首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have studied the molecular basis of the Pax2 and Pax6 function in the establishment of visual system territories. Loss-of-function mutants have revealed crucial roles for Pax2 in the generation of the optic stalk and for Pax6 in the development of the optic cup. Ectopic expression of Pax6 in the optic stalk under control of Pax2 promoter elements resulted in a shift of the optic cup/optic stalk boundary indicated by the presence of retinal pigmented cells on the optic stalk. By studying mouse embryos at early developmental stages we detected an expansion of Pax2 expression domain in the Pax6(-/-) mutant and of Pax6 expression domain in the Pax2(-/-) embryo. These results suggest that the position of the optic cup/optic stalk boundary depends on Pax2 and Pax6 expression, hinting at a possible molecular interaction. Using gel shift experiments, we confirmed the presence of Pax2- and Pax6-binding sites on the retina enhancer of the Pax6 gene and on the Pax2 upstream control region, respectively. Co-transfection experiments revealed a reciprocal inhibition of Pax2 promoter/enhancer activity by Pax6 protein and vice versa. Based on our findings, we propose a model for Pax gene regulation that establishes the proper spatial regionalization of the mammalian visual system.  相似文献   

2.
eyeless (ey) is a key regulator of the eye development pathway in Drosophila. Ectopic expression of ey can induce the expression of several eye-specification genes (eya, so, and dac) and induce eye formation in multiple locations on the body. However, ey does not induce eye formation everywhere where it is ectopically expressed, suggesting that EY needs to collaborate with additional factors for eye induction. We examined ectopic eye induction by EY in the wing disc and found that eye induction was spatially restricted to the posterior compartment and the anterior-posterior (A/P) compartmental border, suggesting a requirement for both HH and DPP signaling. Although EY in the anterior compartment induced dpp and dac, these were not sufficient for eye induction. Coexpression experiments show that EY needs to collaborate with high level of HH and DPP to induce ectopic eye formation. Ectopic eye formation also requires the activation of an eye-specific enhancer of the endogenous hh gene.  相似文献   

3.
Wolff T 《Current biology : CB》2003,13(20):R813-R814
The coordinated polarization of cells within an epithelium is required for the development and function of some tissues. Recent work has shown that the EGF receptor signaling pathway plays a key role in establishing epithelial polarity in the compound eye of Drosophila.  相似文献   

4.
Notch (N) activation at the dorsoventral (DV) boundary of the Drosophila eye is required for early eye primordium growth. Despite the apparent DV mirror symmetry, some mutations cause a preferential loss of the ventral domain, suggesting that the growth of individual domains is asymmetrically regulated. We show that the Lobe (L) gene is required non-autonomously for ventral growth but not dorsal growth, and that it mediates the proliferative effect of midline N signaling in a ventral-specific manner. L encodes a novel protein with a conserved domain. Loss of L suppresses the overproliferation phenotype of constitutive N activation in the ventral, but not in the dorsal eye, and gain of L rescues ventral tissue loss in N mutant background. Furthermore, L is necessary and sufficient for the ventral expression of a N ligand, Serrate (Ser), which affects ventral growth. Our data suggest that the control of ventral Ser expression by L represents a molecular mechanism that governs asymmetrical eye growth.  相似文献   

5.
The onset of pattern formation in the developing Drosophila retina begins with the initiation of the morphogenetic furrow, the leading edge of a wave of retinal development that transforms a uniform epithelium, the eye imaginal disc into a near crystalline array of ommatidial elements. The initiation of this wave of morphogenesis is under the control of the secreted morphogens Hedgehog (Hh), Decapentaplegic (Dpp) and Wingless (Wg). We show that the Epidermal Growth Factor Receptor and Notch signaling cascades are crucial components that are also required to initiate retinal development. We also show that the initiation of the morphogenetic furrow is the sum of two genetically separable processes: (1) the 'birth' of pattern formation at the posterior margin of the eye imaginal disc; and (2) the subsequent 'reincarnation' of retinal development across the epithelium.  相似文献   

6.
The arthropod compound eye is one of the three main types of eyes observed in the animal kingdom. Comparison of the eyes seen in Insecta, Crustacea, Myriapoda and Chelicerata reveals considerable variation in terms of overall cell number, cell positioning, and photoreceptor rhabdomeres, yet, molecular data suggest there may be unexpected similarities. We review here the role of Pax6 in eye development and evolution and the relationship of Pax6 with other retinal determination genes and signaling pathways. We then discuss how the study of changes in Pax6 primary structure, in the gene networks controlled by Pax6 and in the relationship of Pax6 with signaling pathways may contribute to our insight into the relative role of conserved molecular-genetic mechanisms and emergence of evolutionary novelty in shaping the ommatidial eyes seen in the Arthropoda.  相似文献   

