首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bacterial diversity in a Brazilian non-disturbed mangrove sediment   总被引:1,自引:0,他引:1  
The bacterial diversity present in sediments of a well-preserved mangrove in Ilha do Cardoso, located in the extreme south of São Paulo State coastline, Brazil, was assessed using culture-independent molecular approaches (denaturing gradient gel electrophoresis (DGGE) and analysis of 166 sequences from a clone library). The data revealed a bacterial community dominated by Alphaproteobacteria (40.36% of clones), Gammaproteobacteria (19.28% of clones) and Acidobacteria (27.71% of clones), while minor components of the assemblage were affiliated to Betaproteobacteria, Deltaproteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. The clustering and redundancy analysis (RDA) based on DGGE were used to determine factors that modulate the diversity of bacterial communities in mangroves, such as depth, seasonal fluctuations, and locations over a transect area from the sea to the land. Profiles of specific DGGE gels showed that both dominant (‘universal’ Bacteria and Alphaproteobacteria) and low-density bacterial communities (Betaproteobacteria and Actinobacteria) are responsive to shifts in environmental factors. The location within the mangrove was determinant for all fractions of the community studied, whereas season was significant for Bacteria, Alphaproteobacteria, and Betaproteobacteria and sample depth determined the diversity of Alphaproteobacteria and Actinobacteria.  相似文献   

2.

Aims

The goal of this study was to investigate the structure and functional potential of microbial communities associated with healthy and diseased tomato rhizospheres.

Methods

Composition changes in the bacterial communities inhabiting the rhizospheric soil and roots of tomato plants were detected using 454 pyrosequencing. Microbial functional diversity was investigated with BIOLOG technology.

Results

There were significant shifts in the microbial composition of diseased samples compared with healthy samples, which had the highest bacterial diversity. The predominant phylum in both diseased and healthy samples was Proteobacteria, which accounted for 35.7–97.4 % of species. The class Gammaproteobacteria was more abundant in healthy than in diseased samples, while the Alphaproteobacteria and Betaproteobacteria were more abundant in diseased samples. The proportions of pathogenic Ralstonia solanacearum and Actinobacteria species were also elevated in diseased samples. The proportions of the various bacterial populations showed a similar trend both in rhizosphere soil and plant roots in diseased versus disease-free samples, indicating that pathogen infection altered the composition of bacterial communities in both plant and soil samples. In terms of microbial activity, functional diversity was suppressed in diseased soil samples. Soil enzyme activity, including urease, alkaline phosphatase and catalase activity, also declined.

Conclusions

This is the first report that provides evidence that R. solanacearum infection elicits shifts in the composition and functional potential of microbial communities in a continuous-cropping tomato operation.  相似文献   

3.

Background and aims

Due to long-term weathering of land surfaces, aeolian nutrient contributions can become essential to maintain ecosystem fertility and avoid retrogression. However, studies that consider the qualitative and quantitative effects of dust deposition on ecosystem development are rare. We addressed this knowledge gap by studying an active Holocene dust flux gradient along a 6,500 year old dune ridge and a nearby chronosequence outside the influence of dust deposition in a super-humid, high leaching environment, on the west coast of the South Island in New Zealand.

Methods

Along both sequences we measured foliar nutrients of two main tree species (Dacrydium cupressinum, Prumnopitys ferruginea) and analysed vegetation communities in survey plots.

Results

Along the dust gradient, foliar phosphorus (P) concentrations increased up to 50 % with increasing dust flux. Across the nearby chronosequence a rapid decline of up to 50 % in foliar [P] occurred within the first 2,000 years after which it plateaued. At the highest dust flux rate, closest to the dust source, foliar [P] matched those of surfaces that are 5,702 to 6,098 years younger than the 6,500 year old dune. Vegetation communities along the dust gradient showed increasing relative abundance of species typical for successional communities on immature soils (Entisols, Inceptisols), while canopy cover and basal area (total, angiosperms, conifers) did not respond to increasing dust deposition. Tree fern basal area, however, positively responded to the dust flux.

