首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purification of polyphenol oxidase from tobacco.   总被引:14,自引:0,他引:14  
A new polyphenol oxidase (PPO) named PPO II was purified from tobacco (Nicotiana tobacum) by using acetone powder, ammonium sulfate precipitation, and column chromatography on DEAE-Sephadex A-50, Sephadex G-75, and CM-Sephadex C-50. It has an active site of a pair of type 3 coppers bridged to phenolate oxygen, which represents a new catalytic mechanism for polyphenol oxidase. PAGE, SDS-PAGE, and matrix-assisted laser desorption/ionization-time of flight mass spectrometry of the purified enzyme demonstrated that the enzyme is a single band with a molecular mass 35,600 Da. Biochemical characteristics include the optimum pH at 6.0, optimum temperature at 40 degrees C, and K(m) of 1.2 mM for catechol as substrate (pH 6.5, 30 degrees C). Substrate specificity studies indicate that the enzyme is of the catechol oxidase family. PPO II inhibits cultures of Escherichia coli and it accumulates on the wounded sites of tobacco leaves indicating that it may act as a defense role in plant defense systems.  相似文献   

2.
李钦  李丽 《微生物学报》1989,29(1):39-44
Two strains of Pseudomonus sp. having the extracellular catechol 1, 2-dioxygenase activity were selected from 112 bacterial strains. The conditions for enzyme production of the strains were examined. The optimal temperature and pH for enzyme formation were 30 degrees C and pH 6.8-7.0 respectively. Enzyme formation was enhanced by sodium benzoate, and was markedly inhibited by glucose, maltose and glycerol. Ammoniacal nitrogen sources were essential for cell growth and enzyme production. Sodium succinate was an effective inducer for enzyme formation. When the organism was grown in 0.15% sodium benzoate medium (pH 6.8-7.0) at 30 degrees C for 72 hours, about 10 units of catechol 1,2 dioxygenase per ml was obtained.  相似文献   

3.
Corynebacterium glutamicum assimilated phenol, benzoate, 4-hydroxybenzoate p-cresol and 3,4-dihydroxybenzoate. Ring cleavage was by catechol 1,2-dioxygenase when phenol or benzoate was used and by protocatechuate 3,4-dioxygenase when the others were used as substrate. The locus ncg12319 of its genome was cloned and expressed in Escherichia coli. Enzyme assays showed that ncg12319 encodes a catechol 1,2-dioxygenase. This catechol 1,2-dioxygenase was purified and accepted catechol, 3-, or 4-methylcatechols, but not chlorinated catechols, as substrates. The optimal temperature and pH for catechol cleavage catalyzed by the enzyme were 30 degrees C and 9, respectively, and the Km and Vmax were determined to be 4.24 micromol l(-1) and 3.7 micromol l(-1) min(-1) mg(-1) protein, respectively.  相似文献   

4.
Catechol 2,3-dioxygenase from the thermophilic Bacillus thermoleovorans A2 was purified and characterized. The catechol 2,3-dioxygenase has a molecular mass of 135 000 Da and consists of four identical subunits of 34 700 Da. One iron per enzyme subunit was detected using atom absorption spectroscopy. Enzyme activity was not inhibited by EDTA, suggesting that the iron is tightly bound. Addition of hydrogen peroxide to the enzyme completely destroyed activity, indicating that the iron was in the divalent state. The isoelectric point of the enzyme was 4.8. The enzyme displayed optimal activity at pH 7.2 and 70°C. The half-life of the catechol 2,3-dioxygenase at the optimum temperature was 1.5 min under aerobic conditions and 10 min in a nitrogen atmosphere. This stability of the enzyme is comparable to the stability of the enzyme from the mesophilic Pseudomonas putida mt-2. The stability of the cloned enzyme in E. coli extracts was identical to the stability in wild-type extracts, suggesting that no stabilizing factors were present in Bacillus thermoleovorans A2 In whole cells the half-life of the enzyme at 70°C was approximately 26 min, when protein synthesis was disrupted by chloramphenicol; however, the activity remained constant when protein synthesis was not inhibited. From these results we concluded that catechol 2,3-dioxygenase from Bacillus thermoleovorans A2 is not particularly thermostable, but that the organism retains the ability to degrade phenol at high temperatures because of continuous production of this enzyme. Received: October 10, 1998 / Accepted: March 18, 1999  相似文献   

