate series, forest stature, mean leaf area and tree species diversity (both 4.8 cm and 10 cm diameter at breast height [dbh]) decreased with altitude. The two forests on the different substrate series were similar at 700 m in structure, generic and familial composition and tree species diversity, but became dissimilar with increasing altitude. The decline in stature with altitude was steeper on the ultrabasic substrates than on the non-ultrabasic substrates, and tree species diversity was generally lower on ultrabasic substrates than on non-ultrabasic substrates at 1700 m. The forests on non-ultrabasic substrates at higher altitudes and those on ultrabasic substrates at the lower altitudes were similar in dbh versus tree height allometry, mean leaf area, and generic and familial composition at 1700 m. These contrasting patterns in forest structure and composition between the two substrate series suggested that altitudinal change was compressed on the ultrabasic substrates compared to the non-ultrabasic substrates. Tree species diversity was correlated with maximum tree height and estimated aboveground biomass, but was not with basal area, among the eight study sites. We suggest that forests with higher tree species diversity are characterized by greater biomass allocation to height growth relative to trunk diameter growth under more productive environment than forests with lower tree species diversity.  相似文献   

12.
13.
14.
Aiba  Shin-ichiro  Kitayama  Kanehiro  Takyu  Masaaki 《Plant Ecology》2004,174(1):147-161
Habitat associations with topography and canopy structure of 42 abundant tree species were studied in a 2.74-ha plot of tropical montane forest on Mount Kinabalu, Borneo. Many of these species belong to the same higher taxa including eight families and four genera. Analysis of intraspecific spatial distributions for stems ≥ 10 cm diameter revealed that 28 species (including all six species of Fagaceae) showed aggregated distributions at the 100-m2 and/or 400-m2 scales, and that 20 species showed habitat associations with topography by torus-translation tests; 17 species showed both characteristics. Species' associations with the local canopy structure were characterized by crown position index (CPI), which was defined relative to neighbour trees. The CPI differed greatly among individual stems at 10–40 cm diameter, and 19 species showed significantly different frequencies of crowns exposed vertically versus those shaded beneath the canopy. Mean growth rates at 10–40 cm diameter and size distributions of species were not related to topographic associations, but were explained by the associations with canopy structure; species with more exposed crowns grew faster and had less positively skewed distributions. Diversity in habitat associations was manifest between two genera (Syzygium and Tristaniopsis) in the family Myrtaceae and among species in these genera, but was less evident in other families and two genera (Garcinia and Lithocarpus). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Nutrient resorption, a process by which plants degrade organic compounds and resorb their nutrients from senescing tissues, is a crucial plant function to increase growth and fitness in nutrient-poor environments. Tropical trees on phosphorus (P)-poor soils are particularly known to have high P-resorption efficiency (PRE, the percentage of P resorbed from senescing leaves before abscission per total P in green leaves). However, the biochemical mechanisms underlying this greater PRE remain unclear. In this study, we determined the P concentration in easily soluble, nucleic acid, lipid and residual fractions for green and senescent leaves of 22 tree species from three sites, which differed in P availability, on the lower flanks of Mt. Kinabalu, Borneo. PRE varied from 24 to 93% and was higher in species from the P-poor site. P-resorption rate was greatest from the lipid fraction, the nucleic acid fraction, and lowest in the easily soluble fraction and the residual fraction when all the species were pooled. For species with higher PRE, P-resorption rate of the residual fraction was relatively high and was comparable in magnitude to that of the other labile fractions. This suggests that tree species inhabiting P-poor environments increased PRE by improving the degradation of recalcitrant compounds. This study suggests that plants selectively degrade organic compounds depending on environmental conditions, which is a key mechanism underlying the variation of PRE.  相似文献   

16.
Paradoxically, symbiotic dinitrogen (N2) fixers are abundant in nitrogen (N)‐rich, phosphorus (P)‐poor lowland tropical rain forests. One hypothesis to explain this pattern states that N2 fixers have an advantage in acquiring soil P by producing more N‐rich enzymes (phosphatases) that mineralise organic P than non‐N2 fixers. We assessed soil and root phosphatase activity between fixers and non‐fixers in two lowland tropical rain forest sites, but also addressed the hypothesis that arbuscular mycorrhizal (AM) colonisation (another P acquisition strategy) is greater on fixers than non‐fixers. Root phosphatase activity and AM colonisation were higher for fixers than non‐fixers, and strong correlations between AM colonisation and N2 fixation at both sites suggest that the N–P interactions mediated by fixers may generally apply across tropical forests. We suggest that phosphatase enzymes and AM fungi enhance the capacity of N2 fixers to acquire soil P, thus contributing to their high abundance in tropical forests.  相似文献   

