首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Human umbilical vein endothelial cells (HUVECS) were challenged with thrombin in the presence of [3H]acetate to stimulate the production of radiolabeled platelet activating factor (PAF, 1-O-alkyl-2-[3H]acetyl-sn-glycero-3-phosphocholine, 1-O-alkyl-2-[3H]acetyl-GPC). The 3H-product was isolated by thin-layer chromatography, and 1-radyl-2[3H],3- diacetylglycerols were prepared by phospholipase C digestion and subsequent acetylation at the sn-3 position. When the 1-radyl-2[3H],3-diacetylglycerols were analyzed by zonal thin-layer chromatography, 96-97% of the radiolabeled derivative migrated with 1-acyl-2,3-diacetylglycerol standard. Only minor amounts (3-4%) of 1-alkyl-2[3H],3-diacetylglycerol were observed, demonstrating that the predominant acetylated product synthesized by thrombin-stimulated HUVECS was 1-acyl-2-[3H]acetyl-GPC. This relative abundance of 1-acyl-2-[3H]-acetyl-GPC was not significantly affected by thrombin dose, incubation time, or cell passage, and was also observed in HUVECS challenged with ionophore A23187. In addition, the acetylated product from ionophore A23187- or bradykinin-stimulated bovine aortic endothelial cells contained 90% 1-acyl-2-[3H]acetyl-GPC, suggesting that the synthesis of the 1-acyl PAF analog is not unique to HUVECS. These findings demonstrate that PAF is a minor synthetic component of HUVECS and bovine aortic endothelial cells. In light of the integral role which the vascular endothelial cell plays in the regulation of thrombosis, these findings also suggest that the production of 1-acyl-2-acetyl-GPC may be biologically important.  相似文献   

2.
In stimulated neutrophils the production of eicosinoids and the lipid mediator, platelet-activating factor, is thought to be initiated by the activation of a phospholipase A2 which cleaves arachidonic acid from choline-containing glycerophospholipids. Accordingly, studies were undertaken in human neutrophils to characterize phospholipase enzymes that can hydrolyze 1-acyl- and 1-alkyl-linked arachidonoyl-containing phosphatidylcholine (PC). Cellular homogenates were incubated with sonicated dispersions of the arachidonoyl-labeled phospholipid substrates and the hydrolysis of radiolabeled arachidonate was measured. The phospholipase activity was cytosolic, optimal at pH 8.0, and calcium dependent. The homogenization conditions used were important in determining the amount of recoverable enzymatic activity. Vigorous sonication and the presence of calcium during homogenization were strongly inhibitory, whereas the presence of EGTA, heparin and proteinase inhibitors during homogenization increased the activity. Competitive experiments with unlabeled substrates suggested that the phospholipase hydrolyzed arachidonic acid equally well from either 1-acyl- or 1-alkyl-linked PC. However, the phospholipase did show specificity for arachidonic acid, compared to oleic or linoleic acids, at the sn-2 position of 1-acyl-linked PC. When neutrophils were first stimulated with the ionophore A23187, the phospholipase activity against 1-O-hexadecyl-2-[3H]arachidonoylglycerophosphocholine (GPC) increased in a time-dependent fashion up to 3.5-fold over the unstimulated level. The activity against 1-palmitoyl-2-[3H]arachidonoyl-GPC also increased after ionophore stimulation but to a lesser extent. The results demonstrate the presence of a cytosolic, activatable phospholipase that may be involved in PC turnover, arachidonic acid release, and platelet-activating factor production in human neutrophils.  相似文献   

3.
The release of arachidonic acid from thrombin-stimulated platelets can be attributed to the action of phospholipase A2 on membrane phospholipid. Previously, analysis of individual subclasses of phospholipid demonstrated that 1-acyl-2-[3H]arachidonoyl-sn-glycerophosphocholine and to a lesser degree 1-acyl-2-[3H]arachidonoyl-sn-glycerophosphoethanolamine were the main source of [3H]arachidonic acid in thrombin-stimulated cells. In the present work, 1,2-diacyl phospholipid subclasses were analyzed as 1,2-diacylglycerobenzoates by high-pressure liquid chromatography in order to analyze arachidonate release as mass changes in individual molecular species of phospholipid. Following thrombin stimulation (5 U/ml, 5 min, 37 degrees C) all arachidonoyl-containing molecular species of 1,2-diacyl-sn-glycerophosphocholine decreased in mass and [3H]arachidonate content by almost 50%, while those of 1,2-diacyl-sn-glycerophosphoethanolamine decreased by 20%. The mass change was substantial and indicated that these phospholipids are a major source of arachidonate in stimulated cells. No variation was seen in the other non-arachidonate-containing molecular species of either subclass. Thus, deacylation of membrane 1,2-diacylglycerophosphocholine and 1,2-diacylglycerophosphoethanolamine by phospholipase A2 is selective for those molecular species of phospholipid containing arachidonic acid, suggesting that a certain proportion of arachidonoyl-containing molecular species of phospholipid are compartmentalized with the platelet membrane proximal to the site of action of this enzyme. These studies demonstrate that the human platelet is a cell poised and specialized to release rapidly substantial amounts of arachidonic acid upon stimulation.  相似文献   