5.
A novel thermostable Mn(II)-dependent 2,3-dihydroxybiphenyl-1,2-dioxygenase (BphC_JF8) catalyzing the meta-cleavage of the hydroxylated biphenyl ring was purified from the thermophilic biphenyl and naphthalene degrader, Bacillus sp. JF8, and the gene was cloned. The native and recombinant BphC enzyme was purified to homogeneity. The enzyme has a molecular mass of 125 +/- 10 kDa and was composed of four identical subunits (35 kDa). BphC_JF8 has a temperature optimum of 85 degrees C and a pH optimum of 7.5. It exhibited a half-life of 30 min at 80 degrees C and 81 min at 75 degrees C, making it the most thermostable extradiol dioxygenase studied. Inductively coupled plasma mass spectrometry analysis confirmed the presence of 4.0-4.8 manganese atoms per enzyme molecule. The EPR spectrum of BphC_JF8 exhibited g = 2.02 and g = 4.06 signals having the 6-fold hyperfine splitting characteristic of Mn(II). The enzyme can oxidize a wide range of substrates, and the substrate preference was in the order 2,3-dihydroxybiphenyl > 3-methylcatechol > catechol > 4-methylcatechol > 4-chlorocatechol. The enzyme is resistant to denaturation by various chelators and inhibitors (EDTA, 1,10-phenanthroline, H2O2, 3-chlorocatechol) and did not exhibit substrate inhibition even at 3 mm 2,3-dihydroxybiphenyl. A decrease in Km accompanied an increase in temperature, and the Km value of 0.095 microm for 2,3-dihydroxybiphenyl (at 60 degrees C) is among the lowest reported. The kinetic properties and thermal stability of the native and recombinant enzyme were identical. The primary structure of BphC_JF8 exhibits less than 25% sequence identity to other 2,3-dihydroxybiphenyl 1,2-dioxygenases. The metal ligands and active site residues of extradiol dioxygenases are conserved, although several amino acid residues found exclusively in enzymes that preferentially cleave bicyclic substrates are missing in BphC_JF8. A three-dimensional homology model of BphC_JF8 provided a basis for understanding the substrate specificity, quaternary structure, and stability of the enzyme.  相似文献   

6.
恶臭假单胞菌ND6菌株的萘降解质粒pND6-1中编码儿茶酚1,2-双加氧酶的catA基因在大肠杆菌中进行了克隆和表达,并研究表达产物的酶学性质。结果表明:酶的Km为0.019μmol/L,Vmax为1.434μmol/(min.mg);具有很好的耐热性,在50℃保温45min后仍能够保留酶活力的93.7%;Fe2+对酶活性有显著的促进作用,其比活力是对照反应的292%;酶对4-氯儿茶酚的催化活性非常低,属于Ⅰ型儿茶酚1,2-双加氧酶。以萘为底物生长时,ND6菌株的细胞提取液中既存在催化邻位裂解途径的儿茶酚1,2-双加氧酶活性,也存在催化间位裂解途径的儿茶酚2,3-双加氧酶活性。以苯甲酸、对羟基苯甲酸和苯乙酸为唯一碳源生长时,ND6菌株细胞提取液的儿茶酚1,2-双加氧酶活性远远大于儿茶酚2,3-双加氧酶活性。表明ND6菌株既能通过儿茶酚间位裂解途径降解萘,也能通过儿茶酚邻位裂解途径降解萘,而以苯甲酸、对羟基苯甲酸和苯乙酸为诱导物时只利用儿茶酚邻位裂解途径。  相似文献   

7.
The purpose of this study was purification and characterization of catechol 1,2-dioxygenase from Geobacillus sp. G27 strain, which degrades α-naphthol by the β-ketoadipate pathway. The catechol 1,2-dioxygenase (C1,2O) was purified using four steps of ammonium sulfate precipitation, DEAE-celullose, Sephadex G-150 and hydroxylapatite chromatographies. The enzyme was purified about 18-fold with a specific activity of 7.42 U mg of protein−1. The relative molecular mass of the native enzyme estimated on gel chromatography of Sephadex G-150 was 96 kDa. The pH and temperature optima for enzyme activity were 7 and 60°C, respectively. A half-life of the catechol 1,2-dioxygenase at the optimum temperature was 40 min. The kinetic parameters of the Geobacillus sp. G27 strain catechol 1,2-dioxygenase were determined. The enzyme had apparent Km of 29 μM for catechol and the cleavage activities for methylcatechols were much less than for catechol and no activity with gentisate or protocatechuate was detected.  相似文献   

