首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Distribution of different forms of Zn in 16 acid alluvial rice growing soils of West Bengal (India) and their transformation on submergence were studied. The results showed that more than 84% of total Zn occurred in the relatively inactive clay lattice-bound form while a smaller fractionviz. 1.1, 1.6, 11.1 and 2.0 per cent of the total occurred as water-soluble plus exchangeable, organic complexed, amorphous sesquioxide-bound and crystalline sesquioxide bound forms, respectively. All these four Zn forms showed significant negative correlations with soil pH (r=−0.48**, −0.39*, −0.61** and −0.67**, respectively), while the latter two Zn forms showed significant positive correlations with Fe2O3 (0.68** and 0.88***) and Al2O3 (0.89*** and 0.75***) content of the soils. The different Zn forms were found to have positive and significant correlations amongst each other, suggesting the existence of a dynamic equilibrium of these forms in soil. Submergence caused an increase in the amorphous sesquioxide-bound form of Zn and a decrease in each of the other three forms. The magnitude of such decreases in water-soluble plus exchangeable and crystalline sesquioxide-bound forms was found to be correlated negatively with initial pH values of the soils and positively with the increase in the amorphous sesquioxide-bound form, indicating their adsorption on the surface of the freshly formed hydrated oxides of Fe, which view was supported by the existence of significant positive correlation between the increase in the amorphous sesquioxide-bound form of Zn and that in AlCl3-extractable iron. The existence of a positive correlation between the decrease in crystalline sesquioxide-bound Zn and that in Fe2O3 content in soil suggested that on waterlogging the soil Zn occluded in the cry talline sesquioxide was released as a result of reduction of Fe2O3.  相似文献   

2.
Laboratory and greenhouse experiments were conducted with two soilsviz., laterite and alluvial to study the transformation of applied Zn in soil fractions under submerged condition in the presence and absence of added organic matter and its relationship with Zn nutrition of rice plants. The results showed that application of organic matter caused a decrease in the concentration of Zn in shoot and root of rice plants and helped in translocating the element from root to shoot. The per cent utilization of applied Zn by plants was also found to increase by the application of organic matter. The transformation of applied Zn in different fractions in soils showed that a major portion (53.6–72.6%) of it found its way to mineral fractions leaving only 1.0–3.3, 6.6–18.9, 11.0–21.6 and 2.3–8.8% of the applied amounts in water soluble plus exchangeable, organic complexed, amorphous sesquioxides and crystalline sesquioxides bound fractions respectively. Application of organic matter favoured such transformation of applied Zn into these fractions except the mineral and crystalline sesquioxides bound ones. Simple correlation and multiple regression analyses between applied Zn in different soil fractions and fertilizer Zn content in plants showed that organic matter application increased the predictability of fertilizer Zn content in plants which has been attributed to the higher per cent recovery of applied Zn in plant available fractions in soils in presence of added organic matter.  相似文献   

3.
Summary In the summer of 1980, a field experiment was started to evaluate the direct and residual effect of applied zinc (as zinc sulphate) on the yield and chemical composition of rice and wheat grown as crops in sequence, on an alkali soil. The treatments comprised six rates of zinc 0, 2.25, 4.5, 9.0, 18.0 and 27.0 kg ha−1 applied either only once to the first crop, or repeated to each successive crop in a split plot design with 4 replications. Gypsum at 14 t ha−1, was applied uniformly to all plots. The results show that with respect to increase of yield and available zinc content of soil, an application of 2.25 kg ha−1 zinc frequently to each crop was better than a single high dose. A major portion of the applied zinc accumulated in the 0 to 10 cm soil layer; the movement of zinc to lower layers was negligible. Zinc applications increased the concentration of exchangeable < complexed < amorphous sesquixoides-bound zinc > crystalline sesquioxide-bound zinc fractions. Amorphous sesquixoides bound the major portion of the applied zinc compared to other fractions. Exchangeable and amorphous sesquioxide-bound zinc fractions contributed significantly more to zinc uptake by rice, than the other fractions. DTPA extracted zinc more readily from exchangeable and complexed fractions than from sesquioxides. Application of zinc increased the DTPA extractable zinc and hence zinc uptake by plants.  相似文献   