Conclusion

We conclude that naturally occurring dust deposition can fertilise ecosystems significantly, creating a foliar nutrient status normally found on land surfaces that are up to 94 % younger and vegetation communities that are typical for successional stages on young soils (Entisols, Inceptisols). We suspect that these observations mainly reflect more plant-available P in the ecosystem as a result of dust fertilisation. Thus, dust deposition can be an important mechanism to avoid or retard the development of an ecosystem toward natural retrogression. This is the first study to directly quantify the fertilising capacity of natural dust deposition by calibrating its rejuvenating effect against a well-dated successional vegetation sequence.  相似文献   

4.
Taxonomic compositions of epiphytic bacterial communities in water areas differing in levels of oil pollution were revealed. In total, 82 bacterial genera belonging to 16 classes and 11 phyla were detected. All detected representatives of epiphytic bacterial communities belonged to the phyla Actinobacteria, Bacteroidetes, Planctomycetes, Proteobacteria, Verrucomicrobia, Acidobacteria, Cyanobacteria, Firmicutes, and Fusobacteria and candidate division TM7. The ratio of the phyla in the communities varied depending on the levels of oil pollution. New data on taxonomic composition of uncultivated epiphytic bacterial communities of Fucus vesiculosus were obtained.  相似文献   

5.

Background

Soil bacteria are important drivers for nearly all biogeochemical cycles in terrestrial ecosystems and participate in most nutrient transformations in soil. In contrast to the importance of soil bacteria for ecosystem functioning, we understand little how different management types affect the soil bacterial community composition.

Methodology/Principal Findings

We used pyrosequencing-based analysis of the V2-V3 16S rRNA gene region to identify changes in bacterial diversity and community structure in nine forest and nine grassland soils from the Schwäbische Alb that covered six different management types. The dataset comprised 598,962 sequences that were affiliated to the domain Bacteria. The number of classified sequences per sample ranged from 23,515 to 39,259. Bacterial diversity was more phylum rich in grassland soils than in forest soils. The dominant taxonomic groups across all samples (>1% of all sequences) were Acidobacteria, Alphaproteobacteria, Actinobacteria, Betaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Firmicutes. Significant variations in relative abundances of bacterial phyla and proteobacterial classes, including Actinobacteria, Firmicutes, Verrucomicrobia, Cyanobacteria, Gemmatimonadetes and Alphaproteobacteria, between the land use types forest and grassland were observed. At the genus level, significant differences were also recorded for the dominant genera Phenylobacter, Bacillus, Kribbella, Streptomyces, Agromyces, and Defluviicoccus. In addition, soil bacterial community structure showed significant differences between beech and spruce forest soils. The relative abundances of bacterial groups at different taxonomic levels correlated with soil pH, but little or no relationships to management type and other soil properties were found.

Conclusions/Significance

Soil bacterial community composition and diversity of the six analyzed management types showed significant differences between the land use types grassland and forest. Furthermore, bacterial community structure was largely driven by tree species and soil pH.  相似文献   

6.
Overproduction of livestock manures with unpleasant odors causes significant environmental problems. The microbial fermentation bed (MFB) system is considered an effective approach to recycling utilization of agricultural byproducts and pig manure (PM). To gain a better understanding of bacterial communities present during the degradation of PM in MFB, the PM bacterial community was evaluated at different fermentation stages using 16S rRNA high throughput sequencing technology. The heatmap plot clustered five samples into short-term fermentation stage of 0–10 days and long-term fermentation stage of 15–20 days. The most abundant OTUs at the phylum level were Firmicutes, Actinobacteria and Proteobacteria in the long-term fermentation stage of PM, whereas Firmicutes, Bacteroidetes, and Proteobacteria predominated in the short-term fermentation stage of PM. At the genus level, organic degradation strains, such as Corynebacterium, Bacillus, Virgibacillus, Pseudomonas, Actinobacteria, Lactobacillus, Pediococcus were the predominate genera at the long-term fermentation stage, but were found only rarely in the short-term fermentation stage. C/N ratios increased and the concentration of the unpleasant odor substance 3-hydroxy-5-methylisoxazole (3-MI) decreased with prolonged period of fermentation. Redundancy analysis (RDA) demonstrated that the relative abundance of Firmicutes, Actinobacteria, Acidobacteria and Proteobacteria had a close relationship with degradation of 3-MI and increasing C/N ratio. These results provide valuable additional information about bacterial community composition during PM biodegradation in animal husbandry.  相似文献   

