首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
rac-1-[1-14C]Lauroyl-2-oleylglycero-3-phospho[methyl-3H]choline and rac-1-lauroyl-2-[1-14C]oleoylglycero-3-phospho[methyl-3H]choline along with rac-1-palmitoyl-2-oleylglycero-3-phosphocholine and sn-1-palmitoyl-2-oleylglycero-3-phosphocholine were synthesized and subjected to hydrolysis with phospholipase C (EC 3.1.4.3) from Clostridium perfringens and phospholipase D (EC 3.1.4.4) from cabbage. Kinetics of hydrolysis of the radioactive substrates were determined by measuring the 3H radioactivity retained in the aqueous phase due to free choline and phosphocholine and the 3H and 14C radioactivity recovered in the organic phase due to the released diacylglycerols and phosphatidic acids and the residual phosphatidylcholines. The rate of hydrolysis of the unlabelled substrates by phospholipase C was determined by thin-layer chromatography and gas-liquid chromatography of the methanolysis products. The relative initial rates of hydrolysis of sn-1,2,- and sn-2,3-enantiomers were 100-200:1 for phospholipase C and 40-50:1 for phospholipase D using rac-1-lauroyl-2-oleoylglycero-3-phosphocholine as the substrate. The substitution of the 2-acyl group by an alkyl group resulted in a loss of stereospecificity, which was partial for phospholipase C (relative rates equal to 8-13:1) and total for phospholipase D. There was a parallel dramatic decrease (500-1000-fold) in the initial rate of hydrolysis with phospholipase C but the activity of phospholipase D was only moderately reduced (18-fold). These findings are consistent with the earlier observed loss of the stereospecificity of lipoprotein lipase following introduction of a 2-alkyl group into triacylycerols, and point to a general unsuitability of 2-alkyl-linked acylglycerols as substrates for the assay of the stereospecificity of lipases, as well as for the isolation of enantiomeric 2-alkylacylglycerols by means of stereospecific lipases.  相似文献   

2.
Preparation of 98% ee (R)-4-chloro-2-butanol was carried out by the enzymatic hydrolysis of chlorohydrin esters, using fungal resting cells and commercial enzymes. Hydrolyzes were carried out using lipases from Candida antarctica (Novozym 435), C. rugosa, Rhizomucor miehei (Lipozyme IM), Burkolia cepacia, and resting cells of Rhizopus oryzae and Aspergillus flavus. The influence of the enzyme, the solvent, the temperature, and the alkyl chain length on the selectivity of hydrolyzes of isomeric mixtures of chlorohydrin esters is described. Regioselectivity was higher than 95% for some of the tested lipases. Novozym 435 allowed preparation of the (R)-4-chloro-2-butanol after 15 min of reaction at 30-40 degrees C.  相似文献   

3.
We describe a sensitive CD method for determining the stereospecificity in lipase (E.C.3.1.1.3) catalysed hydrolysis of triacyl glycerols into diacyl glycerols. The diglycerols were converted to chiral tert-butyldimethylsilylated 1,2- or 2,3-di-O-benzoyl-sn-glycerol (5 or 5'), and their CD was measured. This approach showed for the first time that lipases produce optically active diacyl glycerides from achiral tripalmitin and tribenzoyl glyceride with a variable extent of enantioselectivity depending on the acyl groups and the enzymes.  相似文献   

4.
Pseudomonas sp. WR912 was isolated by continuous enrichment in three steps with 3-chloro-, 4-chloro-, and finally 3,5-dichlorobenzoate as sole source of carbon and energy. The doubling times of the pure culture with these growth substrates were 2.6, 3.3, and 5.2 h, respectively. Stoichiometric amounts of chloride were eliminated during growth. Oxygen uptake rates with chlorinated benzoates revealed low stereospecificity of the initial benzoate 1,2-dioxygenation. Dihydrodi-hydroxybenzoate dehydrogenase, catechol 1,2-dixoygenase, and muconate cycloisomerase activities were found in cell-free extracts. The ortho cleavage activity for catechols appeared to involve induction of isoenzymes with different stereospecificity towards chlorocatechols. A catabolic pathway for chlorocatechols was proposed on the basis of similarity to chlorophenoxyacetate catabolism, and cometabolism of 3,5-dimethylbenzoate by chlorobenzoate-induced cells yielded 2,5-dihydro-2,4-dimethyl-5-oxo-furan-2-acetic acid.  相似文献   