4.
The platelet-rich plasma from volunteers who had consumed a supplement containing eicosapentaenoate (EPA) was incubated with [3H]arachidonic acid (AA) and [14C]EPA so as to provide for the labelling of these fatty acids in the individual platelet phospholipids. Washed dual-labelled platelet suspensions were prepared and incubated with and without thrombin in the presence of BW755C and in the presence and absence of trifluoperazine (TFP) or indomethacin. The platelet lipids were extracted and the individual phospholipids, as well as diacylglycerol and phosphatidic acid, were separated by thin-layer chromatography and the radioactivity in each fraction was determined. The [3H]AA/[14C]EPA dpm ratio for the loss of radioactivity from phosphatidylcholine (PC) upon thrombin stimulation, as well as that in the residual PC remaining after stimulation, was similar to that in PC in the resting platelets. This suggests no marked selectivity in the degradation of EPA-versus AA-containing species of PC during platelet activation. The [3H]/[14C] ratios for the increased radioactivity appearing in diacylglycerol (DG) and phosphatidic acid (PA) upon thrombin stimulation were not significantly different from the corresponding ratio in phosphatidylinositol (PI) from resting platelets, suggesting little or no preference for 1-acyl-2-eicosapentaenoyl PI over 1-acyl-2-arachidonoyl PI in the pathway from PI to DG to PA. These results suggest that the relative formation of the 2- and 3-series prostaglandins, including thromboxane (Tx) A2 and A3, in stimulated platelets is not regulated by a preferential loss of one of the corresponding eicosanoid precursors over the other from membrane PC and PI.  相似文献   

5.
The ethanolamine-containing glycerophospholipids, choline-containing glycerophospholipids, and phosphatidylinositol fractions are major sources of arachidonic acid in murine mastocytoma P-815 cloned cells. The choline-linked fraction contained high arachidonic acid contents in 1-O-alkyl-2-acyl- (18%) and 1,2-diacyl-sn-glycero-3-phosphocholine (11%), with smaller amounts in 1-O-alk-1'-enyl-2-acyl species, whereas the arachidonic acid content of the ethanolamine-linked fraction was high in 1-O-alk-1'-enyl-2-acyl (26%) and 1,2-diacyl species (15%) and low in 1-O-alkyl-2-acyl species. The uptake and transfer of [3H]arachidonic acid into the 1,2-diacyl and ether classes of choline-containing glycerophospholipids and ethanolamine-containing glycerophospholipids in mastocytoma cells were examined. There was very rapid incorporation of radioactive arachidonic acid into mastocytoma cells that leveled off after 30 min. By labeling cells with [3H]arachidonic acid for 7.5 min, the radioactivity was recovered in the choline-containing glycerophospholipids (43%), phosphatidylinositol (32%), and ethanolamine-containing glycerophospholipids (20%) with little in other phospholipids, neutral lipid, or free fatty acid fractions. Upon reincubation of the mastocytoma cells in the radiolabel-free medium, the [3H]arachidonate radioactivity was gradually lost from the choline-containing glycerophospholipids fraction and, concomitantly, increased in ethanolamine-containing glycerophospholipids. At the zero time of reincubation, most of the radioactivity was recovered in the 1,2-diacyl species of both choline-containing glycerophospholipids and ethanolamine-containing glycerophospholipids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The relative degradation of the various molecular species of [3H]phosphatidylcholine in response to thrombin was studied in human platelets following prelabeling with [3H]glycerol and compared to results obtained following labeling with [14C]oleic, [14C]linoleic, or [14C]arachidonic acids. This was of interest since previous work using radioactive fatty acids had led to the conclusion that the 1-acyl-2-arachidonoyl species of phosphatidylcholine is exclusively hydrolyzed in thrombin-stimulated platelets. Within 90 s, the thrombin-dependent release of [14C]arachidonic acid from phosphatidylcholine amounted to 25% but only 3 and 6% for oleic and linoleic acids, respectively, in general agreement with previous work. However, for [3H]glycerol-labeled phosphatidylcholine, all molecular species (saturates, monoenes, dienes, trienes, tetraenes, and greater than tetraenes) were subject to significant hydrolysis in the presence of thrombin within 90 s, ranging from 12-24% across the various classes. Furthermore, the degradation of the tetraenoic species (1-acyl-2-arachidonoyl) of [3H]phosphatidylcholine was found to be only 1.5 and 1.4 times that for the monoenoic (predominantly 1-acyl-2-oleoyl) and dienoic (predominantly 1-acyl-2-linoleoyl) species, respectively. A much heavier proportional labeling of plasma membrane relative to whole platelet phosphatidylcholine was observed with [3H]glycerol as compared to [14C] oleate or [14C]arachidonate. These results indicate that the 1-acyl-2-arachidonoyl species of phosphatidylcholine are not exclusively degraded by phospholipase A2 activity in thrombin-stimulated platelets and suggest that the differential compartmentation of molecular species of phosphatidylcholine according to their metabolic origins can influence their apparent susceptibility to hydrolysis.  相似文献   