7.
Poly- and perfluoroalkyl compounds (PFASs) are ubiquitous in the environment, but their influences on microbial community remain poorly known. The present study investigated the depth-related changes of archaeal and bacterial communities in PFAS-contaminated soils. The abundance and structure of microbial community were characterized using quantitative PCR and high-throughput sequencing, respectively. Microbial abundance changed considerably with soil depth. The richness and diversity of both bacterial and archaeal communities increased with soil depth. At each depth, bacterial community was more abundant and had higher richness and diversity than archaeal community. The structure of either bacterial or archaeal community displayed distinct vertical variations. Moreover, a higher content of perfluorooctane sulfonate (PFOS) could have a negative impact on bacterial richness and diversity. The rise of soil organic carbon content could increase bacterial abundance but lower the richness and diversity of both bacterial and archaeal communities. In addition, Proteobacteria, Actinobacteria, Chloroflexi, Cyanobacteria, and Acidobacteria were the major bacterial groups, while Thaumarchaeota, Euryarchaeota, and unclassified Archaea dominated in soil archaeal communities. PFASs could influence soil microbial community.  相似文献   

8.
Both Bacteria and Archaea might be involved in various biogeochemical processes in lacustrine sediment ecosystems. However, the factors governing the intra-lake distribution of sediment bacterial and archaeal communities in various freshwater lakes remain unclear. The present study investigated the sediment bacterial and archaeal communities in 13 freshwater lakes on the Yunnan Plateau. Quantitative PCR assay showed a large variation in bacterial and archaeal abundances. Illumina MiSeq sequencing illustrated high bacterial and archaeal diversities. Bacterial abundance was regulated by sediment total organic carbon and total nitrogen, and water depth, while nitrate nitrogen was an important determinant of bacterial diversity. Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, and Verrucomicrobia were the major components of sediment bacterial communities. Proteobacteria was the largest phylum, but its major classes and their proportions varied greatly among different lakes, affected by sediment nitrate nitrogen. In addition, both Euryarchaeota and Crenarchaeota were important members in sediment archaeal communities, while unclassified Archaea usually showed the dominance.  相似文献   

9.

Background and aims

The Tehuacán-Cuitcatlán reserve is an area of unique plant biodiversity mostly in the form of xerophytes, with exceptionally high numbers of rare and endemic species. This endemism results partly from the characteristics of the climate of this area, with two distinct seasons: rainy and dry seasons. Although rhizosphere communities must be critical in the function of this ecosystem, understanding the structure of these communities is currently limited. This is the first molecular study of the microbial diversity present in the rhizosphere of Mamillaria carnea.

Methods

Total DNA was obtained from soil and rhizosphere samples at three locations in the Tehuacán Cuicatlán Reserve, during dry and rainy seasons. Temperature gradient gel electrophoresisis (TGGE) fingerprinting, 16S rRNA gene libraries and pyrosequencing were used to investigate bacterial diversity in the rhizosphere of Mammillaria carnea and changes in the microbial community between seasons.

Results

Deep sequencing data reveal a higher level of biodiversity in the dry season. Statistical analyses based on these data indicates that the composition of the bacterial community differed between both seasons affecting to members of the phyla Acidobacteria, Cyanobacteria, Gemmatimonadetes, Plantomycetes, Actinobacteria and Firmicutes. In addition, the depth of sequencing performed (>24,000 reads) enables detection of changes in the relative abundance of lower bacterial taxa (novel bacterial phylotypes) indicative of the increase of specific bacterial populations due to the season.

Conclusions

This study states the basis of the bacterial diversity in the rhizosphere of cacti in semi-arid environments and it is a sequence-based demonstration of community shifts in different seasons.  相似文献   

10.
11.
Sediment microorganisms play a crucial role in a variety of biogeochemical processes in freshwater ecosystems. The objective of the current study was to investigate the spatial distribution of sediment bacterial community structure in Luoshijiang Wetland, located in Yunnan–Kweichow Plateau (China). Wetland sediments at different sites and depths were collected. Clone library analysis indicates bacterial communities varied with both sampling site and sediment depth. A total of fourteen bacterial phyla were identified in sediment samples, including Proteobacteria, Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Spirochaetes, and Verrucomicrobia. Proteobacteria (mainly Betaproteobacteria and Deltaproteobacteria) predominated in wetland sediments. Moreover, the proportions of Alphaproteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadete, and Planctomycetes were significantly correlated with chemical properties.  相似文献   

12.