4.
Laboratory pot experiments were run to study the effects of added zinc (Zn) with and without farmyard manure (FYM) and phosphorus (P) on Zn transformations in two Alfisols, together with Zn uptake by wheat plants grown up to 60 days. In the first experiment the treatments included four levels of Zn (0, 3.75, 7.5 and 15 mgkg(-1) soil) and two levels of FYM (0 and 10 tha(-1)), and in the second experiment five levels of P (0, 20, 40, 80 and 160 mgkg(-1) soil) and one level of Zn (7.5 mgkg(-1) soil). The soils were sequentially fractionated into water-soluble plus exchangeable (CA-Zn), inorganically bound (AAC-Zn), organically bound (PYR-Zn), oxide bound (OX-Zn) and residual (RES-Zn) forms. The effect of added FYM was more evident on the OX-Zn fraction and the percentage utilization of Zn by wheat was the greatest with the addition of FYM alone at the rate of 10 tha(-1) (1.95-2.38%) in comparison to other treatment combinations. Among the levels, application of 7.5 mg Zn kg(-1) soil showed the maximum increase in different fractions of soil Zn and significantly increased the Zn utilization by wheat (0.87-1.17%) as compared to other Zn levels (0.58-0.88%). On an average, about 85% of the added Zn was recovered in different fractions in Zn treated pots. However, the recovery per cent of the added Zn was significantly higher at Zn level 7.5 (95%) mgkg(-1) soil than at 3.75 (87%) and 15 (73%) mg Zn kg(-1) soil levels. Phosphorus additions up to 40 mgkg(-1) soil increased the plant-available Zn in soils whereas at higher P levels plant-available forms decreased with a concominant increase in the inert forms. At 160 mg P kg(-1) soil, the P effect was more pronounced in the shoot than in the root, suggesting that a higher P level inhibits Zn translocation from root to upper plant parts. Path analysis showed that the organically (PYR-Zn) and inorganically bound (AAC-Zn) Zn fractions were the predominant fractions that influenced the Zn availability to plants.  相似文献   

5.
研究了排水条件下施用腐熟有机物料、种稻改良滨海盐渍土内源Zn形态分布。结果表明,单淹水使土中各形态Zn一定程度上向生物有效性较低的Zn形态转化,有效态Zn降低。土壤盐分量不同,明显影响无定形氧化铁结合态、紧结有机态以及硅酸盐矿物态Zn变化。种稻不施有机物料,根际交换态和硅酸盐矿物态Zn亏缺;碳酸盐结合态、氧化锰结合态和无定形氧化铁结合态Zn富集。根际Zn形态转化强度大于非根际,其有效态Zn量接近临界值并高于非根际。有机物料利于根际内外土壤中硅酸盐矿物态Zn的转化,低盐土壤根际更强烈。随有机物料用量增加,促使根际硅酸盐矿物态、碳酸盐结合态及氧化锰结合态Zn向交换态、紧结有机态和无定形氧化铁结合态Zn转化,低盐土壤较明显。  相似文献   

6.
研究了排水条件下施用腐熟有机物料、种稻改良滨海盐渍土内源Zn形态分布.结果表明,单淹水使土中各形态Zn一定程度上向生物有效性较低的Zn形态转化,有效态Zn降低.土壤盐分量不同,明显影响无定形氧化铁结合态、紧结有机态以及硅酸盐矿物态Zn变化.种稻不施有机物料,根际交换态和硅酸盐矿物态Zn亏缺;碳酸盐结合态、氧化锰结合态和无定形氧化铁结合态Zn富集.根际Zn形态转化强度大于非根际,其有效态Zn量接近临界值并高于非根际.有机物料利于根际内外土壤中硅酸盐矿物态Zn的转化,低盐土壤根际更强烈.随有机物料用量增加,促使根际硅酸盐矿物态、碳酸盐结合态及氧化锰结合态Zn向交换态、紧结有机态和无定形氧化铁结合态Zn转化,低盐土壤较明显.  相似文献   