7.
The first step in the synthesis of platelet-activating factor (PAF) in stimulated neutrophils is generally accepted to be hydrolysis of 1-O-alkyl-2-acyl-sn-glycero-3-phosphorylcholine (1-O-alkyl-2-acyl-GPC), with 1-O-alkyl-2-arachidonoyl-GPC being the preferred precursor. Characterization of the enzymatic activity responsible for the hydrolysis of 1-O-alkyl-2-arachidonoyl-GPC has been hampered by lack of an active and reliable cell-free system for study. In the present studies, membrane preparations containing 1-O-[3H]alkyl-2-arachidonoyl-GPC were prepared from intact human neutrophils that had been labeled using 1-O-[3H]hexadecyl-2-lyso-GPC. When the labeled membrane preparations were incubated in the presence of unlabeled 1-O-alkyl-2-lyso-GPC (5 microM), rapid deacylation (up to 25% of the label in 10 min) of the 1-O-[3H]alkyl-2-arachidonoyl-GPC to 1-O-[3H]alkyl-2-lyso-GPC (lyso-PAF) was observed. The deacylation activity appeared to be the same in preparations from resting or stimulated cells. No requirement for Ca2+, various nucleotides, or protein kinase activation could be demonstrated. A number of observations indicated that [3H]lyso-PAF is formed in the system by the action of the CoA-independent transacylase present in the cells rather than by phospholipase A2. Both 1-O-alkyl-2-lyso-GPC and 1-acyl-2-lyso-GPC elicited deacylation of 1-O-[3H]alkyl-2-arachidonoyl-GPC, whereas neither 3-O-alkyl-2-lyso-GPC nor 1-O-alkyl-2-O-methyl-rac-glycero-3-phosphorylcholine, which should act as detergents but are not transacylase substrates, effected deacylation. The deacylation activity and CoA-independent transacylase activities were blocked in parallel by a number of inhibitors and by heat inactivation. In preparations containing 1-O-alkyl-2-[3H]arachidonoyl-GPC, no release of free [3H]arachidonic acid was observed. However, a shift of the [3H]arachidonate into exogenous 1-O-tetradecyl-2-lyso-GPC was observed in the system. These findings are consistent with the generation of [3H]lyso-PAF by the CoA-independent transacylase activity.  相似文献   

