首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tryptic digestion of ABP-120, an actin cross-linking protein from Dictyostelium discoideum, generates a ladder of peptides differing in molecular mass by 13,000 daltons, indicating a structural repeat within the molecule. A number of peptides bind actin with the smallest having a molecular mass of 17,000 daltons (T17). Our sedimentation assays also show that a peptide of 14,000 daltons does not bind actin. Using the full-length cDNA sequence (Noegel, A., Rapp, S., Lottspeich, F., Schleicher, M., and Stewart, M. (1989) J. Cell Biol. 109, 607-618) and protein sequencing techniques, we have determined that T17 begins at residue 89 while T14 begins at residue 116. Therefore we have localized 27 amino acids which are essential for actin binding activity. This region is at the end of the molecule, distal from the repetitive beta-sheet region predicted from the cDNA sequence, and displays high sequence identity with regions in the N termini of ABP/filamin, dystrophin, beta-spectrin, and alpha-actinin.  相似文献   

2.
The interaction with actin and intracellular localization of the 30,000-D actin-binding protein from the cellular slime mold Dictyostelium discoideum have been investigated to analyze the potential contributions of this protein to cell structure and movement. The formation of anisotropic cross-linked filament networks (bundles) containing actin and the 30,000-D protein has been observed by electron microscopy, light scattering, viscometry, and polarization microscopy. Cosedimentation experiments indicate that a maximum of one molecule of the 30,000-D protein can bind to 10 actin monomers in filaments with an apparent association constant of 1 X 10(7) liters/mol. Inhibition of the interaction of the 30,000-D protein with actin by either magnesium or calcium was observed by viscometry, light scattering, polarization microscopy, and direct binding assays. However, the concentration of magnesium required to diminish the interaction is greater than 100 times greater than that of calcium. The association constant of the 30,000-D protein for actin is 4.2 X 10(6) liters/mol, or less than 1 X 10(5) liters/mol in the presence of increased concentrations of either Mg2+ or Ca2+, respectively. Enzyme-linked immunoassays indicate that the 30,000-D protein comprises 0.04% of the protein in D. discoideum. Extensive interaction of the 30,000-D protein with actin in cytoplasm is predicted from these measurements of the concentration of this protein and its affinity for actin. The distribution of the 30,000-D protein was analyzed by immunofluorescence microscopy using mono-specific affinity-purified polyclonal antibody. The 30,000-D protein exhibits a diffuse distribution in cytoplasm, is excluded from prominent organelles, and is quite prominent in fine extensions protruding from the cell surface. The number, length, and distribution of these extensions containing the 30,000-D protein are similar to those of filopodia observed by scanning electron microscopy. To analyze the effects of cell thickness and the distribution of organelles on the immunofluorescence localization, fluorescein-labeled BSA was incorporated into the cytoplasm of living cells before fixation and staining using a sonication loading technique. The results indicate that the 30,000-D protein is selectively incorporated into filopodia. These results provide a clear distinction between the multiple actin-cross-linking proteins present in D. discoideum, and suggest that the 30,000-D protein contributes to organization of bundles of actin filaments in filopodia.  相似文献   

3.
Cross-linking of muscle actin filaments by low concentrations of actin-binding protein reduces the concentration of muscle myosin required for contraction of actin. Gelsolin, a macrophage protein that divides actin filaments in the presence of calcium, inhibits the amplifying effect of actin-binding protein on contraction of actomyosin. In a calcium gradient, the actomyosin gel moves from high to low calcium concentrations, indicating that calcium-controlled lattice formation can impart directionality to the movement of an isotropic actin network.  相似文献   