7.
模拟酸雨对污染土壤中Cd、Cu和Zn释放及其形态转化的影响   总被引:36,自引:0,他引:36  
研究了模拟酸雨连续浸泡下污染红壤和黄红壤中重金属释放及形态转化.结果表明。随着模拟酸雨pH值下降,污染土壤中重金属释放强度明显增大;Cd、Zn释放量与酸雨pH值呈线性极显著负相关.Cu与酸雨pH值呈线性显著负相关.模拟酸雨作用下,污染红壤和黄红壤中Cd均以交换态为主;Cu则以有机结合态和氧化锰结合态为主;Zn在污染红壤中以残留态和交换态为主.在污染黄红壤中以残留态和有机结合态为主.土壤有机质含量和阳离子交换量对Cd、Cu、Zn的释放产生一定的影响并影响Cd、Zn的形态转化,但对Cu形态转化影响不明显,随着模拟酸雨酸度增大,污染红壤和黄红壤中重金属Cd、Cu的生物可利用态明显增多,但难解吸态Zn向生物有效态转化效应不明显.  相似文献   

8.
Summary Transformation of iron and manganese under three different moisture regimes,viz continuous waterlogged (W1), continuous saturated (W2) and alternate waterlogged and saturated (W3) and three levels of organic matterviz 0, 0.5 and 1.0% in all possible combinations was studied in four soils. The results showed that under waterlogged moisture regime there was a sharp increase in the content of water soluble plus exchangeable manganese accompanied by significant decrease in the content of reducible manganese in all the soils excepting the acidic soil which was very poor in active manganese content. The increase in respect of iron in similar form was, however, very small. The increase in the content of water soluble plus exchangeable manganese as well as iron under the continuous saturated and alternate waterlogged and saturated moisture regimes was always much lower as compared to that under the continuous waterlogged condition. Application of organic matter brought about an increase in the content of water soluble plus exchangeable manganese in all the soils excepting the lateritic one irrespective of moisture regimes but did not cause any change in the content of iron and manganese in insoluble complex. The content of water soluble plus exchangeable iron and of insoluble ferrous iron although recorded some increase due to organic matter application, the increase was not so marked in any of the soils.  相似文献   

9.
A laboratory and greenhouse investigation was undertaken to study the distribution and contribution of zinc fractions to available zinc in submerged rice. Most of the total zinc was present as Al- and Fe-oxide bound (52.8%) and residual zinc (27.8%). The exchangeable (non-specifically and specifically absorbed), organically bound and Mn-oxide bound zinc fractions averaged 0.7, 1.1, 6.3 and 4.9 per cent of the total zinc, respectively. 0.1 M HCl, EDTA-(NH4)2CO3 and dithizone extractants showed significant correlation with per cent yield, Zn concentration and zinc uptake by grain and the critical limits were 3.0, 1.9 and 1.0 µg–1, respectively. Organically bound zinc exhibited significant correlation with per cent yield and zinc uptake by grain whereas specifically absorbed zinc correlated with Zn concentration in grain. Mn-oxide boudn zinc and Al- and Fe-oxide bound zinc fractions were also correlated with zinc concentration and zinc uptake by grain.  相似文献   