8.
1-O-[3H]Alkyl-2-lyso-sn-glycero-3-phosphocholine (1-O-[3H]alkyl-2-lyso-GPC) incubated with human polymorphonuclear leukocytes (PMN) for 30 min is metabolized to 1-O-alkyl-2-acyl-GPC containing greater than 80% arachidonate at the 2 position (Chilton, F. H., O'Flaherty, J. T., Ellis, J. M., Swendsen, C. L., and Wykle, R. L. (1983) J. Biol. Chem. 258, 7268-7271). PMN containing 1-O-[3H]alkyl-2-arachidonoyl-GPC incorporated into their cellular phospholipids in this manner were stimulated with Ca2+ ionophore (A23187). Within 5 min after stimulation, 14%, 7%, and 7% of the total 1-O-[3H]alkyl-2-arachidonoyl-GPC in the cells had been converted to 1-O-[3H]alkyl-2-acetyl-GPC (platelet-activating factor), 1-O-[3H]alkyl-2-lyso-GPC, and 3H-labeled neutral lipid, respectively. Stimulation by opsonized zymosan yielded similar results. In related studies, cells were labeled with 1-O-hexadecyl-2-arachidonoyl-GPC containing a [methyl-14C] choline moiety. The nature of the long-chain acyl residues in the sn-2 position of the labeled 1-O-hexadecyl-2-acyl-GPC remaining after stimulation with A23187 was examined. Analysis by high-performance liquid chromatography using synthetic 1-O-hexadecyl-2-acyl-GPC standards indicated there is a time-dependent loss of arachidonate from the 2 position of the labeled 1-O-hexadecyl-2-arachidonoyl-GPC followed by reacylation by other fatty acids (primarily linoleic and oleic). This shift in the acylation pattern exhibited after Ca2+ ionophore stimulation was further examined in PMN preincubated with A23187 and subsequently incubated with labeled 1-O-alkyl-2-lyso-GPC; the stimulated cells produced 1-O-[3H]alkyl-2-acetyl-GPC (greater than 15% of total label) and 1-O-[3H]alkyl-2-acyl-GPC containing linoleic acid and oleic acid, rather than arachidonic acid in the sn-2 position. The findings demonstrate that upon stimulation of PMN, 1-O-alkyl-2-arachidonoyl-GPC can yield arachidonate and 1-O-alkyl-2-lyso-GPC; the 1-O-alkyl-2-lyso-GPC formed may be acetylated producing platelet-activating factor or reacylated with fatty acyl residues other than arachidonate.  相似文献   

9.
Occurrence of platelet-activating factor in rabbit spermatozoa   总被引:1,自引:0,他引:1  
Spermatozoa obtained from rabbit ejaculate were analyzed for the presence of platelet-activating factor [PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC)] by using standard HPLC and TLC procedures. Fractions corresponding to synthetic PAF (AGEPC) revealed PAF-like activity amounting to 0.35 +/- 0.06 pmol/10(8) cells (mean +/- SE) as determined by bioassays based on the release of [3H]serotonin from washed rabbit platelets. This activity was lost upon base-catalyzed methanolysis, but was restored to the original level after reacetylation. Analysis of the phosphatidylcholine (PC) fraction by GC-MS subsequent to base-catalyzed methanolysis showed that 1-O-alkyl-2-acylphosphocholine comprises about 12% of the PC fraction with alkyl chain lengths of 16:0 (88%) and 18:0 (12%).  相似文献   

10.
Platelet stimulation by thrombin or Ca2+ ionophore induces mobilization of arachidonate from lipid stores. We have previously shown that, in [14C]arachidonic acid-prelabelled resting platelets, [14C]arachidonate was transferred from diacyl-sn-glycerophosphocholine to ethanolamine and choline-containing ether phospholipids. This transfer reached an equilibrium after 5 h incubation [Colard, Breton & Bereziat (1984a) Biochem. J. 222, 657-662]. [14C]Arachidonate-prelabelled platelets having reached this transfer equilibrium were used to study the mobilization of arachidonate in etheracyl and diacyl phospholipids. Upon thrombin stimulation, arachidonate decreased in diacyl-sn-glycero-3-phosphoinositol, in alkylacyl- and diacyl-sn-glycero-3-phosphocholine and increased in alkenylacyl- and diacyl-sn-glycero-3-phosphoethanolamine. Upon challenge with Ca2+ ionophore A23187, arachidonate decreased in diacyl-sn-glycero-3-phosphoethanolamine, in diacyl- and alkylacyl-sn-glycero-3-phosphocholine and increased in alkenylacyl-sn-glycero-3-phosphoethanolamine. We also compared arachidonate mobilization in platelets stimulated immediately after [14C]arachidonic acid chase with platelets stimulated after 5 h reincubation. We observed that the arachidonate newly incorporated into diacyl-sn-glycero-3-phosphocholine and triacylglycerols was rapidly released upon stimulation. This suggests the presence in these two lipids of a rapidly-turning-over arachidonate pool.  相似文献   