5.
Pseudomonas sp. WR912 was isolated by continuous enrichment in three steps with 3-chloro-, 4-chloro-, and finally 3,5-dichlorobenzoate as sole source of carbon and energy. The doubling times of the pure culture with these growth substrates were 2.6, 3.3, and 5.2 h, respectively. Stoichiometric amounts of chloride were eliminated during growth. Oxygen uptake rates with chlorinated benzoates revealed low stereospecificity of the initial benzoate 1,2-dioxygenation. Dihydrodi-hydroxybenzoate dehydrogenase, catechol 1,2-dixoygenase, and muconate cycloisomerase activities were found in cell-free extracts. The ortho cleavage activity for catechols appeared to involve induction of isoenzymes with different stereospecificity towards chlorocatechols. A catabolic pathway for chlorocatechols was proposed on the basis of similarity to chlorophenoxyacetate catabolism, and cometabolism of 3,5-dimethylbenzoate by chlorobenzoate-induced cells yielded 2,5-dihydro-2,4-dimethyl-5-oxo-furan-2-acetic acid.  相似文献   

6.
(R)- and (S)-1-chloro-3-(1-naphthyloxy)-2-propanol are intermediates in the synthesis of β-adrenergic blocking agents and antihypertensive drugs such as propranolol and nadoxolol. Herein, improvement in the preparation of racemic 1-chloro-3-(1-naphthyloxy)-2-propanol generated from 1-naphthol and epichlorohydrin are reported. In addition, kinetic resolution studies have been conducted to obtain both (R) and (S)-1-chloro-3-(1-naphthyloxy)-2-propanol. These compounds were obtained in highly optically pure form by the stereoselective hydrolysis of its acyl derivatives using whole cell preparations containing enzymes from native sources. The results were compared with those obtained using commercial lipases.  相似文献   

7.
In the present study, porcine pancreatic lipase, rabbit gastric lipase, and human gastric lipase stereospecificity toward enantiomeric glyceride derivatives was kinetically investigated using the monomolecular film technique. Pseudoglycerides such as enantiomeric 1(3)-alkyl-2,3(1,2)-diacyl-sn-glycerol, enantiomeric 1(3)-alkyl-2-acyl-sn-glycerol, or enantiomeric 1(3)-acyl-2-acylamino-2-deoxy-sn-glycerol were synthesized in order to assess the lipase stereoselectivity during the hydrolysis of either the primary or the secondary ester position of these glycerides analogues. The cleaved acyl moiety was the same in both enantiomers, thereby excluding the possibility of effects occurring due to fatty acid specificity. We observed a porcine pancreatic lipase sn-3 stereoselectivity when using the enantiomeric 1(3)-alkyl-2-acylamino-2-deoxy-sn-glycerol (diglyceride analogue) which contrasted with the lack of stereoselectivity observed when using the enantiomeric 1(3)-alkyl-2,3(1,2)-diacyl-sn-glycerol (triglyceride analogue). The gastric lipases, in contrast to the pancreatic lipase, preferentially catalyze the hydrolysis of the primary sn-3 ester bond of the enantiomeric monoakyl-diacyl pair tested. From these kinetic data, high hydrolysis rates and no chiral discrimination were observed in the case of rabbit gastric lipase, whereas low rates and a clear chiral discrimination was noticed in the case of human gastric lipase during hydrolysis of the acyl chain from the secondary ester bond of 1(3)-alkyl-2-acyl enantiomers. It is particularly obvious that in the case of human gastric lipase decreasing the lipid packing increases the lipase sn-3 stereopreference during hydrolysis of the primary ester bond of the enantiomeric 2-acylamino derivatives (diglyceride analogue).  相似文献   

8.
Covalent immobilization of pure lipases A and B from Candida rugosa on agarose and silica is described. The immobilization increases the half-life of the biocatalysts ( ) with respect to the native pure lipases ( ). The percentage immobilization of lipases A and B is similar in both supports (33–40%). The remaining activity of the biocatalysts immobilized on agarose (70–75%) is greater than that of the enzymatic derivatives immobilized on SiO2 (40–50%). The surface area and the hydrophobic/hydrophilic properties of the support control the lipase activity of these derivatives. The thermal stability of the immobilized lipase A derivatives is greater than that of lipase B derivatives. The nature of the support influences the thermal deactivation profile of the immobilized derivatives. The immobilization in agarose (hydrophilic support) gives biocatalysts that show a greater initial specific reaction rate than the biocatalysts immobilized in SiO2 (hydrophobic support) using the hydrolysis of the esters of (R) or (S) 2-chloropropanoic and of (R,S) 2-phenylpropanoic acids as the reaction test. The enzymatic derivatives are active for at least 196 h under hydrolysis conditions. The stereospecificity of the native and the immobilized enzymes is the same.  相似文献   