17.
Yokoyama  Daiki  Imai  Nobuo  Kitayama  Kanehiro 《Plant and Soil》2017,416(1-2):463-476
Plant and Soil - Soil hydrolysable P can be a main P source for biota in P-limited tropical rain forests. Soil hydrolysable P occurs in various chemical fractions, including, monoester P, diester...  相似文献   

18.
Previously extensive tracts of primary rain forest have been degraded by human activities, and we examined how the effects of forest disturbance arising from habitat fragmentation and commercial selective logging affected ecosystem functioning in these habitats by studying leaf litter decomposition rates in litter bags placed on the forest floor. The rain forests of Borneo are dominated by trees from the family Dipterocarpaceae, and we compared leaf litter decomposition rates of three dipterocarp species at eight forest fragment sites (area 3–3529 ha) that had different histories of disturbance pre‐fragmentation: four fragments had been selectively logged prior to fragmentation and four had been formed from previously undisturbed forest. We compared these logged and unlogged forest fragments with sites in continuous forest that had been selectively logged (two sites) and fully protected and undisturbed (two sites). After 120 d, undisturbed continuous forest sites had the fastest rates of decomposition (52% mass loss). Forest fragments formed from unlogged forest (32% mass loss) had faster decomposition rates than logged forest fragments (28% mass loss), but slower rates than continuous logged forest (39% mass loss). Leaves of a light‐demanding species (Parashorea malaanonan) decomposed faster than those of a shade‐tolerant species (Hopea nervosa), but decomposition of all three dipterocarp species that we studied responded similarly to logging and fragmentation effects. Reduced decomposition rates in logged and fragmented forest sites may affect nutrient cycling and thus have detrimental consequences for forest regeneration. Conservation management to improve forest quality should be a priority, particularly in logged forest fragments.  相似文献   

19.
Bailey et al. (1989) and Headland (1987) have recently proposed hypotheses stating that human foragers are unable to live in undisturbed tropical rain forests without some reliance on cultivated foods. The present discussion considers these hypotheses, as well as some of the evidence by which they have been tested. Four conceptual problems in the way these hypotheses have been formulated are identified: (1) assumptions about the relationship between key features of tropical forest ecosystems and human subsistence potential, (2) in-consistencies in the definition of pure foraging, (3) adherence to a dichotomy between foraging and agriculture, the result being that conscious and unconscious effects of exploitation on the demographic parameters of key resources is ignored, and (4) problems in defining the significance of ecotones. I consider the case of Penan hunter-gatherers of Borneo, a population which, by virtue of their reliance on the sago palm Eugeissona utilis, contradicts the conclusions of Bailey et al. and Headland. I consider salient aspects of Penan reliance on Eugeissona, and describe how Penan exploitation of this resource may positively effect its availability. This case is seen to provide a challenge to the hypotheses of Bailey et al. and Headland, not only in the extent to which it contradicts their conclusions but, more significantly, in what it reveals about the assumptions upon which their hypotheses are based. This points to the need for greater precision in the definition of future hypotheses about foraging in tropical forests.  相似文献   

20.
Posada JM  Schuur EA 《Oecologia》2011,165(3):783-795
The effect of high precipitation regime in tropical forests is poorly known despite indications of its potentially negative effects on nutrient availability and carbon (C) cycling. Our goal was to determine if there was an effect of high rainfall on nitrogen (N) and phosphorous (P) availability and indexes of C cycling in lowland tropical rain forests exposed to a broad range of mean annual precipitation (MAP). We predicted that C turnover time would increase with MAP while the availability of N and P would decrease. We studied seven Neotropical lowland forests covering a MAP range between 2,700 and 9,500 mm. We used radiocarbon (?14C) from the atmosphere and respired from soil organic matter to estimate residence time of C in plants and soils. We also used C, N, and P concentrations and the stable isotope ratio of N (δ15N) in live and dead plant tissues and in soils as proxies for nutrient availability. Negative δ15N values indicated that the wettest forests had N cycles that did not exhibit isotope-fractionating losses and were potentially N-limited. Element ratios (N:P and C:P) in senescent leaves, litter, and live roots showed that P resorption increased considerably with MAP, which points towards increasing P-limitation under high MAP regimes. Soil C content increased with MAP but C turnover time only showed a weak relationship with MAP, probably due to variations in soil parent material and age along the MAP gradient. In contrast, comparing C turnover directly to nutrient availability showed strong relationships between C turnover time, N availability (δ15N), and P availability (N:P) in senescent leaves and litter. Thus, an effect of MAP on carbon cycling appeared to be indirectly mediated by nutrient availability. Our results suggest that soil nutrient availability plays a central role in the dynamic of C cycling in tropical rain forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号