Background and aims

Models of retrogressive succession have emphasised the role of phosphorus (P) depletion in driving biomass loss on surfaces of increasing geologic age, but the influence of impeded drainage on old surfaces has received much less attention. We tested whether poor drainage contributed to changes in ecosystem properties along a 291,000-year chronosequence in New Zealand (the Waitutu chronosequence).

Methods

Soil and ecosystem properties were measured at 24 evenly distributed points within each of eight 1.5 ha plots located on young, intermediate and old surfaces. Regression analyses tested whether drainage, in addition to P, affected ecosystem functioning. A complementary fertilization experiment tested whether P was indeed limiting on the most nutrient-depleted sites.

Results

Most phosphorus depletion occurred in the early stages of pedogenesis (within 24,000 years), and the older surfaces were similar in soil-P contents, whereas drainage was initially good but became increasingly impeded with surface age. In the fertilizer experiment, species showed positive responses to both nitrogen (N) and P addition on the oldest surfaces, supporting Walker and Syer’s model. However, water table depth was also found to be strongly correlated with plant species composition, forest basal area, light transmission, and litter decomposition when comparisons were made across sites, emphasising that it too has strong influences on ecosystem processes.

Conclusions

Poor drainage influences the process of retrogressive succession along the Waitutu chronosequence. We discuss the implications of our work with regard to other chronosequences, suggesting that topography is likely to have strong influences on retrogressive processes.  相似文献   

13.
Soil organic phosphorus transformations in a boreal forest chronosequence   总被引:2,自引:0,他引:2  

Background and Aims

Soil phosphorus (P) composition changes with ecosystem development, leading to changes in P bioavailability and ecosystem properties. Little is known, however, about how soil P transformations proceed with ecosystem development in boreal regions.

Methods

We used 1-dimensional 31P and 2-dimensional 1H, 31P correlation nuclear magnetic resonance (NMR) spectroscopy to characterise soil organic P transformations in humus horizons across a 7,800 year-old chronosequence in Västerbotten, northern Sweden.

Results

Total soil P concentration varied little along the chronosequence, but P compounds followed three trends. Firstly, the concentrations of DNA, 2-aminoethyl phosphonic acid, and polyphosphate, increased up to 1,200–2,700 years and then declined. Secondly, the abundances of α– and β—glycerophosphate, nucleotides, and pyrophosphate, were higher at the youngest site compared with all other sites. Lastly, concentrations of inositol hexakisphosphate fluctuated with site age. The largest changes in soil P composition tended to occur in young sites which also experience the largest shifts in plant community composition.

Conclusions

The apparent lack of change in total soil P is consistent with the youth and nitrogen limited nature of the Västerbotten chronosequence. Based on 2D NMR spectra, around 40 % of extractable soil organic P appeared to occur in live microbial cells. The observed trends in soil organic P may be related to shifts in plant community composition (and associated changes in soil microorganisms) along the studied chronosequence, but further studies are needed to confirm this.  相似文献   

14.
The assessment of bacterial communities in soil gives insight into microbial behavior under prevailing environmental conditions. In this context, we assessed the composition of soil bacterial communities in a Brazilian sugarcane experimental field. The experimental design encompassed plots containing common sugarcane (variety SP80-1842) and its transgenic form (IMI-1 — imazapyr herbicide resistant). Plants were grown in such field plots in a completely randomized design with three treatments, which addressed the factors transgene and imazapyr herbicide application. Soil samples were taken at three developmental stages during plant growth and analyzed using 16S ribosomal RNA (rRNA)-based PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and clone libraries. PCR-DGGE fingerprints obtained for the total bacterial community and specific bacterial groups — Actinobacteria, Alphaproteobacteria and Betaproteobacteria — revealed that the structure of these assemblages did not differ over time and among treatments. Nevertheless, slight differences among 16S rRNA gene clone libraries constructed from each treatment could be observed at particular cut-off levels. Altogether, the libraries encompassed a total of eleven bacterial phyla and the candidate divisions TM7 and OP10. Clone sequences affiliated with the Proteobacteria, Actinobacteria, Firmicutes and Acidobacteria were, in this order, most abundant. Accurate phylogenetic analyses were performed for the phyla Acidobacteria and Verrucomicrobia, revealing the structures of these groups, which are still poorly understood as to their importance for soil functioning and sustainability under agricultural practices.  相似文献   

15.