9.
A number of bacterial lipases can be immobilized in a rapid and strong fashion on octyl-agarose gels (e.g., lipases from Candida antarctica, Pseudomonas fluorescens, Rhizomucor miehei, Humicola lanuginosa, Mucor javanicus, and Rhizopus niveus). Adsorption rates in absence of ammonium sulfate are higher than in its presence, opposite to the observation for typical hydrophobic adsorption of proteins. At 10 mM phosphate, adsorption of lipases is fairly selective allowing enzyme purification associated with their reversible immobilization. Interestingly, these immobilized lipase molecules show a dramatic hyperactivation. For example, lipases from R. niveus, M. miehei, and H. lanuginosa were 6-, 7-, and 20-fold more active than the corresponding soluble enzymes when catalyzing the hydrolysis of a fully soluble substrate (0.4 mM p-nitrophenyl propionate). Even higher hyperactivations and interesting changes in stereospecificity were also observed for the hydrolysis of larger soluble chiral esters (e.g. (R,S)-2-hydroxy-4-phenylbutanoic ethyl ester). These results suggest that lipases recognize these "well-defined" hydrophobic supports as solid interfaces and they become adsorbed through the external areas of the large hydrophobic active centers of their "open and hyperactivated structure". This selective interfacial adsorption of lipases becomes a very promising immobilization method with general application for most lipases. Through this method, we are able to combine, via a single and easily performed adsorption step, the purification, the strong immobilization, and a dramatic hyperactivation of lipases acting in the absence of additional interfaces, (e.g., in aqueous medium with soluble substrate). Copyright 1998 John Wiley & Sons, Inc.  相似文献   

10.
1-[14C]Palmitoyl-2-[3H]arachidonoyl-sn-glycerol 3-phosphate was hydrolyzed to form [14C]palmitic acid and 2-[3H]arachidonoyl-glycerophosphate by porcine platelet membranes. This phospholipase A1 activity was relatively specific for phosphatidic acid; the addition of several other phospholipids in equimolar amounts did not have a significant effect on the hydrolysis of radiolabeled phosphatidic acid, and the specific activity for phosphatidic acid hydrolysis was 20-fold higher than that of the hydrolysis of phosphatidylcholine, phosphatidylethanolamine, or phosphatidylinositol under the conditions used. This phospholipase A1 acting on phosphatidic acid has properties different from those reported for other phospholipases and lipases present in platelets.  相似文献   

11.
Stereoisomeric oligopeptides were studied for their inhibitory effect on the hydrolysis of benzoyl-L-arginine methyl ester catalyzed by thrombin and trypsin, as well as on the thrombin-fibrinogen reaction. Comparison of the peptide structures, their conformational flexibility and inhibitory effects on thrombin and trypsin shows the availability of the essential differences in organization and functioning of the subsites S3, S2 and S'1 of these enzymes. In contrast to trypsin, thrombin is shown to be characterized by more pronounced secondary stereospecificity. This manifests in the more vigorous dropping of the catalytic constants of thrombin-catalyzed esterolysis than those of trypsin-catalyzed hydrolysis of the substrates, containing D-amino acids at the subsite P2. It is revealed that the peptide Tos-D-Val-D-Ala-D-Agr-D-Phe-OCH3 is the most powerful inhibitor among studied compounds. It is noteworthy that its antithrombin effect is almost an order of magnitude higher than its antitrypsin effect.  相似文献   