10.
Abstract

Chemical fractions of soil Zn namely: water soluble (WS), exchangeable (EX), Pb displaceable (Pb-disp.), acid soluble (AS), Mn oxide occluded (MnOX), organically bound (OB), amorphous Fe oxide occluded (AFeOX), crystalline Fe oxide occluded (CFeOX), residual (RES) were determined in 20 surface (0–15 cm) samples of acidic soils from the provinces of Uttarakhand and Uttar Pradesh, India. The chemical fractions of soil Zn in acidic soils were found to be in the following descending order of Zn concentration: RES > CFeOX > Pb-Disp. > AFeOX > MnOX > AS > OB > EX > WS. These soil samples were also extracted by: DTPA (pH 7.3), DTPA (pH 5.3), AB-DTPA (pH 7.6), Mehlich 3 (pH 2.0), Modified Olsen, 0.01 N CaCl2, 1 M MgCl 2 and ion exchange resins. Chemical fractions and the soil extractable content of Zn estimated by different soil extractants were significantly correlated with some general soil properties. Maize (cv. Pragati) plants were grown in these soils for 35 days after emergence and Zn uptake by plants was compared with the amount of Zn extracted by different soil extractants and chemical fractions of Zn. Among chemical fractions of soil Zn, Pb-displaceable and acid soluble chemical fractions of soil Zn showed a significant and positive correlation with Zn uptake by maize. Path coefficient analysis also revealed that the acid soluble Zn fraction showed the highest positive and direct effect on Zn uptake (P=0.960). Among different multinutrient soil extractants evaluated for their suitability to assess Zn availability in acidic soils, DTPA (pH=5.3) was most suitable soil extractant, as the quantity of soil Zn extracted by this extractant showed a significant and positive correlation with the dry matter yield, Zn concentration and uptake by maize plants.  相似文献   

11.
Summary Effect of amendments, gypsum (12.5 tonnes/ha), farmyard manure (30 tonnes/ha), rice husk (30 tonnes/ha) and also no amendment (control) on the availability of native Fe, Mn and P and applied Zn in a highly sodic soil during the growth period of rice crop under submerged conditions was studied in a field experiment. Soil samples were collected at 0, 30, 60 and 90 days of crop growth. Results showed that extractable Fe (1N NH4OAC pH 3) and Mn (1N NH4OAC pH 7) increased with submergence upto 60 days of crop growth but thereafter remained either constant or declined slightly. Application of farmyard manure and rice husk resulted in marked improvement of these elements over gypsum and control. Increases in extractable Mn (water soluble plus exchangeable) as a result of submergence and crop growth under different amendments were accompanied by corresponding decreases in easily reducible Mn content of the soil. Application of 40 kg zinc sulphate per hectare to rice crop could substantially raise the available Zn status (DTPA extractable) of the soil in gypsum and farmyard manure treated plots while the increase was only marginal in rice husk and control plots indicating greater fixation of applied Zn. Available P (0.5M NaHCO3 pH 8.5) behaved quite differently and decreased in the following order with crop growth: gypsum>rice husk>farmyard manure>control.  相似文献   

12.
紫色土外源锌、镉形态的生物有效性   总被引:26,自引:2,他引:24  
通过对7种形态Zn,Cd与有效态Zn,Cd(DTPA提取)的相关分析及各形态Zn,Cd与植株Zn,Cd含量的通径分析,评价各形态Zn,Cd的生物有效性及对植株的相对贡献和途径。结果表明,交换态Zn,Cd与有效态Zn,Cd呈极显著正相关(r=0.954,0.953),交换态Zn,Cd与植株Zn,Cd含量的通径系数为1.267、1.168,交换态Zn,Cd有效性高,具有最大的生物活性,对植株Zn,Cd含量的贡献最大。其它形态如碳酸盐结合态锌、氧化锰结合态Zn、Cd通过交换态作用于植株的通径链系数(间接通径系数)分别为0.856、0.592、0.723,上述形态对植株Zn,Cd含量也有影响,具有一定的生物相对有效性,但通过交换态间接作用。交换态不仅自身具有最大的生物有效性,而且还作为其它形态Zn,Cd生物有效性的中介,为紫色土其它Zn,Cd库流向植株的主要通道。  相似文献   