11.
Addition of 1-O-alk-1'-enyl-2-lyso-sn-glycero-3-phosphoethanolamine (alkenyl-lyso-GPE) to human neutrophil membrane preparations containing 1-O-[3H]hexadecyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (1-O-[3H]alkyl-2-arachidonoyl-GPC) resulted in rapid deacylation of the 1-O-[3H]alkyl-2-arachidonoyl-GPC to 1-O-[3H]alkyl-2-lyso-GPC (lyso-platelet-activating factor, lyso-PAF). When acetyl-CoA was included in the incubation mixture, the [3H]lyso-PAF was converted to [3H]PAF. Studies of [3H]arachidonate-labeled neutrophils permeabilized with Staphlococcus aureus alpha-toxin revealed a major shift of labeled [3H]arachidonate from the choline to the ethanolamine-containing phosphoglycerides upon addition of alkenyl-lyso-GPE. The studies indicated that lyso-PAF is formed in the system by the transfer of arachidonate from 1-O-alkyl-2-arachidonoyl-GPC to the alkenyl-lyso-GPE by a CoA-independent transacylase reaction. Mass measurements revealed a rapid loss of arachidonate from 1-radyl-2-acyl-GPE and a concomitant increase in alkenyl-lyso-GPE upon stimulation of the neutrophils by ionophore A23187. Based on these and other findings, a pathway is proposed that may play a significant, if not obligatory, role in the synthesis of PAF in intact stimulated neutrophils. It has been widely accepted that phospholipase A2 acts directly on 1-O-alkyl-2-arachidonoyl-GPC as the first step in the synthesis of PAF via formation of lyso-PAF. In the proposed scheme, phospholipase A2, upon stimulation, acts rapidly on ethanolamine plasmalogen selectively releasing arachidonic acid and generating alkenyl-lyso-GPE. The CoA-independent transacylase then selectively transfers arachidonate from 1-radyl-2-arachidonoyl-GPC to the alkenyl-lyso-GPE generating lyso-PAF, which is then acetylated to form PAF. The interactions outlined can account for the synthesis of 1-acyl-2-acetyl-GPC, 1-O-alk-1'-enyl-2-acetyl-GPE, and eicosanoids, in parallel with PAF.  相似文献   

12.
The objective of the present study was to better understand the remodeling of arachidonic acid (AA) in phospholipids of the mouse bone marrow-derived mast cell (BMMC) during Ag and ionophore A23187 activation. Initial studies were designed to understand the movement of AA in phospholipid classes under resting conditions. BMMC pulse labeled with AA incorporated greater than 95% of the label into the major phospholipid classes. Phosphatidylcholine (PC) subclasses, 1-acyl-2-arachidonoyl-(sn-glycero-3-phosphocholine (GPC)) in particular, initially accounted for most of the label incorporated into the cells with phosphatidylinositol/phosphatidylserine (PI/PS) and phosphatidylethanolamine (PE) subclasses containing much smaller quantities. Prolonged incubation of labeled BMMC resulted in a decrease in the radioactivity in PC with a concomitant increase in PE such that 1-alk-1-enyl-2-arachidonoyl-(sn-glycero-3-phosphoethanolamine (GPE)) became the single largest labeled AA pool by 24 h. Further experiments indicated that 24 h was the time required to reach isotopic equilibrium among AA-containing phospholipids of the BMMC. In the next series of experiments, BMMC phospholipids were labeled to different specific activities by either labeling the cells for 0.5 h or for 24 h followed by stimulation. Under isotopic equilibrium conditions (24 h), stimulation resulted in AA release from PE greater than PC much greater than PI/PS with 1-alk-1-enyl-2-arachidonoyl-GPE providing the bulk of AA released from the BMMC. By contrast, cells labeled for 0.5 h released AA from PC much greater than PI/PS, with 1-acyl-2-arachidonoyl-GPC accounting for most of the AA released from BMMC phospholipids. Label associated with PE subclasses under nonequilibrium conditions remained unchanged or slightly increased throughout a 10-min stimulation period. Finally, BMMC were double labeled with [14C]-AA for 24 h and then with [3H]-AA for 0.5 h. Cell stimulation resulted in a decrease in the [3H]/[14C] ratio in PC and PI and an increase in the ratio in PE. The decrease in [3H]/[14C] ratio in PC was mainly in 1-acyl-2-arachidonoyl-GPC, whereas the increase in PE subclasses was primarily in 1-alk-1-enyl-2-arachidonoyl-GPE. The [3H]/[14C] ratio in cellular neutral lipids and in supernatant fluid products were at values between PC and PE subclasses. Taken together, these data suggest that during Ag activation, the release of free arachidonic acid is from predominantly PE subclasses. Concomitant with the release of AA, there is a rapid remodeling of AA from PC subclasses into PE subclasses (1-alk-1-enyl-2-acyl-GPE).  相似文献   