4.
Actin-based gels were prepared from clarified high-salt extracts of human platelets by dialysis against physiological salt buffers. The gel was partially solubilized with 0.3 M KCl. Mice were immunized with the 0.3 M KCl extract of the actin gel, and hybridomas were produced by fusion of spleen cells with myeloma cells. Three hybridomas were generated that secrete antibodies against an 80-kD protein. These monoclonal antibodies stained stress fibers in cultured cells and cross-reacted with proteins in several tissue types, including smooth muscle. The cross-reacting protein in chicken gizzard smooth muscle had an apparent molecular weight of 140,000 and was demonstrated to be caldesmon, a calmodulin and actin-binding protein (Sobue, K., Y. Muramoto, M. Fujita, and S. Kakiuchi, Proc. Natl. Acad. Sci. USA, 78:5652-5655). No proteins of molecular weight greater than 80 kD were detectable in platelets by immunoblotting using the monoclonal antibodies. The 80-kD protein is heat stable and was purified using modifications of the procedure reported by Bretscher for the rapid purification of smooth muscle caldesmon (Bretscher, A., 1985, J. Biol. Chem., 259:12873-12880). The 80-kD protein bound to calmodulin-Sepharose in a Ca++-dependent manner and sedimented with actin filaments, but did not greatly increase the viscosity of F-actin solutions. The actin-binding activity was inhibited by calmodulin in the presence of calcium. Except for the molecular weight difference, the 80-kD platelet protein appears functionally similar to 140-kD smooth muscle caldesmon. We propose that the 80-kD protein is platelet caldesmon.  相似文献   

5.
Triton X-100 residues (cytoskeletons) of human platelets were prepared in the presence of various concentrations of free calcium (Ca2+), and the polypeptide composition and ATPase activity were examined. Triton residues prepared in the presence of Ca2+ concentrations below 2 X 10(-7) M were composed primarily of polypeptides with an apparent molecular mass of 43 (actin), 105 (alpha-actinin-like protein) and 250 (actin-binding protein) kDa and showed low K+-EDTA-ATPase activity. When Triton residues were prepared at Ca2+ above 5 X 10(-7) M, a 200 kDa polypeptide (myosin heavy chain) and K+-EDTA-ATPase activity increased markedly, but actin-binding protein and alpha-actinin-like protein decreased. When N-(N-(L-3-trans-carboxyoxirane-2-carbonyl)-L-leucyl)agmatine, an inhibitor for Ca2+-dependent proteinase, was added to Triton lysis buffer containing high Ca2+, polypeptides of 250, 235 and 105 kDa remained associated with the residues. Under electron microscopic analysis, the treatment of platelets with Triton X-100 at low Ca2+ showed a network of microfilaments. When platelets were treated with high Ca2+, the microfilaments were disrupted and a few thick filaments and many granules appeared. However, when the inhibitor for Ca2+-proteinase was included in Triton lysis buffer, the microfilaments remained intact. These results suggested that an increase in Ca2+ concentration to more than 5 X 10(-7) M not only makes myosin associate with cytoskeletons but also regulates the organization of filamentous structures.  相似文献   

6.
We have purified an actin binding protein from amebas of Dictyostelium discoideum which we call 95,000-dalton protein (95K). This protein is rod shaped, approximately 40 nm long in the electron microscope, contains two subunits measuring 95,000 daltons each, and cross-links actin filaments. Cross-linking activity was demonstrated by using falling-ball viscometry, Ostwald viscometry, and electron microscopy. Cross-linking activity is optimal at 0.1 microM Ca++ and pH 6.8, but is progressively inhibited at higher Ca++ and pH levels over a physiological range. Half-maximal inhibition occurs at 1.6 microM free Ca++ and pH 7.3, respectively. Sedimentation experiments demonstrate that elevated Ca++ and pH inhibit the binding of 95K to F-actin which explains the loss of cross-linking activity. Electron microscopy demonstrates that under optimal conditions for cross-linking, 95K protein bundles actin filaments and that this bundling is inhibited by microM Ca++. Severing of actin filaments by 95K was not observed in any of the various assays under any of the solution conditions used. Hence, 95K protein is a rod-shaped, dimeric, Ca++- and pH-regulated actin binding protein that cross-links but does not sever actin filaments.  相似文献   