8.
The sequence cato encoding catechol 1,2-dioxygenase from Candida tropicalis JH8 was cloned, sequenced, and expressed in Escherichia coli. The sequence cato contained an ORF of 858?bp encoding a polypeptide of 285?amino acid residues. The recombinant catechol 1,2-dioxygenase exists as a homodimer structure with a subunit molecular mass of 32 KD. Recombinant catechol 1,2-dioxygenase was unstable below pH 5.0 and stable from pH 7.0 to 9.0; its optimum pH was at 7.5. The optimum temperature for the enzyme was 30°C, and it possessed a thermophilic activity within a broad temperature range. Under the optimal conditions with catechol as substrate, the Km and Vmax of recombinant catechol 1,2-dioxygenase were 9.2?µM and 0.987?µM/min, respectively. This is the first article presenting cloning and expressing in E. coli of catechol 1,2-dioxygenase from C. tropicalis and characterization of the recombinant catechol 1,2-dioxygenase.  相似文献   

9.
Thermophilic catechol 2,3-dioxygenase (EC 1.13.11.2) from Bacillus stearothermophilus has been immobilized on highly activated glyoxyl agarose beads. The enzyme could be fully immobilized at 4 degrees C and pH 10.05 with a high retention of activity (around 80%). Enzyme immobilized under these conditions showed little increase in thermostability compared with the soluble enzyme, but further incubation of immobilized enzyme at 25 degrees C and pH 10.05 for 3 h before borohydride reduction resulted in conjugates exhibiting a 100-fold increase in stability (c.f. the free enzyme). The stability of catechol 2,3-dioxygenase immobilized under these conditions was essentially independent of protein concentration whereas free enzyme was rapidly inactivated at low protein concentrations. An apparent stabilization factor of over 700-fold was recorded in the comparison of free and immobilized catechol 2,3-dioxygenases at protein concentrations of 10 μg/ml. Immobilization increased the 'optimum temperature' for activity by 20 degrees C, retained activity at substrate concentrations where the soluble enzyme was fully inactivated and enhanced the resistance to inactivation during catalysis. These results suggest that the immobilization of the enzyme under controlled conditions with the generation of multiple covalent links between the enzyme and matrix both stabilized the quaternary structure of the protein and increased the rigidity of the subunit structures.  相似文献   

10.
The cDNA of Cu, Zn containing superoxide dismutase from the Cordyceps militaris SH (cm-SOD) was overexpressed in Escherichia coli BL 21 (DE3) using the pET-21a expression vector. The recombinant cell overexpressed the protein corresponding to 35+/-3% of total bacterial protein in cytosol. The purification was performed through three steps: DEAE-FF, CM-52, and G-100. After this purification procedure, a specific activity of 27272.7 U/mg of protein was reached, corresponding to 6.1-fold purification with a yield of 85.0%. The purity was homogeneous by SDS-PAGE analysis and 94.2+/-1.0% by CZE analysis. A subunit molecular mass of the recombinant enzyme was 15704 Da with a Cu and Zn element. In addition, the dimeric and polymeric structures were observed on MALDI-TOF-MS. Isoelectric point value of 7.0 was obtained for the recombinant enzyme that was sensitive to H2O2 and KCN. The recombinant enzyme remained 80+/-2% residual activity at pH 7.8, at 50 degrees C for 4h incubation. The properties: N-terminal amino acid sequence (the first 12 amino acid residues), pI, subunit molecular mass, thermo-stability of the purified recombinant SOD are similar to that of the native Cu, Zn-SOD from C. militaris (N-cm-SOD).  相似文献   