7.
Pax 6: mastering eye morphogenesis and eye evolution.   总被引:22,自引:0,他引:22  
Pax 6 genes from various animal phyla are capable of inducing ectopic eye development, indicating that Pax 6 is a master control gene for eye morphogenesis. It is proposed that the various eye-types found in metazoa are derived from a common prototype, monophyletically, by a mechanism called intercalary evolution.  相似文献   

8.
9.
c-Src is a non-receptor tyrosine kinase that associates with both the plasma membrane and endosomal compartments. In many human cancers, especially breast cancer, c-Src and the EGF receptor (EGFR) are overexpressed. Dual overexpression of c-Src and EGFR correlates with a Src-dependent increase in activation of EGFR, and synergism between these two tyrosine kinases increases the mitogenic activity of EGFR. Despite extensive studies of the functional interaction between c-Src and EGFR, little is known about the interactions in the trafficking pathways for the two proteins and how that influences signaling. Given the synergism between c-Src and EGFR, and the finding that EGFR is internalized and can signal from endosomes, we hypothesized that c-Src and EGFR traffic together through the endocytic pathway. Here we use a regulatable c-SrcGFP fusion protein that is a bona fide marker for c-Src to show that c-Src undergoes constitutive macropinocytosis from the plasma membrane into endocytic compartments. The movement of c-Src was dependent on its tyrosine kinase activity. Stimulation of cells with EGF revealed that c-Src traffics into the cell with activated EGFR and that c-Src expression and kinase activity prolongs EGFR activation. Surprisingly, even in the absence of EGF addition, c-Src expression induced activation of EGFR and of EGFR-mediated downstream signaling targets ERK and Shc. These data suggest that the synergy between c-Src and EGFR also occurs as these two kinases traffic together, and that their co-localization promotes EGFR-mediated signaling.  相似文献   

10.
The role of phospholipids in the regulation of membrane trafficking and signaling is largely unknown. Phosphatidylcholine (PC) is a main component of the plasma membrane. Mutants in the Drosophila phosphocholine cytidylyltransferase 1 (CCT1), the rate-limiting enzyme in PC biosynthesis, show an altered phospholipid composition with reduced PC and increased phosphatidylinositol (PI) levels. Phenotypic features of dCCT1 indicate that the enzyme is not required for cell survival, but serves a role in endocytic regulation. CCT1- cells show an increase in endocytosis and enlarged endosomal compartments, whereas lysosomal delivery is unchanged. As a consequence, an increase in endocytic localization of EGF receptor (Egfr) and Notch is observed, and this correlates with a reduction in signaling strength and leads to patterning defects. A further link between PC/PI content, endocytosis, and signaling is supported by genetic interactions of dCCT1 with Egfr, Notch, and genes affecting endosomal traffic.  相似文献   

11.
12.
The Notch signaling pathway controls patterning and cell fate decisions during development in metazoans, and is associated with human diseases such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and certain cancers. Studies over the last several years have revealed sophisticated regulation of both the membrane-bound Notch receptor and its ligands by vesicle trafficking. This is perhaps most evident in neural progenitor cells in Drosophila, which divide asymmetrically to segregate Numb, an endocytic adaptor protein that acts as a Notch pathway inhibitor, to one daughter cell. Here, we discuss recent findings addressing how receptor and ligand trafficking to specific membrane compartments control activation of the Notch pathway in asymmetrically dividing cells and other tissues.  相似文献   