7.
Two actin-modulating proteins have been purified from toad oocytes. A high-molecular weight protein, similar in structure and function to macrophage actin-binding protein, accounts for the isotropic actin-crosslinking activity in oocyte homogenates. A calcium-dependent activity in toad oocyte homogenates which shortens actin filaments is accounted for by a 95,000-dalton protein which resembles villin, an actin-severing and -bundling protein of avian epithelial brush borders. In the presence of high (? μM) calcium, this protein shortens actin filaments in a concentration-dependent fashion and stimulates filament assembly when added to monomeric actin. In the absence of calcium the protein promotes the formation of actin filament bundles. Therefore, in the toad oocyte actin can be crosslinked into a network by actin-binding protein. Calcium regulation of the actin network may be mediated by villin. These results are different from those reported in echinoderm eggs.  相似文献   

8.
Cofilin is a low molecular weight actin-modulating protein whose structure and function are conserved among eucaryotes. Cofilin exhibits in vitro both a monomeric actin-sequestering activity and a filamentous actin-severing activity. To investigate in vivo functions of cofilin, cofilin was overexpressed in Dictyostelium discoideum cells. An increase in the content of D. discoideum cofilin (d-cofilin) by sevenfold induced a co-overproduction of actin by threefold. In cells over-expressing d-cofilin, the amount of filamentous actin but not that of monomeric actin was increased. Overexpressed d-cofilin co-sedimented with actin filaments, suggesting that the sequestering activity of d- cofilin is weak in vivo. The overexpression of d-cofilin increased actin bundles just beneath ruffling membranes where d-cofilin was co- localized. The overexpression of d-cofilin also stimulated cell movement as well as membrane ruffling. We have demonstrated in vitro that d-cofilin transformed latticework of actin filaments cross-linked by alpha-actinin into bundles probably by severing the filaments. D. discoideum cofilin may sever actin filaments in vivo and induce bundling of the filaments in the presence of cross-linking proteins so as to generate contractile systems involved in membrane ruffling and cell movement.  相似文献   

9.
An actin polymerization stimulator was purified from bovine thyroid plasma membranes by DNase I affinity column chromatography. Although the molecular weight of the protein was about 42,000 (42K) by sodium dodecyl sulfate polyacrylamide gel electrophoresis, it did not comigrate with actin. In the presence of 30 mM KCl, the 42K protein facilitated formation of actin filaments when analyzed by a centrifugation method, accelerated the initial phase of actin polymerization as measured in an Ostwald viscometer and increased the length of filaments as shown by electron microscopy. The 42K protein also accelerated the initial phase of actin polymerization in the presence of 100 mM KCl and 2 mM MgCl2 but did not affect the final viscosity. The effect of the 42K protein was diminished by 5 uM cytochalasin B or 1 uM cytochalasin D. This 42K protein may anchor actin filaments onto the thyroid plasma membrane.  相似文献   

10.
Dictyostelium discoideum alpha-actinin (D.d. alpha-actinin) is a calcium and pH-regulated actin-binding protein that can cross-link F-actin into a gel at a submicromolar free calcium concentration and a pH less than 7 [Fechheimer, et al., 1982]. We examined mixtures of actin and D.d. alpha-actinin at four pH and calcium concentrations that exhibited various degrees of gelation or solation. The macroscopic viscosities of these mixtures were measured by falling ball viscometry (FBV) and compared to the translational diffusion coefficients measured by gaussian spot and periodic-pattern fluorescence photobleaching recovery (FPR) of both the actin filaments and D.d. alpha-actinin. A homogeneous, macroscopic gel was not composed of a static actin network. Instead, the filament diffusion coefficient decreased to approximately 65% of the control value. If the D.d. alpha-actinin concentration was increased, the solution became inhomogeneous, consisting of domains of higher actin concentration. These domains were often composed of a static actin network. The mobility of D.d. alpha-actinin consisted of a major fraction that freely diffused and a minor fraction that appeared immobile under the conditions employed. This suggested that D.d. alpha-actinin binding to the actin filaments was static over the time course of measurement (approximately 5 sec). Under solation conditions, there was no apparent interaction of actin with D.d. alpha-actinin. These results demonstrate that 1) actin filaments need not be cross-linked into an immobile, static array in order to have macroscopic properties of a gel; 2) interpretation of the rheological properties of actin:alpha-actinin gels are complicated by spatial heterogeneity of the filament concentration and mobility; and 3) a fraction of D.d. alpha-actinin binds statically to actin in undisturbed gels. The implications of these results are discussed in relation to cytoplasmic structure and contractility.  相似文献   