13.
The role of Ca2+ in phospholipid metabolism and arachidonic acid release was studied in guinea pig neutrophils. The chemotactic peptide formylmethionyl-leucyl-phenyl-alanine (fMLP) activated [32P]Pi incorporation into phosphatidylinositol (PI) and phosphatidic acid (PA) without any effects on the labeling of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS). This activation was observed in Ca2+-free medium. Even in the neutrophils severely deprived of Ca2+ with EGTA and Ca2+ ionophore A23187, the stimulated labeling was not inhibited. When [3H]arachidonic acid-labeled neutrophils were stimulated by fMLP, a loss of [3H]arachidonic acid moiety in PI and the resultant increase in [3H]arachidonyl-diacylglycerol (DG), -PA, and free [3H]arachidonic acid was marked within 3 min. With further incubation, a loss of [3H]arachidonic acid in PC and PE became significant. These results suggest the activation of phospholipase C preceded the activation of phospholipase A2. In Ca2+-free medium, the decrease in [3H]arachidonyl-PI and the increase in [3H]arachidonyl-PA were only partially inhibited, although the release of [3H]arachidonic acid and a loss of [3H]arachidonyl-PC and -PE was completely blocked. These results show that PI-specific phospholipase C was not as sensitive to Ca2+ deprivation as arachidonic acid cleaving enzymes, phospholipase A2, and diacylglycerol lipase. Ca2+ ionophore A23187, which is known as an inducer of secretion, also stimulated [32P]Pi incorporation into PI and PA, although the incorporation into other phospholipids, such as PC and PE, was inhibited. This stimulated incorporation seemed to be caused by the activation of de novo synthesis of these lipids, because the incorporation of [3H]glycerol into PA and PI was also markedly stimulated by Ca2+ ionophore. But the chemotactic peptide did not increase the incorporation of [3H]glycerol into any glycerolipids including PI and PA. Thus, it is clear that fMLP mainly activates the pathway, PI leads to DG leads to PA, whereas Ca2+ ionophore activates the de novo synthesis of acidic phospholipids. When [3H]arachidonic acid-labeled neutrophils were treated with Ca2+ ionophore, the enhanced release of arachidonic acid and the accumulation of [3H]arachidonyl-DG, -PA with a concomitant decrease in [3H]arachidonyl-PC, -PE, and -PI were observed. Furthermore, the Ca2+ ionophore stimulated the formation of lysophospholipids, such as LPC, LPE, LPI, and LPA nonspecifically. These data suggest that Ca2+ ionophore releases arachidonic acid, unlike fMLP, directly from PC, PE, and PI, mainly by phospholipase A2. When neutrophils were stimulated by fMLP, the formation of LPC and LPE was observed by incubation for more than 3 min. Because a loss of arachidonic acid from PI occurred rapidly in response to fMLP, it seems likely the activation of PI-specific phospholipase C occurred first and was followed by the activation of phospholipase A2 when neutrophils are activated by fMLP...  相似文献   

14.
The incorporation of radiolabeled arachidonic acid and saturated fatty acids into choline-linked phosphoglycerides (PC) of rabbit and human neutrophils was investigated by resolving the individual molecular species by reversed-phase high performance liquid chromatography. PC from neutrophils incubated with a mixture of [3H]arachidonic acid and [14C]stearic or [14C]palmitic acid contains both radiolabels; however, double labeling of individual molecular species is minimal. After labeling for 2 h, the [3H]arachidonate is distributed almost equally between diacyl and 1-O-alkyl-2-acyl species, but it is incorporated into diacyl species containing unlabeled stearate or palmitate at the sn-1 position. In contrast, labeled saturated fatty acids are incorporated only into diacyl species and contain predominantly oleate and linoleate at the sn-2 position. Labeled linoleate is not incorporated into ether-linked species, but is found in the same species as labeled stearate. The findings suggest that mechanisms exist in neutrophils for specific shunting of exogenous arachidonic acid into certain phospholipid molecular species and support the concept that the 1-O-alkyl-2-arachidonoyl species may be a functionally segregated pool of arachidonic acid within the PC of neutrophils.  相似文献   

