首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Full-length IgG antibodies cannot cross cell membranes of living cells; this limits their use for direct targeting of cytosolic proteins. Here, we describe a general strategy for the generation of intact, full-length IgG antibodies, herein called cytotransmabs, which internalize into living cells and localize in the cytosol. We first generated a humanized light chain variable domain (VL) that could penetrate into the cytosol of living cells and was engineered for association with various subtypes of human heavy chain variable domains (VHs). When light chains with humanized VL were co-expressed with 3 heavy chains (HCs), including 2 HCs of the clinically approved adalimumab (Humira®) and bevacizumab (Avastin®), all 3 purified IgG antibodies were internalized into the cytoplasm of living cells. Cytotransmabs primarily internalized into living cells by the clathrin-mediated endocytic pathway through interactions with heparin sulfate proteoglycan that was expressed on the cell surface. The cytotransmabs escaped into the cytosol from early endosomes without being further transported into other cellular compartments, like the lysosomes, endoplasmic reticulum, Golgi apparatus, and nucleus. Furthermore, we generated a cytotransmab that co-localized with the targeted cytosolic protein when it was incubated with living cells, demonstrating that the cytotransmab can directly target cytosolic proteins. Internalized cytotransmabs did not show any noticeable cytotoxicity and remained in the cytosol for more than 6 h before being degraded by proteosomes. These results suggest that cytotransmabs, which efficiently enter living cells and reach the cytosolic space, will find widespread uses as research, diagnostic, and therapeutic agents.  相似文献   

2.
《MABS-AUSTIN》2013,5(6):1402-1414
Full-length IgG antibodies cannot cross cell membranes of living cells; this limits their use for direct targeting of cytosolic proteins. Here, we describe a general strategy for the generation of intact, full-length IgG antibodies, herein called cytotransmabs, which internalize into living cells and localize in the cytosol. We first generated a humanized light chain variable domain (VL) that could penetrate into the cytosol of living cells and was engineered for association with various subtypes of human heavy chain variable domains (VHs). When light chains with humanized VL were co-expressed with 3 heavy chains (HCs), including 2 HCs of the clinically approved adalimumab (Humira®) and bevacizumab (Avastin®), all 3 purified IgG antibodies were internalized into the cytoplasm of living cells. Cytotransmabs primarily internalized into living cells by the clathrin-mediated endocytic pathway through interactions with heparin sulfate proteoglycan that was expressed on the cell surface. The cytotransmabs escaped into the cytosol from early endosomes without being further transported into other cellular compartments, like the lysosomes, endoplasmic reticulum, Golgi apparatus, and nucleus. Furthermore, we generated a cytotransmab that co-localized with the targeted cytosolic protein when it was incubated with living cells, demonstrating that the cytotransmab can directly target cytosolic proteins. Internalized cytotransmabs did not show any noticeable cytotoxicity and remained in the cytosol for more than 6 h before being degraded by proteosomes. These results suggest that cytotransmabs, which efficiently enter living cells and reach the cytosolic space, will find widespread uses as research, diagnostic, and therapeutic agents.  相似文献   

3.
4.
5.
NADH is a key metabolic cofactor whose sensitive and specific detection in the cytosol of live cells has been difficult. We constructed a fluorescent biosensor of the cytosolic NADH-NAD(+) redox state by combining a circularly permuted GFP T-Sapphire with a bacterial NADH-binding protein, Rex. Although the initial construct reported [NADH] × [H(+)] / [NAD(+)], its pH sensitivity was eliminated by mutagenesis. The engineered biosensor Peredox reports cytosolic NADH:NAD(+) ratios and can be calibrated with exogenous lactate and pyruvate. We demonstrated its utility in several cultured and primary cell types. We found that glycolysis opposed the lactate dehydrogenase equilibrium to produce a reduced cytosolic NADH-NAD(+) redox state. We also observed different redox states in primary mouse astrocytes and neurons, consistent with hypothesized metabolic differences. Furthermore, using high-content image analysis, we monitored NADH responses to PI3K pathway inhibition in hundreds of live cells. As an NADH reporter, Peredox should enable better understanding of bioenergetics.  相似文献   