11.
A protein purified from cytoskeletal fractions of Dictyostelium discoideum proved to be a member of the fimbrin/plastin family of actin-bundling proteins. Like other family members, this Ca(2+)-inhibited 67-kDa protein contains two EF hands followed by two actin-binding sites of the alpha-actinin/beta-spectrin type. Dd plastin interacted selectively with actin isoforms: it bound to D. discoideum actin and to beta/gamma-actin from bovine spleen but not to alpha-actin from rabbit skeletal muscle. Immunofluorescence labeling of growth phase cells showed accumulation of Dd plastin in cortical structures associated with cell surface extensions. In the elongated, streaming cells of the early aggregation stage, Dd plastin was enriched in the front regions. To examine how the bundled actin filaments behave in myosin II-driven motility, complexes of F-actin and Dd plastin were bound to immobilized heavy meromyosin, and motility was started by photoactivating caged ATP. Actin filaments were immediately propelled out of bundles or even larger aggregates and moved on the myosin as separate filaments. This result shows that myosin can disperse an actin network when it acts as a motor and sheds light on the dynamics of protein-protein interactions in the cortex of a motile cell where myosin II and Dd plastin are simultaneously present.  相似文献   

12.
Indirect immunofluorescence localization of ponticulin in motile cells   总被引:6,自引:0,他引:6  
Ponticulin is the major actin-binding integral glycoprotein in plasma membranes isolated from log-phase Dictyostelium discoideum amebae. As such, this protein appears to be an important link between the plasma membrane and actin filaments (Wuestehube and Luna: Journal of Cell Biology 105:1741-1751, 1987). In this study, indirect immunofluorescence microscopy was used to examine the distribution of ponticulin in randomly moving D. discoideum amebae and in amebae engaged in cell migration and phagocytosis. Ponticulin is distributed throughout the plasma membrane and also is present in intracellular vesicles associated with the microtubule-organizing center-Golgi complex adjacent to the nucleus. In aggregating amebae, ponticulin is concentrated in regions of lateral cell-cell contact and in arched regions of the plasma membrane. Ponticulin also is present, but not obviously enriched, in filopodia, in the actin-rich anterior end of polarized cells, and in detergent-insoluble cytoskeletons. In amebae engaged in phagocytosis of yeast, ponticulin is present but not enriched in phagocytic cups and is associated with intracellular vesicles around engulfed yeast. These results suggest that ponticulin is stably associated with actin filaments in certain regions of the plasma membrane and that the actin-binding activity of ponticulin may be tightly controlled. Indirect immunofluorescence microscopy and immunoblot analysis demonstrate that human polymorphonuclear leukocytes also contain a 17 kD protein that specifically cross-reacts with antibodies affinity-purified against D. discoideum ponticulin. As in D. discoideum, the mammalian 17 kD ponticulin-analog appears to be localized in plasma membrane and is evident in actin-rich cell extensions. These results indicate that ponticulin-mediated linkages between the plasma membrane and actin may be present in higher eukaryotic cells.  相似文献   