Aims

Plant species and functional groups are known to drive the community of belowground invertebrates but whether their effects are consistent across environmental gradients is less well understood. We aimed to determine if plant effects on belowground communities are consistent across a successional gradient in boreal forests of northern Sweden.

Methods

We performed two plant removal experiments across ten stands that form a 364-year post-fire boreal forest chronosequence. Through the removal of plant functional groups (mosses or dwarf shrubs) and of individual species of dwarf shrubs, we aimed to determine if the effects of functional groups and species on the soil micro-arthropod community composition varied across this chronosequence.

Results

Removal of mosses had a strong negative impact on the abundance and diversity of Collembola and Acari and this effect was consistent across the chronosequence. Only specific Oribatid families declined following dwarf-shrub species removals, with some of these responses being limited to old forest stands.

Conclusions

Our results show that the impacts of plants on micro-arthropods is consistent across sites that vary considerably in their stage of post-fire ecosystem development, despite these stages differing greatly in plant productivity, fertility, humus accumulation and moss development. In addition, mosses are a much stronger driver of the micro-arthropod community than vascular plants.  相似文献   

16.
The soil microbial community plays an important role in terrestrial carbon and nitrogen cycling. However, microbial responses to climate warming or cooling remain poorly understood, limiting our ability to predict the consequences of future climate changes. To address this issue, it is critical to identify microbes sensitive to climate change and key driving factors shifting microbial communities. In this study, alpine soil transplant experiments were conducted downward or upward along an elevation gradient between 3,200 and 3,800 m in the Qinghai-Tibet plateau to simulate climate warming or cooling. After a 2-year soil transplant experiment, soil bacterial communities were analyzed by pyrosequencing of 16S rRNA gene amplicons. The results showed that the transplanted soil bacterial communities became more similar to those in their destination sites and more different from those in their “home” sites. Warming led to increases in the relative abundances in Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria and decreases in Acidobacteria, Betaproteobacteria, and Deltaproteobacteria, while cooling had opposite effects on bacterial communities (symmetric response). Soil temperature and plant biomass contributed significantly to shaping the bacterial community structure. Overall, climate warming or cooling shifted the soil bacterial community structure mainly through species sorting, and such a shift might correlate to important biogeochemical processes such as greenhouse gas emissions. This study provides new insights into our understanding of soil bacterial community responses to climate warming and cooling.  相似文献   

17.
This study assessed the microbial diversity, activity, and composition of methane-oxidizing communities of a subarctic wetland in Russia with mosaic cover of Sphagnum mosses and lichens of the genera Cladonia and Cetraria. Potential methane-oxidizing activity of peat sampled from lichen-dominated wetland sites was higher than that in the sites dominated by Sphagnum mosses. In peat from lichen-dominated sites, major bacterial groups identified by high-throughput sequencing of the 16S rRNA genes were the Acidobacteria (35.4–41.2% of total 16S rRNA gene reads), Alphaproteobacteria (19.1–24.2%), Gammaproteobacteria (7.9–11.1%), Actinobacteria (5.5–13.2%), Planctomycetes (7.2–9.5%), and Verrucomicrobia (5.1–9.5%). The distinctive feature of this community was high proportion of Subdivision 2 Acidobacteria, which are not characteristic for boreal Sphagnum peat bogs. Methanotrophic community composition was determined by molecular analysis of the pmoA gene encoding particulate methane monooxygenase. Most (~80%) of all pmoA gene fragments revealed in peat from lichen-dominated sites belonged to the phylogenetic lineage represented by a microaerobic spiral-shaped methanotroph, “Candidatus Methylospira mobilis”. Members of the genus Methylocystis, which are typical inhabitants of boreal Sphagnum peat bogs, represented only a minor group of indigenous methanotrophs. The specific feature of a methanotrophic community in peat from lichen-dominated sites was the presence of uncultivated USCα (Upland Soil Cluster alpha) methanotrophs, which are typical for acidic upland soils showing atmospheric methane oxidation. The methanotrophic community composition in lichen-dominated sites of a tundra wetland, therefore, was markedly different from that in boreal Sphagnum peat bogs.  相似文献   

18.