12.
Bacterial metabolism of 4-chlorophenoxyacetate   总被引:25,自引:5,他引:20       下载免费PDF全文
1. A pseudomonad capable of utilizing 4-chlorophenoxyacetate (CPA) as sole source of organic carbon was isolated from soil. 2. The organism was grown in liquid culture and the following compounds were isolated and identified in culture extracts: 4-chloro-2-hydroxyphenoxyacetate, 4-chlorocatechol, beta-chloromuconate probably the cis-trans isomer and gamma-carboxymethylene-Delta(alphabeta)-butenolide. 3. Cells grown on 4-chlorophenoxyacetate were able to metabolize 4-chloro-2-hydroxyphenoxyacetate, 4-chlorocatechol and gamma-carboxymethylene-Delta(alphabeta)-butenolide without a lag period. They were not adapted to 4-chlorophenol, or to either culture isolated or synthetic beta-chloromuconate, possibly because of stereospecificity towards the cis-cis isomer. 4. On the basis of isolation and induction evidence, the following metabolic pathway is proposed for the breakdown of 4-chlorophenoxyacetate by this organism: 4-chlorophenoxyacetate --> 4-chloro-2-hydroxyphenoxyacetate --> 4-chlorocatechol --> cis-cis-beta-chloromuconate --> gamma-carboxymethylene-Delta(alphabeta)-butenolide --> maleylacetate and fumarylacetate --> fumarate and acetate.  相似文献   

13.
We propose a method for characterizing quantitatively the stereoselectivity of lipases during hydrolysis of triacylglycerols. Although it is of general applicability, we demonstrate it specifically for sn-1,3-regiospecific lipases. In this case the method generates a "stereoselectivity fingerprint" that consists of ratios of the specificity constants for the various reactions that produce and consume the 1,2-sn- and 2,3-sn-diacylglycerols. We use the method to determine the stereoselectivity fingerprint of several lipases during the hydrolysis of the prochiral substrate triolein. Our method opens up the possibility of correlating quantitative fingerprints with structural information, in the quest to elucidate the mechanisms underlying the stereoselectivity of lipases.  相似文献   

14.
For the first time fully protected substrates with only one hydrolyzable ester bond have been used to analyze the substrate specificity of microbial lipases. In these substrates the ester is attached to the glycerol molecule in a precisely defined position. The use of three different substituents generates chirality and thus allows the analysis of positional specificities of individual lipases. Therefore, these new substrates have been used to study the enzymatic activities of two closely related lipases isolated from Staphylococcus aureus (TEN5) designated the 44 and 43 kDa lipase. The lipases, especially the 44 kDa molecule, show a high specificity for the hydrolysis of the ester in the sn-1 position (S-configuration), which is hydrolyzed by a factor of ten faster than that in the sn-3 position. In addition, the study demonstrates for the first time that the rate of hydrolysis of a fatty acid ester attached to the sn-2 position of glycerol by microbial lipases depends on the configuration of the substrate molecule.  相似文献   

15.
In the present study, porcine pancreatic lipase, rabbit gastric lipase, and human gastric lipase stereospecificity toward chemically alike, but sterically nonequivalent ester groups within one single triglyceride molecule was investigated. Lipolysis reactions were carried out on synthetic trioctanoin or triolein, which are homogenous, prochiral triglycerides, chosen as models for physiological lipase substrates. Diglyceride mixtures resulting from lipolysis were derivatized with optically active R-(+)-1-phenylethylisocyanate, to give diastereomeric carbamate mixtures, which were further separated by high performance liquid chromatography. Resolution of diastereomeric carbamates gave enantiomeric excess values, which reflect the lipases stereobias and clearly demonstrate the existence of a stereopreference by both gastric lipases for the sn-3 position. The stereoselectivity of human and rabbit gastric lipases, expressed as the enantiomeric excess percentage, was 54% and 70% for trioctanoin and 74% and 47% for triolein, respectively. The corresponding values with porcine pancreatic lipase were 3% in the case of trioctanoin and 8% in that of triolein. It is worth noting that rabbit gastric lipase, unlike human gastric lipase, became more stereoselective for the triglyceride with shorter acyl chains (trioctanoin). This is one of the most striking catalytic differences observed between these two gastric lipases.  相似文献   

16.
Novel inactivators of serine proteases based on 6-chloro-2-pyrone   总被引:1,自引:0,他引:1  
The interaction of serine protease (esterases) with 6-chloro-2-pyrones was investigated. Time-dependent inactivation of chymotrypsin, alpha-lytic protease, pig liver elastase, and cholinesterase was found with 3- and 5-benzyl-6-chloro-2-pyrone, as well as 3- and 5-methyl-6-chloro-2-pyrone. No inactivation was observed with the unsubstituted 6-chloro-2-pyrone. The substituted pyrones did not inactivate papain or carboxypeptidase A, as well as a number of other nonproteolytic enzymes. The substituted chloropyrones, therefore, show considerable selectivity toward serine proteases. Analogues in which the 6-chloro substituent is replaced by H or OH do not inactivate. The presence of the halogen is, therefore, essential for inactivation. Chymotrypsin catalyzes the hydrolysis of 3-benzyl-6-chloro-2-pyrone. At pH 7.5, (E)-4-benzyl-2-pentenedioic acid is the major product, and 2-benzyl-2-pentenedioic anhydride is a minor product. The ration of hydrolysis product found to the number of enzyme molecules inactivated varies from 14 to 40. The enzyme inactivated with the 3-benzyl compound does not show a spectrum characteristic of the pyrone ring. This suggests that inactivation by 3-benzyl-6-chloro-2-pyrone occurs in a mechanism-based fashion after enzymatic lactone hydrolysis. When the enzyme is inactivated with the 5-benzyl compound, absorbance due to the pyrone ring is observed. We suggest that inactivation occurs through an active site directed mechanism involving a 1,6-conjugate addition of an active site nucleophile to the pyrone ring.  相似文献   