13.
Dynamic behavior of actin filaments in cells is the basis of many different cellular activities. Remodeling of the actin filament network involves polymerization and depolymerization of the filaments. Proteins that regulate these behaviors include proteins that sever and/or cap actin filaments. This report presents direct observation of severing of fluorescently-labeled actin filaments. Coverslips coated with gelsolin, a multi-domain, calcium-dependent capping and severing protein, bound rhodamine-phalloidin-saturated filaments along their length in the presence of EGTA. Upon addition of calcium, attached filaments bent as they broke. Actophorin, a low molecular weight, monomer sequestering, calcium-independent severing protein did not sever phalloidin-saturated filaments. Both gCap 39, a gelsolin-like, calcium-dependent capping protein that does not sever filaments, and CapZ, a heterodimeric, non-calcium-dependent capping protein, bound the filaments by one end to the coverslip. Visualization of individual filaments also revealed severing activity present in mixtures of actin-binding proteins isolated by filamentous actin affinity chromatography from early Drosophila embryos. This activity was different from either gelsolin or actophorin because it was not inhibited by phalloidin, but was calcium independent. The results of these studies provide new information about the molecular mechanisms of severing and capping by well-characterized proteins as well as definition of a novel type of severing activity.  相似文献   

14.
Caldesmon, calmodulin-, and actin-binding protein of chicken gizzard did not affect the process of polymerization of actin induced by 0.1 M KCl. Caldesmon binds to F-actin, thus inhibiting the gelation action of actin binding protein (ABP; filamin). Low shear viscosity and flow birefringence measurements revealed that in a system of calmodulin, caldesmon, ABP, and F-actin, gelation occurs in the presence of micromolar Ca2+ concentrations, but not in the absence of Ca2+. Electron microscopic observations showed the Ca2+-dependent formation of actin bundles in this system. These results were interpreted by the flip-flop mechanism: in the presence of Ca2+, a calmodulin-caldesmon complex is released from actin filaments on which ABP exerts its gelating action. On the other hand, in the absence of Ca2+, caldesmon remains bound to actin filaments, thus preventing the action of ABP.  相似文献   

15.
Actin-binding proteins were assayed in various tissues using an 125I-actin overlay procedure. Four major G actin-binding proteins of 90000, 65000, 58000 and 40000 Mr have been identified. The 90K protein is present in all tissues and binds labelled actin in a calcium-sensitive manner with binding increasing 3-4-fold in the presence of Ca2+. The distribution of the 58K and 65K protein which are not Ca2+-sensitive was more variable. These proteins were present in different ratios in different tissues. 125I-actin binding to all four actin-binding proteins is specific and can be displaced by preincubation of the gels with unlabelled actin. The interaction of actin with these proteins does not appear to involve ionic forces, since binding is not diminished by varying the salt concentration. Skeletal muscle glycolytic enzymes, the lens crystallins and the histones also bind 125I-actin. This binding cannot be displaced by preincubation with unlabelled actin and is presumably non-specific. The calcium sensitivity of two highly purified actin-binding proteins, the 90K human platelet protein and villin was compared using 125I-actin. The platelet 90K protein binds actin at less than 10(-7) M free calcium, but detectable binding to villin does not occur below 10(-6) M free calcium. The ubiquity of these actin-binding proteins is clear and we conclude that the calcium-sensitive 90K actin-binding protein in all of these tissues is the same as the platelet protein.  相似文献   

16.
Isolation of low molecular weight actin-binding proteins from porcine brain   总被引:9,自引:0,他引:9  
Three new actin-binding proteins having molecular weights of 26,000, 21,000, and 19,000 were isolated from porcine brain by DNase I affinity column chromatography. These proteins were released from the DNase I column by elution with a solution of high ionic strength. They were further purified by column chromatographies using hydroxyapatite, phosphocellulose, and Sephadex G-75. All of these actin-binding proteins behaved as monomeric particles in the gel filtration chromatography. After elution of the three actin-binding proteins, actin and profilin were recovered from the DNase I column with 2 M urea solution. The eluted was further purified by a cycle of polymerization and depolymerization and finally by gel filtration. Little difference in polymerizability was detected between the purified brain actin and muscle actin. After sedimentation of the polymerized brain actin, profilin was purified by DEAE-cellulose and gel filtration column chromatographies. In the assay of the action of these actin-binding proteins, the 26K protein was found to cause a large decrease in the rate of actin polymerization, while showing little effect on the extent of polymerization. The 21K protein decreased the steady-state viscosity of actin solution in a concentration-dependent manner irrespective of whether it was added before or after actin polymerization. It reacted with actin at a 1:1 molar ratio.  相似文献   