Background

Soil phosphorus availability declines during long-term ecosystem development on stable land surfaces due to a gradual loss of phosphorus in runoff and transformation of primary mineral phosphate into secondary minerals and organic compounds. These changes have been linked to a reduction in plant biomass as ecosystems age, but the implications for belowground organisms remain unknown.

Methods

We constructed a phosphorus budget for the well-studied 120,000 year temperate rainforest chronosequence at Franz Josef, New Zealand. The budget included the amounts of phosphorus in plant biomass, soil microbial biomass, and other soil pools.

Results

Soil microbes contained 68–78 % of the total biomass phosphorus (i.e. plant plus microbial) for the majority of the 120,000 year chronosequence. In contrast, plant phosphorus was a relatively small pool that occurred predominantly in wood. This points to the central role of the microbial biomass in determining phosphorus availability as ecosystems mature, yet also indicates the likelihood of strong competition between plants and saprotrophic microbes for soil phosphorus.

Conclusions

This novel perspective on terrestrial biogeochemistry challenges our understanding of phosphorus cycling by identifying soil microbes as the major biological phosphorus pool during long-term ecosystem development.  相似文献   

19.

Background and aims

Biodegradation of polycyclic aromatic hydrocarbons (PAHs) is accelerated in the presence of plants, due to the stimulation of rhizosphere microbes by plant exudates (nonspecific enhancement). However, plants may also recruit specific microbial groups in response to PAH stress (specific enhancement). In this study, plant effects on the development of rhizosphere microbial communities in heterogeneously contaminated soils were assessed for three grasses (ryegrass, red fescue and Yorkshire fog) and four legumes (white clover, chickpea, subterranean clover and red lentil).

Methods

Plants were cultivated using a split-root model with their roots divided between two independent pots containing either uncontaminated soil or PAH-contaminated soil (pyrene or phenanthrene). Microbial community development in the two halves of the rhizosphere was assessed by T-RFLP (bacterial and fungal community) or DGGE (bacterial community), and by 16S rRNA gene tag-pyrosequencing.

Results

In legume rhizospheres, the microbial community structure in the uncontaminated part of the split-root model was significantly influenced by the presence of PAH-contamination in the other part of the root system (indirect effect), but this effect was not seen for grasses. In the contaminated rhizospheres, Verrucomicrobia and Actinobacteria showed increased populations, and there was a dramatic increase in Denitratisoma numbers, suggesting that this genus may be important in rhizoremediation processes.

Conclusion

Our results show that Trifolium and other legumes respond to PAH-contamination stress in a systemic manner, to influence the microbial diversity in their rhizospheres.  相似文献   

20.
The increasing temperature in Arctic tundra deepens the active layer, which is the upper layer of permafrost soil that experiences repeated thawing and freezing. The increasing of soil temperature and the deepening of active layer seem to affect soil microbial communities. Therefore, information on soil microbial communities at various soil depths is essential to understand their potential responses to climate change in the active layer soil. We investigated the community structure of soil bacteria in the active layer from moist acidic tundra in Council, Alaska. We also interpreted their relationship with some relevant soil physicochemical characteristics along soil depth with a fine scale (5 cm depth interval). The bacterial community structure was found to change along soil depth. The relative abundances of Acidobacteria, Gammaproteobacteria, Planctomycetes, and candidate phylum WPS-2 rapidly decreased with soil depth, while those of Bacteroidetes, Chloroflexi, Gemmatimonadetes, and candidate AD3 rapidly increased. A structural shift was also found in the soil bacterial communities around 20 cm depth, where two organic (upper Oi and lower Oa) horizons are subdivided. The quality and the decomposition degree of organic matter might have influenced the bacterial community structure. Besides the organic matter quality, the vertical distribution of bacterial communities was also found to be related to soil pH and total phosphorus content. This study showed the vertical change of bacterial community in the active layer with a fine scale resolution and the possible influence of the quality of soil organic matter on shaping bacterial community structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号