13.
Summary The Zn contents of twenty-nine alluvial soils from Egypt were chemically fractionated into: water soluble+exchangeable, weakly bound to inorganic sites, organically bound, occluded as free oxide material, and residual mainly in the mineral structure. On the average these fractions constituted about 0.01, 1.20, 28.6, 21.5 and 45.5% of the total soil Zn respectively which averaged 76.25 ppm. Significant correlations were obtained between each individual Zn-fraction and some soil variable.Zinc adsorption isotherms were developed for seven soils suspended in dilute ZnCl2 solution in the presence of either 0.05M CaCl2 solution (Specific adsorption) or deionized water (Total adsorption). The Langmuir constants (adsorption maximum and bonding energy) were calculated. The average value of specific adsorption maximum was 1.94 mg Zn/g soil and of total adsorption maxima was 11.54 mg Zn/g soil. Correlation analysis showed that CEC, free Fe2O3 and clay content were the dominant soil variables contributing towards specific Zn adsorption. The (Zn) (OH)2 ion concentration products in the solutions when Zn adsorption corresponded to the Langmuir adsorption maxima were 0.92×10–17 in the specific adsorption treatment, and 1.35×10–15 in the total adsorption treatment. These values are within the solubility range of Zn (OH)2 and ZnCO3. The values of Langmuir bonding energy constants showed that Zn was more strongly adsorbed by low carbonate or carbonate-free soils than by carbonate-rich soils.  相似文献   

14.
Summary A comparison of different zinc carriers showed that application of Zn-DTPA, Zn-EDTA, Zn-fulvate and ZnSO4 significantly increased the dry matter yield and zinc uptake by corn over the control treatment where no zinc was applied. The chelates in particular enhanced to a greater extent the uptake of both native and applied sources than that observed with ZnSO4 as the zinc carrier. Both the dry matter yield and zinc uptake by corn showed a positive and significant relationship with self-diffusion coefficient of zinc showing thereby that diffusion contributed mainly the supply of Zn from the ambient soil matrix to plant roots. The effectiveness of the chelates varied depending on their capacity to retain Zn in a soluble form in the soil solution.It is evident that zinc nutrition of plants in alkaline and calcareous soils can be more effectively regulated by both synthetic and natural chelates or organic manures which contain substantial amount of complexed zinc.Journal Paper No. 1 from the Department of Soil Science and Agric. Chemistry, Tirhut College of Agriculture, Dholi, Muzaffarpur, Bihar, India.  相似文献   

15.
Summary Response of direct seeded rice (cv. Bluebelle) to Zn was studied in flooded and nonflooded (field capacity) Crowley soil (pH 7.6) maintained at soil temperatures of 18 and 30°C. Urea and (NH4)2SO4 were compared as sources of N to determine their effect on plant uptake of Zn from ZnSO4 either mixed or surface applied to the soil. Grain yields were slightly higher from nonflooded than from flooded soil. Higher dry matter production at 30 than at 18°C was not related to Zn nutrition. Urea and (NH4)2SO4 resulted in similar yields and Zn uptake by flooded rice, but (NH4)2SO4 was superior for nonflooded rice in the absence of applied Zn. More fixation of mixed Zn by the limed Crowley soil probably caused its lower effectiveness, as compared to surface-applied Zn.  相似文献   

16.
Chemical characteristics of Malian and Belgian solid waste composts.   总被引:1,自引:0,他引:1  
Two composts, a Malian (C1) and a Belgian (C2), and a peat substrate (C3) were analyzed for their suitability for land application. The results revealed that the materials can be used in agriculture but only the composts can supply all macro-nutrients necessary for plant growth. The fractionation of Mn, Fe, Zn and Cu in operationally defined fractions (water soluble, exchangeable, complexed, organically bound and residual) allows estimation of the availability of metals for uptake. For example, 16% of the total Mn in the composts (C1 and C2) and 22% in the peat substrate would be plant available. Available Fe in the three materials was less than 2%. Available Zn varied from 10% to 25%. The fractionation also allowed estimation of the potential for contamination of groundwater following the applications of composts to agricultural lands.  相似文献   

17.
Ageing of zinc in highly-weathered iron-rich soils   总被引:1,自引:0,他引:1  

Background and aims

The reactivity and bioavailability of soluble metal added to soil decreases with time. This process, called ageing, has mainly been investigated in temperate soils. This paper uses isotopic exchangeability to investigate Zn ageing in a range of highly weathered and/or oxide-rich soils.

Methods

Changes in lability of soluble added Zn (450?mg Zn/kg soil) over time was measured in six contrasting soils, with pH adjusted to give ten treatments per soil type ranging from pH 4 to 7.