11.
Some physico-chemical properties of lytic proteinase L2 isolated from the enzymatic microbial preparation of lysoamidase were studied. The molecular mass of the enzyme is 15 000 Da, pI is 5.3. The enzyme hydrolyzes casein as well as the cells and cell walls of Staphylococcus aureus 209-P. The pH optimum of casein hydrolysis lies at 9.5; that for cell wall hydrolysis at 8.0. The temperature optimum for casein hydrolysis and cell lysis lies at 55 degrees C and 65 degrees C, respectively. The enzyme proteolytic activity is inhibited by serine proteinase inhibitors in a greater degree than the lytic activity. 50% of the proteolytic and lytic activities is lost upon enzyme heating for 15 min at 65 degrees C.  相似文献   

12.
Z He  J Wiegel 《Journal of bacteriology》1996,178(12):3539-3543
A 3,4-dihydroxybenzoate decarboxylase (EC 4.1.1.63) from Clostridium hydroxybenzoicum JW/Z-1T was purified and partially characterized. The estimated molecular mass of the enzyme was 270 kDa. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave a single band of 57 kDa, suggesting that the enzyme consists of five identical subunits. The temperature and pH optima were 50 degrees C and pH 7.0, respectively. The Arrhenius energy for decarboxylation of 3,4-dihydroxybenzoate was 32.5 kJ . mol(-1) for the temperature range from 22 to 50 degrees C. The Km and kcat for 3,4-dihydroxybenzoate were 0.6 mM and 5.4 x 10(3) min(-1), respectively, at pH 7.0 and 25 degrees C. The enzyme optimally catalyzed the reverse reaction, that is, the carboxylation of catechol to 3,4-dihydroxybenzoate, at pH 7.0. The enzyme did not decarboxylate 2-hydroxybenzoate, 3-hydroxybenzoate, 4-hydroxybenzoate, 2,3-dihydroxybenzoate, 2,4-dihydroxybenzoate, 2,5-dihydroxybenzoate, 2,3,4-trihydroxybenzoate, 3,4,5-trihydroxybenzoate, 3-F-4-hydroxybenzoate, or vanillate. The decarboxylase activity was inhibited by 25 and 20%, respectively, by 2,3,4- and 3,4,5-trihydroxybenzoate. Thiamine PPi and pyridoxal 5'-phosphate did not stimulate and hydroxylamine and sodium borohydride did not inhibit the enzyme activity, indicating that the 3,4-dihydroxybenzoate decarboxylase is not a thiamine PPi-, pyridoxal 5'-phosphate-, or pyruvoyl-dependent enzyme.  相似文献   

13.
This study aimed to characterization of catechol 1,2-dioxygenase from a Gram-negative bacterium, being able to utilize a wide spectrum of aromatic substrates as a sole carbon and energy source. Strain designated as N6, was isolated from the activated sludge samples of a sewage treatment plant at Bentwood Furniture Factory Jasienica, Poland. Morphology, physio-biochemical characteristics and phylogenetic analysis based on 16S rDNA sequence indicate that strain belongs to Pseudomonas putida. When cells of strain N6 grown on protocatechuate or 4-hydroxybenzoic acid mainly protocatechuate 3,4-dioxygenase was induced. The activity of catechol 1,2-dioxygenase was rather small. The cells grown on benzoic acid, catechol or phenol showed high activity of only catechol 1,2-dioxygenase. This enzyme was optimally active at 35 °C and pH 7.4. Kinetic studies showed that the value of Km and Vmax was 85.19 ??M and 14.54 ??M min−1 respectively. Nucleotide sequence of gene encoding catechol 1,2-dioxygenase in strain N6 has 100% identity with catA genes from two P. putida strains. The deduced 301-residue sequence of enzyme corresponds to a protein of molecular mass 33.1 kDa. The deduced molecular structure of the catechol 1,2-dioxygenase from P. putida N6 was very similar and characteristic for the other intradiol dioxygenases.  相似文献   