13.
14.
15.
Strutt H  Strutt D 《Current biology : CB》2003,13(16):1451-1457
The ommatidia of the Drosophila eye initiate development by stepwise recruitment of photoreceptors into symmetric ommatidial clusters. As they mature, the clusters become asymmetric, adopting opposite chirality on either side of the dorsoventral midline and rotating exactly 90 degrees (Figures 1A and 1B, ). The choice of chirality is governed by higher activity of the frizzled (fz) gene in one cell of the R3/R4 photoreceptor pair and by Notch-Delta (N-Dl) signaling. The 90 degrees rotation also requires activity of planar polarity genes such as fz as well as the roulette (rlt) locus. We now show that two regulators of EGF signaling, argos and sprouty (sty), and a gain-of-function Ras85D allele, interact genetically with fz in ommatidial polarity. Furthermore, we find that argos is required for ommatidial rotation, but not chirality, and that rlt is a novel allele of argos. We present evidence that there are two pathways by which EGF signaling affects ommatidial rotation. In the first, typified by the rlt phenotype, there is partial transformation of the "mystery cells" toward a neuronal fate. Although most of these mystery cells subsequently fail to develop as neurons, their partial transformation results in inappropriate subcellular localization of the Fz receptor, a likely cue for regulating ommatidial rotation. Secondly, reducing EGF signaling can specifically affect ommatidial rotation without showing transformation of the mystery cells or defects in polarity protein localization.  相似文献   

16.
Cell growth andmigration are essential processes for the differentiation, maintenance,and repair of the intestinal epithelium. Epidermal growth factor (EGF)is an important factor in the reorganization of the cytoskeletonrequired for both processes. Because we had previously foundsignificant changes in the cytoskeleton during polyamine deficiency, itwas of interest to know whether those changes could prevent EGF fromstimulating growth and migration. Polyamine biosynthesis in IEC-6 cellswas interrupted by treatment with -difluoromethylornithine (DFMO), aspecific inhibitor of ornithine decarboxylase, the primaryrate-limiting enzyme of polyamine biosynthesis. DFMO halted cellproliferation and inhibited cell migration, and neither function couldbe normally stimulated by EGF. Immunocytochemistry of the transferrinreceptor (used as a marker for the endocytic pathway) revealed anabnormal distribution of the EGF receptor (EGFR) 10 min after bindingEGF. Polyamine deficiency depleted the cells of interiormicrofilaments, thickened the actin cortex, and prevented the promptassociation of EGF-bound EGFR with actin. EGF-stimulated 170-kDaprotein tyrosine phosphorylation and the kinase activity of purifiedmembrane EGFR were reduced by 50%. Immunoprecipatated EGFR proteinconcentration, however, was not reduced by polyamine deficiency. All ofthese changes could be prevented by supplementation with putrescine.Cytoskeletal disruption, reduced EGFR phosphorylation and kinaseactivity, aberrant intracellular EGFR distribution, and delayedassociation with actin filaments suggest a partial explanation for thedependence of epithelial cell growth and migration on polyamines.

  相似文献   

17.
18.
Hematopoietic stem cells (HSCs) require multiple molecular inputs for proper specification, including activity of the Notch signaling pathway. A requirement for the Notch1 and dispensability of the Notch2 receptor has been demonstrated in mice, but the role of the remaining Notch receptors has not been investigated. Here, we demonstrate that three of the four Notch receptors are independently required for the specification of HSCs in the zebrafish. The orthologues of the murine Notch1 receptor, Notch1a and Notch1b, are each required intrinsically to fate HSCs, just prior to their emergence from aortic hemogenic endothelium. By contrast, the Notch3 receptor is required earlier within the developing somite to regulate HSC emergence in a non-cell-autonomous manner. Epistatic analyses demonstrate that Notch3 function lies downstream of Wnt16, which is required for HSC specification through its regulation of two Notch ligands, dlc and dld. Collectively, these findings demonstrate for the first time that multiple Notch signaling inputs are required to specify HSCs and that Notch3 performs a novel role within the somite to regulate the neighboring precursors of hemogenic endothelium.  相似文献   

19.
20.
PaxB from Tripedalia cystophora, a cubomedusan jellyfish possessing complex eyes (ocelli), was characterized. PaxB, the only Pax gene found in this cnidarian, is expressed in the larva, retina, lens, and statocyst. PaxB contains a Pax2/5/8-type paired domain and octapeptide, but a Pax6 prd-type homeodomain. Pax2/5/8-like properties of PaxB include a DNA binding specificity of the paired domain, activation and inhibitory domains, and the ability to rescue spa(pol), a Drosophila Pax2 eye mutant. Like Pax6, PaxB activates jellyfish crystallin and Drosophila rhodopsin rh6 promoters and induces small ectopic eyes in Drosophila. Pax6 has been considered a "master" control gene for eye development. Our data suggest that the ancestor of jellyfish PaxB, a PaxB-like protein, was the primordial Pax protein in eye evolution and that Pax6-like genes evolved in triploblasts after separation from Cnidaria, raising the possibility that cnidarian and sophisticated triploblastic eyes arose independently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号