15.
In the present study we have investigated the effect of changes in the concentration of cytosolic free Ca2+ ([Ca2+]i) on the deacetylation-reacylation of PAF-acether (alkylacetylglycerophosphocholine, alkylacetyl-GPC) by rabbit platelets. Washed platelets were incubated with alkyl[3H]acetyl-GPC ([3H]acetyl-PAF) or [3H]alkylacetyl-GPC ([3H]alkyl-PAF) and [Ca2+]i was subsequently elevated by the addition of the ionophore A23187 or thrombin. The catabolism of PAF-acether was studied by measuring the release of [3H]acetate or the formation of [3H]alkylacyl-GPC. The ionophore inhibited the release of [3H]acetate and the formation of [3H]alkylacyl-GPC with no accumulation of lyso-[3H]PAF, indicating that the deacetylation of PAF-acether was blocked. The effect of ionophore on the deacetylation of PAF-acether was parallel with the increase of [Ca2+]i and could be reversed by the addition of EGTA. In contrast with the prolonged inhibition evoked by ionophore, thrombin, which induced a transient elevation of [Ca2+]i, merely delayed the deacetylation of PAF-acether. Since intact platelets failed to convert exogenous lyso-PAF, the effect of Ca2+ on its acylation was investigated by using platelet homogenates. These experiments showed that the acylation of lyso-PAF was inhibited by the exogenously added Ca2+, with a maximum effect at 1 mM. When the formation of endogenous lyso-PAF from the labelled pool of alkylacyl-GPC was examined, a prolonged increase in the concentration of lyso-PAF with a parallel and equally prolonged decrease in the cellular level of alkylacyl-GPC were observed after the addition of ionophore to intact platelets. The addition of EGTA reversed the effect of ionophore, thus permitting reacylation of lyso-PAF. In contrast, only a transient change in the level of lyso-PAF and alkylacyl-GPC was evoked by the addition of thrombin. Therefore we conclude that the inhibitory effect of Ca2+ on the deacetylation-reacylation of PAF-acether may have an important role in the regulation of its biosynthesis.  相似文献   

16.
Our study has examined platelet-activating factor (PAF) biosynthesis in neutrophils from individuals on a fish oil-enriched diet and in mast cells enriched with eicosapentaenoic acid (EPA) in vitro. Neutrophils isolated from males who were fed fish oil supplement (EPA; 2.8 g/day) for 5 wk contained large quantities of eicosapentaenoate in phosphatidylcholine (PC) and phosphatidylethanolamine and less in phosphatidylinositol. The ratio arachidonate/eicosapentaenoate in PC and phosphatidylethanolamine decreased from greater than 10 before the enriched diet to approximately 3 after the diet. The putative precursor of PAF, 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine (1-O-alkyl-2-acyl-GPC) contained the bulk of eicosapentaenoate in PC subclasses with smaller quantities found in 1-acyl and 1-alk-1'-enyl linked species. Ionophore A23187-stimulated neutrophils produced similar quantities of PAF before and after enriched diet. Neutrophils during normal diet acylated 1-O-alkyl-2-lyso-GPC only with arachidonate whereas neutrophils from individuals on enriched diet transferred both arachidonate and eicosapentaenoate into exogenously-provided 1-O-alkyl-2-lyso-GPC. This allowed for the labeling of neutrophils with 1-O-[3H]-alkyl-2-arachidonoyl-GPC (before diet) as well as neutrophils with 1-O-[3H]-alkyl-2-eicosapentaenoyl-GPC and 1-O-[3H]-alkyl-2-arachidonoyl-GPC (after diet). Neutrophils after diet converted similar quantities of these labeled precursors to labeled PAF upon stimulation as those before the diet. Analysis of the nature of the long chain acyl residue remaining in the sn-2 position of 1-alkyl-2-acyl-GPC after cell stimulation indicated that arachidonate and eicosapentaenoate were both released from 1-O-alkyl-2-acyl-GPC at comparable rates. Finally, in vitro supplementation of murine mast cells (PT-18) with arachidonic acid or EPA caused a marked increase in the amount of PAF produced by the cell without having any effect on histamine release. Data from these experiments suggest that EPA is incorporated into a PAF precursor pool. However, this appears not to inhibit PAF production because phospholipase A2 can use eicosapentaenoate- as well as arachidonate-containing phospholipids in the initial step of PAF biosynthesis.  相似文献   