Results

Decreasing extractability and isotopic exchangeability (lability) over time revealed substantial fixation of added zinc in six highly weathered/variable charge soils. Strong negative relationships between pH and solubility, and pH and lability were observed. In soils with pH?>?6.5 a significant proportion of the added metal becomes non-isotopically exchangeable within 15?s of addition. Correlations between Mn solubility and Zn lability throughout the incubation demonstrated the role of redox conditions (and pH) in regulating Zn lability.

Conclusions

Results showed zinc fixation was strongly related to pH and ageing time, and relatively unaffected by soil type and mineralogy. Very rapid reductions in radiolability immediately (<15?s) after spiking suggest that precipitation plays a role in fixation of added soluble zinc at near neutral pH, however spectroscopic studies are needed to confirm this. Radiolability of added zinc was also affected by changing redox conditions during incubation.  相似文献   

18.
To reduce Cd phytoavailability in calcareous soils, the effects of soil amendments of red mud, rape straw, and corn straw in combination with zinc fertilization on Cd extractability and phytoavailability to spinach, tomato, Chinese cabbage and radish were investigated in a calcareous soil with added Cd at 1.5 mg kg−1. The results showed that water soluble and exchangeable Cd in soils was significantly decreased by the amendments themselves from 26% to 70%, which resulted in marked decrease by approximately from 34% to 77% in Cd concentration in vegetables. The amendments plus Zn fertilization further decreased the Cd concentration in vegetables. Also cruciferous rape straw was more effective than gramineous corn straw. In all treatments, rape straw plus red mud combined with Zn fertilization was most effective in decreasing Cd phytoavailability in soils, and it is potential to be an efficient and cost-effective measure to ensure food safety for vegetable production in mildly Cd-contaminated calcareous soils.  相似文献   

19.
菌根植物根际环境对污染土壤中Cu、Zn、Pb、Cd形态的影响   总被引:56,自引:6,他引:56  
采用根垫法和连续形态分析技术,分析了生长在污灌土壤中菌根小麦和无菌根小麦根际Cu、Zn、Pb、Cd的形态分布和变化趋势。结果表明,下对照土壤相比,菌根际土壤中交换态Cu含量显著增加,交换态Cd呈减少的趋势;与非菌根际相比,Cu、Zn、Pb的有机结合态在菌根根际中显著增加,而4种测定金属2的碳酸盐态和铁锰氧化态都没有显著改变,该结果表明,植物根系能影响根际中金属形态的变化,且菌根比无菌根的影响程度大  相似文献   

20.
Abstract

A greenhouse experiment was conducted to evaluate phytotoxicity and distribution of Cu in a tropical soil amended with sewage sludge (Sw) and copper sulfate (CuSO4.5H2O). Samples of a clay soil from the State of Paraná, Brazil were collected at depth of 0–20; 20–40 and 40–60 cm, and brought to the laboratory to be properly accommodated in experimental units (PVC tubes). The Cu treatments were performed by the application of Sw (10 t ha-1) amended with Cu (SB-T), and by CuSO4. H2O (WB-T). Lettuce plants were cultivated in the amended soil in order to predict the toxicity of the Cu. The experiment was conducted for 70 days, and then the lettuce plants and soil samples were collected for analysis. A sequential method was used to separate soil Cu into following fractions: exchangeable, amorphous iron oxide bound, crystalline iron oxide bound, organic matter bound and residual bound. The experimental results showed that Fe, Zn, K, P, Cu and organic matter amounts of the soil increased with the treatment SB-T. The toxic phyto-available Cu content in the soil for the lettuce plants was 80.00 mg kg-1. A percolation study showed that the Cu contents were larger for the first 20 cm of depth, indicating that the metal was not transported down the soil profile. The Cu content of different fractions declined in an order residual > amorphous iron oxide > crystalline iron oxide > organic matter > exchangeable, regardless of treatment performed. Additionally, the Cu contents added from treatments were determined mainly in amorphous iron oxide fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号