14.
An enzyme capable of dehalogenating vicinal haloalcohols to their corresponding epoxides was purified from the 3-chloro-1,2-propanediol-utilizing bacterium Arthrobacter sp. strain AD2. The inducible haloalcohol dehalogenase converted 1,3-dichloro-2-propanol, 3-chloro-1,2-propanediol, 1-chloro-2-propanol, and their brominated analogs, 2-bromoethanol, as well as chloroacetone and 1,3-dichloroacetone. The enzyme possessed no activity for epichlorohydrin (3-chloro-1,2-epoxypropane) or 2,3-dichloro-1-propanol. The dehalogenase had a broad pH optimum at about 8.5 and a temperature optimum of 50 degrees C. The enzyme followed Michaelis-Menten kinetics, and the Km values for 1,3-dichloro-2-propanol and 3-chloro-1,2-propanediol were 8.5 and 48 mM, respectively. Chloroacetic acid was a competitive inhibitor, with a Ki of 0.50 mM. A subunit molecular mass of 29 kDa was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. With gel filtration, a molecular mass of 69 kDa was found, indicating that the native protein is a dimer. The amino acid composition and N-terminal amino acid sequence are given.  相似文献   

15.
冠秀芬  李钦 《微生物学报》1990,30(5):397-399
Catechol-1,2-dioxygenase (EC 1.13.11.1) catalyzes the degradation of catechol to cis, cis-muconic acid. The biochemical properties of catechol-1,2-dioxygenase from Pseudomonas putida 84103 were investigated. The optimum pH and temperature is 7.5-8.0 and 25-30 degrees C, respectively. Cu2+, Zn2+ inhibit the enzyme activity. The paper chromatograph and UV absorption spectrum of enzymatic reaction product are accordance with those of the standard muconic acid.  相似文献   

16.
李朔  许楹  周宁一 《微生物学通报》2017,44(7):1513-1524
【目的】研究Sphingomonas sp.YL-JM2C菌株的生长特性,确定以三氯卡班作为碳源的生长情况。挖掘菌株YL-JM2C潜在的邻苯二酚1,2-双加氧酶及邻苯二酚2,3-双加氧酶基因,在大肠杆菌(Escherichia coli)中异源表达邻苯二酚双加氧酶基因并研究其酶学性质。【方法】优化S.sp.YL-JM2C菌株以三氯卡班作为碳源时的培养条件,并利用全自动生长曲线测定仪测定菌株生长情况,绘制生长曲线。通过生物信息学方法挖掘潜在的邻苯二酚双加氧酶基因,并分别在Escherichia coli BL21(DE3)中进行异源表达,通过AKTA快速纯化系统纯化蛋白,分别以邻苯二酚、3-和4-氯邻苯二酚为底物检测重组蛋白的酶学特性。【结果】菌株在pH为7.0-7.5时生长最优。在以浓度为4-8 mg/L的三氯卡班做为底物时,菌株适宜生长。当R2A培养基仅含有0.01%酵母提取物和无机盐时,加入终浓度为4 mg/L的三氯卡班可促进菌株生长。挖掘到6个潜在的邻苯二酚双加氧酶基因stcA1、stcA2、stcA3、stcE1、stcE2和stcE3,表达并通过粗酶液分析证明其中5个基因stcA1、stcA2、stcA3、stcE1和stcE2编码的酶均具有邻苯二酚双加氧酶和氯邻苯二酚双加氧酶的活性;纯化酶的底物范围研究揭示了StcA1、StcA2和StcA3均属于Ⅱ型邻苯二酚1,2-双加氧酶,StcE1和StcE2为两个新型邻苯二酚2,3-双加氧酶;它们酶动力学分析研究证明了5个酶对邻苯二酚的亲和力和催化效率最高,4-氯邻苯二酚次之。【结论】在同一菌株中发现了5个具有功能的邻苯二酚双加氧酶基因,stcA1、stcA2和stcA3编码的酶均属于Ⅱ型邻苯二酚1,2-双加氧酶,stcE1和stcE2为两个新型邻苯二酚2,3-双加氧酶编码基因。5个酶均具有催化邻苯二酚和氯邻苯二酚开环反应的功能,这为更好地理解微生物基因组内代谢邻苯二酚及其衍生物氯代邻苯二酚基因的多样性奠定了基础。  相似文献   