17.
Actin, myosin, and a high molecular weight actin-binding protein were extracted from rabbit alveolar macrophages with low ionic strength sucrose solutions containing ATP, EDTA, and dithiothreitol, pH 7.0. Addition of KCl, 75 to 100 mM, to sucrose extracts of macrophages stirred at 25 degrees caused actin to polymerize and bind to a protein of high molecualr weight. The complex precipitated and sedimented at low centrifugal forces. Macrophage actin was dissociated from the binding protein with 0.6 M KCl, and purified by repetitive depolymerization and polymerization. Purified macrophage actin migrated as a polypeptide of molecular weight 45,000 on polyacrylamide gels with dodecyl sulfate, formed extended filaments in 0.1 M KCl, bound rabbit skeletal muscle myosin in the absence of Mg-2+ATP and activated its Mg-2+ATPase activity. Macrophage myosin was bound to actin remaining in the macrophage extracts after removal of the actin precipitated with the high molecular weight protein by KCl. The myosin-actin complex and other proteins were collected by ultracentrifugation. Macrophage myosin was purified from this complex or from a 20 to 50% saturated ammonium sulfate fraction of macrophage extracts by gel filtration on agarose columns in 0.6 M Kl and 0.6 M Kl solutions. Purified macrophage myosin had high specific K-+- and EDTA- and K-+- and Ca-2+ATPase activities and low specific Mg-2+ATPase activity. It had subunits of 200,000, 20,000, and 15,000 molecular weight, and formed bipolar filaments in 0.1 M KCl, both in the presence and absence of divalent cations. The high molecular weight protein that precipitated with actin in the sucrose extracts of macrophages was purified by gel filtration in 0.6 M Kl-0.6 M KCl solutions. It was designated a macrophage actin-binding protein, because of its association with actin at physiological pH and ionic strength. On polyacrylamide gels in dodecyl sulfate, the purified high molecular weight protein contained one band which co-migrated with the lighter polypeptide (molecular weight 220,000) of the doublet comprising purified rabbit erythrocyte spectrin. The macrophage protein, like rabbit erythrocyte spectrin, was soluble in 2 mM EDTA and 80% ethanol as well as in 0.6 M KCl solutions, and precipitated in 2 mM CaCl2 or 0.075 to 0.1 M KCl solutions. The macrophage actin-binding protein and rabbit erythrocyte spectrin eluted from agarose columns with a KAV of 0.24 and in the excluded volumes. The protein did not form filaments in 0.1 M KCl and had no detectable ATPase activity under the conditions tested.  相似文献   

18.
Actin-bundling proteins organize actin filaments into densely packed bundles. In Dictyostelium discoideum two abundant proteins display calcium-regulated bundling activity, fimbrin and the 34-kDa protein (ABP34). Using a GFP fusion we observed transient localization of fimbrin at the phagocytic cup and macropinosomes. The distribution of truncated constructs encompassing the EF hands and the first actin-binding domain (EA1) or both actin-binding domains devoid of EF hands (A1A2) was indistinguishable from that of the full length protein. The role of fimbrin and a possible functional overlap with ABP34 was investigated in fim- and double 34-/fim- mutants. Except for a moderate cell size defect, fim- mutants did not show defects in growth, endocytosis, exocytosis, and chemotaxis. Double mutants were characterized by a small cell size and a defect in morphogenesis resulting in small fruiting bodies and a low spore yield. The cell size defect could not be overcome by expression of fimbrin fragments EA1 or A1A2, suggesting that both bundling activity and regulation by calcium are important. Induction of filopod formation in 34-/fim- cells was not impaired, indicating that both proteins are dispensable for this process. We searched in the Dictyostelium genome database for fimbrin-like proteins that could compensate for the fimbrin defect and identified three unconventional fimbrins and two more proteins with actin-binding domains of the type present in fimbrins.  相似文献   