17.
Human promyelocytic leukemia (HL60) cells can be induced to differentiate into mature granulocytes by exposure to dimethyl sulfoxide. The addition of N-formylMet-Leu-Phe or the Ca2+ ionophore A23187 to these differentiated cells generated 15-30 pmol of platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (alkylacetyl-GPC)/10(6) cells as quantified by platelet aggregation assays. Under identical conditions, uninduced cells produced little alkylacetyl-GPC. Upon the addition of ionophore A23187, differentiated cells, and not uninduced ones, released [14C]arachidonate from prelabeled phospholipids including ether-linked phosphatidylcholines, formed both 3H-labeled 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine (alkyllyso-GPC) and [3H]alkylacetyl-GPC from endogenous 3H-labeled 1-O-alkyl-2-(long chain) acyl-sn-glycero-3-phosphocholine (alkylacyl-GPC), and incorporated exogenously added [3H]acetate or [3H]alkyllyso-GPC into alkylacetyl-GPC. These results are suggestive that both phospholipase A2 and acetyltransferase activities are involved in alkylacetyl-GPC biosynthesis by HL60 cells and that these activities appear during differentiation. However, when measured in cell extracts, the activities of phospholipase A2 and acetyltransferase of uninduced cells were virtually indistinguishable from those of differentiated cells. Uninduced cells exhibited enhanced incorporation of [3H]alkyllyso-GPC or [3H]alkylacetyl-GPC into alkylacyl-GPC and of [14C]arachidonate and [14C]oleate into various phospholipids including phosphatidylcholine. However, such enhanced expression of acylation reactions could not account for the lack of accumulation of arachidonate or of alkylacetyl-GPC by uninduced cells. Furthermore, analyses of phospholipid classes by phosphorus determination showed no significant alterations in phospholipid composition of HL60 cells during differentiation. Together these data are suggestive that mechanisms regulating the activation of phospholipase A2 and acetyltransferase activities are defective in uninduced cells and that an increased concentration of cytosolic free Ca2+ alone is not a sufficient requirement for these mechanisms.  相似文献   

18.
Acrolein, a component of tobacco smoke, potentiated platelet aggregation and increased thromboxane A2 (TXA2) formation caused by thrombin and arachidonic acid (AA). Acrolein produced these effects at concentrations in the range 50-5000 microM. Acrolein had no effect on platelet responses to ADP, epinephrine, collagen or the ionophore A23187. Acrolein increased the mobilization of [3H]arachidonic acid from prelabelled platelets in response to thrombin and arachidonic acid. The increased availability of substrate could partly explain the enhanced production of TXA2 and increased aggregation observed in the presence of acrolein. These findings could provide an explanation for the increased incidence of vascular disease in cigarette smokers.  相似文献   

19.
The formation of arachidonic acid derived eicosanoids, including thromboxane A2 and leukotriene B4, as well as platelet-activating factor (1-O-alkyl-2-acetyl-glycerophosphocholine), has been implicated in various renal pathophysiologies. Alteration of the fatty acid composition of membrane phospholipids in platelets, the glomerulus, and inflammatory cells, and of 1-O-alkyl-2-acyl-glycerophosphocholine (platelet-activating factor precursor) can be attained by dietary lipid modifications (e.g., consumption of fish oil containing n - 3 polyunsaturated fatty acids). These changes have been associated with an attenuation in renal disease progression and modifications in the synthesis and actions-interactions of eicosanoids, cytokines, and platelet-activating factors.  相似文献   

20.
Neomycin is a potent agent for arachidonic acid release in human platelets   总被引:6,自引:0,他引:6  
Neomycin (10 microM - 1 mM) was found to induce considerable release of [3H]arachidonic acid from phosphatidylinositol, phosphatidylcholine and phosphatidylethanolamine in saponin-permeabilized human platelets prelabeled with [3H]arachidonic acid. The magnitude of arachidonate liberation was almost equal to that induced by A23187 (400 nM) or even greater than that caused by thrombin (1 U/ml). Moreover, neomycin enhanced arachidonic acid release induced by thrombin. Since no significant formation of diacylglycerol and phosphatidic acid via phospholipase C was observed, the arachidonate liberation was considered to be mainly catalyzed by phospholipase A2 action. Addition of neomycin (100 microM) to 45Ca2+-preloaded platelets elicited 45Ca2+ mobilization from intracellular stores. These results indicate evidence that neomycin evokes Ca2+ mobilization from internal stores, which leads to activation of phospholipase A2 to release arachidonic acid in human platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号