17.
A thermostable alkaline alpha-amylase producing Bacillus sp. A3-15 was isolated from compost samples. There was a slight variation in amylase synthesis within the pH range 6.0 and 12.0 with an optimum pH of 8.5 (8mm zone diameter in agar medium) on starch agar medium. Analyses of the enzyme for molecular mass and amylolytic activity were carried out by starch SDS-PAGE electrophoresis, which revealed two independent bands (86,000 and 60,500 Da). Enzyme synthesis occurred at temperatures between 25 and 65 degrees C with an optimum of 60 degrees C on petri dishes. The partial purification enzyme showed optimum activity at pH 11.0 and 70 degrees C. The enzyme was highly active (95%) in alkaline range of pH (10.0-11.5), and it was almost completely active up to 100 degrees C with 96% of the original activity remaining after heat treatment at 100 degrees C for 30 min. Enzyme activity was enhanced in the presence of 5mM CaCl2 (130%) and inhibition with 5mM by ZnCl2, NaCl, Na-sulphide, EDTA, PMSF (3mM), Urea (8M) and SDS (1%) was obtained 18%, 20%, 36%, 5%, 10%, 80% and 18%, respectively. The enzyme was stable approximately 70% at pH 10.0-11.0 and 60 degrees C for 24h. So our result showed that the enzyme was both, highly thermostable-alkaline, thermophile and chelator resistant. The A3-15 amylase enzyme may be suitable in liquefaction of starch in high temperature, in detergent and textile industries and in other industrial applications.  相似文献   

18.
We found a tyrosinase, which has high activity in the presence of organic solvents, in the culture filtrate of Streptomyces sp. REN-21. The organic solvent resistant tyrosinase (OSRT) was purified from the culture filtrate by three column chromatographies. About 1.2 mg of purified OSRT was obtained from 5.6 liters of the culture filtrate with a yield of 26.0%. The purified enzyme had a single polypeptide chain with a molecular mass of about 32,000 Da. The optimum pH and temperature of OSRT were pH 7.0 and 35 degrees C using L-beta-(3,4-dihydroxyphenyl)alanine (L-DOPA) as substrate. OSRT showed stereospecificity toward L-, DL-, and D-enantiomers of DOPA or tyrosine. OSRT had 44% of the activity of the control even in the presence of 50% ethanol, while a mushroom tyrosinase showed only 6% activity under the same conditions. Moreover, OSRT retained its original activity even after 20 h of incubation at 30 degrees C in the presence of 30% ethanol.  相似文献   

19.
This is the first report of a catechol 1,2-dioxygenase from Stenotrophomonas maltophilia strain KB2 with high activity against catechol and its methyl derivatives. This enzyme was maximally active at pH 8.0 and 40 °C and the half-life of the enzyme at this temperature was 3 h. Kinetic studies showed that the value of K m and V max was 12.8 μM and 1,218.8 U/mg of protein, respectively. During our studies on kinetic properties of the catechol 1,2-dioxygenase we observed substrate inhibition at >80 μM. The nucleotide sequence of the gene encoding the S. maltophilia strain KB2 catechol 1,2-dioxygenase has high identity with other catA genes from members of the genus Pseudomonas. The deduced 314-residue sequence of the enzyme corresponds to a protein of molecular mass 34.5 kDa. This enzyme was inhibited by competitive inhibitors (phenol derivatives) only by ca. 30 %. High tolerance against condition changes is desirable in industrial processes. Our data suggest that this enzyme could be of use as a tool in production of cis,cis-muconic acid and its derivatives.  相似文献   

20.
A novel glucooligosaccharide oxidase was purified 495-fold from wheat bran culture of a soil-isolated Acremonium strictum strain T1 with an overall yield of 21%. This enzyme was composed of a single polypeptide chain with a molecular mass of 61 kDa as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis and size-exclusion high-performance liquid chromatography. Its isoelectric point was pH 4.3-4.5. This enzyme contained 1 mol of FAD per mol of enzyme and showed absorption maxima at 274, 379 and 444 nm. This enzyme was stable in the pH range of 5.0 to 11.0 with an optimal reaction pH of 10.0. The optimal reaction temperature was 50 degrees C. It was stable up to 50 degrees C for 1 h at pH 7.8. This enzyme oxidized those oligosaccharides with glucose residue on the reducing end and each sugar residue jointed by alpha or beta-1,4 glucosidic bond. The relative activity of this enzyme toward maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, maltoheptaose, lactose, cellobiose and glucose was 100:94:74:46:66:56:64:47:59. To our knowledge, this is the first report on the discovery of an glucooligosaccharide oxidase as judged from enzyme substrate specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号