19.
《The Journal of cell biology》1993,120(5):1169-1176
Actin cross-linking proteins are important for formation of isotropic F- actin networks and anisotropic bundles of filaments in the cytoplasm of eucaryotic cells. A 34,000-D protein from the cellular slime mold Dictyostelium discoideum mediates formation of actin bundles in vitro, and is specifically incorporated into filopodia. The actin cross- linking activity of this protein is inhibited by the presence of micromolar calcium. A 27,000-D fragment obtained by digestion with alpha-chymotrypsin lacks the amino-terminal six amino acids and the carboxyl-terminal 7,000 D of the intact polypeptide. The 27,000-D fragment retains F-actin binding activity assessed by cosedimentation assays and by 125I-[F-actin] blot overlay technique, F-actin cross- linking activity as assessed by viscometry, and calcium binding activity. Ultrastructural analyses indicate that the 27,000-D fragment is deficient in the bundling activity characteristic of the intact 34,000-D protein. Actin filaments are aggregated into microdomains but not bundle in the presence of the 27,000-D fragment. A polarized light scattering assay was used to demonstrate that the 34,000-D protein increases the orientational correlation among F-actin filaments. The 27,000-D fragment does not increase the orientation of the actin filaments as assessed by this technique. A terminal segment(s) of the 34,000-D protein, lacking in the 27,000-D fragment, contributes significantly to the ability to cross-link actin filaments into bundles.  相似文献   

20.
We have studied the abundance, relative gelation activity, and distribution of the 95,000-dalton actin-binding protein in Dictyostelium discoideum amoebae. The 95,000-dalton protein was a prominent polypeptide as assessed using quantitative densitometry and radioimmunoassay. We estimated that this protein comprised approximately 1.2% of the protein in a soluble extract of amoebae. The molar ratio of the dimeric 95,000-dalton protein to actin in the soluble extract was 1:30. The apparent viscosities of actin mixtures with either the purified 95,000-dalton protein or the soluble extract were measured by falling ball viscometry in an attempt to assess the contribution of the 95,000-dalton protein to gelation of the soluble extract. The gelation of the soluble extract was significantly less than that expected from the contribution of the 95,000-dalton protein alone. Consequently, we questioned the validity of quantitative analyses of the contributions of specific actin-binding proteins to the gelation of cell extracts. The apparent distribution of the 95,000- dalton protein was observed in chemically fixed and extracted cells by immunofluorescence microscopy and compared with the distribution of cytoplasm and organelles visible using light microscopy. The 95,000- dalton protein was dispersed throughout the cytoplasm of fixed cells, was apparently excluded from prominent organelles, and displayed brightest fluorescence in regions of hyaline cytoplasm. These regions of hyaline cytoplasm that exhibited the brightest fluorescence were observed in the cortical region of rounded cells and in pseudopods of polarized cells. Thus, cell shape and polarity may also have influenced the apparent distribution of the 95,000-dalton protein observed by immunofluorescence microscopy. Study of the distribution of fluorescein- labeled ovalbumin injected into living cells supported the interpretation that the thickness of the cell and the distribution of organelles contributed to the apparent distribution of the 95,000- dalton protein observed in fixed cells using immunofluorescence microscopy. We suggest that the 95,000-dalton protein contributes to modulation of the consistency and contractility of the cytoplasm of D. discoideum amoebae, since it could cross-link actin filaments in vitro in a reversible process that was regulated by changes in the concentration of calcium and of protons, and since it was present in large quantity in the cytoplasm of these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号