17.
The stereospecificity of peptidyl dipeptide hydrolase [EC 3.4.15.1] was investigated. Six free and N-blocked alanyl peptides containing D-alanine were synthesized and tested as substrates. Their susceptibilities were determined by measuring Ala-Ala release by cation exchange column chromatography. Their Michaelis constants, Km values, and velocity maxima, Vmax values, were also determined. The enzyme showed high stereospecificity for an amino acyl residue in position 3 from C-terminus: it had an absolute requirement for the alanyl residue of the L-configuration in this position. An alanyl residue of the L-configuration in position 1 or 2 increased, but was not essential for activity. The enzyme showed little stereospecificity for an alanyl residue in position 4 from the C-terminus.  相似文献   

18.
The complete sequence of the horse pancreatic lipase was elucidated by combining polypeptide chain and cDNA sequencing. Among the structural features of horse lipase, it is worth mentioning that Lys373 is not conserved. This residue, which is present in human, porcine and canine lipases, has been assumed to be involved in p-nitrophenyl acetate hydrolysis by pancreatic lipases. Kinetic investigation of the p-nitrophenyl acetate hydrolysis by the various pancreatic lipases and by the C-terminal domain (336-449) of human lipase reveals that this hydrolysis is the result of the superimposition of independent events; a specific linear hydrolysis occurring at the active site of lipase, a fast acylation depending on the presence of Lys373 and a non-specific hydrolysis most likely occurring in the C-terminal domain of the enzyme. This finding definitely proves that pancreatic lipase bears only one active site and raises the question of a covalent catalysis by pancreatic lipases. Moreover, based on sequence comparison with the above-mentioned pancreatic lipases, three residues located in the C-terminal domain, Lys349, Lys398 and Lys419, are proposed as possible candidates for lipase/colipase binding.  相似文献   

19.
Partially purified exocellular lipases produced by a pathogenic (Leptospira copenhageni (PB-3) and a saprophytic strain ofLeptospirae (Leptospira Patoc I) hydrolyzed very low density, and to a lesser extent low density hog serum lipoproteins. No high density lipoprotein hydrolysis was found. Optimal conditions for the action of both lipases on very low density serum lipoproteins were determined: pH 8.5; NaCl 0.4m; CaCl2 1.0mm; sodium desoxycholate 10.60mm. The maximal velocities of very low density lipoprotein hydrolysis were compared with the maximal velocities of triglyceride emulsion hydrolysis by both lipases.  相似文献   

20.
Hormone-sensitive lipase (HSL) contributes importantly to the mobilization of fatty acids in adipocytes and shows a substrate preference for the diacylglycerols (DAGs) originating from triacylglycerols. To determine whether HSL shows any stereopreference during the hydrolysis of diacylglycerols, racemic 1,2(2,3)-sn-diolein was used as a substrate and the enantiomeric excess (ee%) of residual 1,2-sn-diolein over 2,3-sn-diolein was measured as a function of DAG hydrolysis. Enantiomeric DAGs were separated by performing chiral-stationary-phase HPLC after direct derivatization from lipolysis product extracts. The fact that the ee% of 1,2-sn-diolein over 2,3-sn-diolein increased with the level of hydrolysis indicated that HSL has a preference for 2,3-sn-diolein as a substrate and therefore a stereopreference for the sn-3 position of dioleoylglycerol. The ee% of 1,2-sn-diolein reached a maximum value of 36% at 42% hydrolysis. Among the various mammalian lipases tested so far, HSL is the only lipolytic carboxylester hydrolase found to have a pronounced stereospecificity for the sn-3 position of dioleoylglycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号