6.
The HIV-1 Tat protein is secreted by infected cells. Extracellular Tat can affect bystander uninfected T cells and induce numerous biological responses such as apoptosis and cytokine secretion. Tat is likely involved in several immune disorders during AIDS. Nevertheless, it is not known whether Tat triggers cell responses directly upon binding to signaling receptors at the plasma membrane or after delivery to the cytosol. The pathway that enables Tat to reach the cytosol is also unclear. Here we visualized Tat within T-cell-coated pits and endosomes. Moreover, inhibitors of clathrin/AP-2-mediated uptake such as chlorpromazine, activated RhoA, or dominant-negative mutants of Eps15, intersectin, dynamin, or rab5 impaired Tat delivery to the cytosol by preventing its endocytosis. Molecules neutralizing low endosomal pH or Hsp90 inhibitors abolished Tat entry at a later stage by blocking its endosomal translocation, as directly shown using a cell-free translocation assay. Finally, endosomal pH neutralization prevented Tat from inducing T-cell responses such as NF-kappaB activation, apoptosis, and interleukin secretion, indicating that cytosolic delivery is required for Tat signaling. Hence, Tat enters T cells essentially like diphtheria toxin, using clathrin-mediated endocytosis before low-pH-induced and Hsp90-assisted endosomal translocation. Cell responses are then induced from the cytosol.  相似文献   

7.
目的:研究藏红花素对人胶质瘤U251细胞的促凋亡作用和可能的机制。方法:不同浓度藏红花素处理U251细胞后,MTT法检测细胞活力,TUNEL染色观察细胞凋亡情况。结果:①藏红花素显著抑制U251细胞的增殖,并诱导其发生凋亡。②藏红花素增加了U251细胞胞浆内钙离子的含量,并上调了内质网分子伴侣GRP78的表达。③藏红花素处理后的U251细胞内质网相关凋亡分子CHOP,Caspase-4,JNK活性明显增高。结论:藏红花素通过诱导内质网应激性凋亡抑制人胶质瘤U251细胞的增殖。  相似文献   

8.
Dendritic cells efficiently internalize exogenous protein antigens by fluid-phase uptake and receptor-mediated endocytosis. Such antigens contribute to cross-presentation by being translocated into the cytosol for proteasomal degradation, which liberates immunogenic peptides that can bind to major histocompatibility complex (MHC) class I molecules after being transported into the endoplasmic reticulum (ER). MHC class I-peptide complexes are then expressed on the cell surface and presented to CD8+ T cells. Here we show that internalized proteins can have an alternative fate. After internalization, proteins are first unfolded to allow translocation into the cytosol using a pathway related to ER-associated degradation (ERAD). Subsequently the unfolded proteins can undergo cytosolic refolding assisted by the chaperone Hsp90. These observations not only clarify the cellular processes regulating cytosolic access following endocytosis, but also demonstrate that functional proteins can potentially regain their activity in the cytosol of dendritic cells.  相似文献   

9.
J H Walent  B W Porter  T F Martin 《Cell》1992,70(5):765-775
The regulated secretory pathway is activated by elevated cytoplasmic Ca2+; however, the components mediating Ca2+ regulation have not been identified. In semi-intact neuroendocrine cells, Ca(2+)-activated secretion is ATP- and cytosol protein-dependent. We have identified a novel brain protein, p145, as a cytosolic factor that reconstitutes Ca(2+)-activated secretion in two neuroendocrine cell types. The protein is a dimer of 145 kd subunits, exhibits Ca(2+)-dependent interaction with a hydrophobic matrix, and binds phospholipid vesicles, suggesting a membrane-associated function. A p145-specific antibody inhibits the reconstitution of Ca(2+)-activated secretion by cytosol, indicating an essential role for p145. The restricted expression of p145 in tissues exhibiting a regulated secretory pathway suggests a key role for this protein in the transduction of Ca2+ signals into vectorial membrane fusion events.  相似文献   

10.
11.
Annexin I is an abundant cytosolic protein in human neutrophils. Besides its intracellular location, annexin I is found as an extracellular protein and the pathway for secretion has been of interest since the protein lacks a signal sequence for secretion. It was recently shown that annexin I is stored in the secretory gelatinase granules of human neutrophils, suggesting that the protein might be released through a granule mobilisation and fusion process resembling classical secretion. In this study we have determined the intracellular localisation of annexin I in human neutrophils using subcellular fractionation, protein separation by SDS-PAGE and immunoblotting, and show that virtually all annexin I is localised in the cell cytosol.  相似文献   

12.
13.
We have established an in vitro snRNP nuclear import system using digitonin permeabilized somatic cells supplemented with cytosolic extracts. As model karyophiles we used digoxygenin labelled U1 snRNPs or fluorescein labelled U2 snRNPs. In vitro nuclear import of snRNPs is inhibited by anti-pore component antibodies, consistent with transport occurring through nuclear pores. This import requires ATP, cytosolic factors and a nuclear localization signal (NLS). SnRNP nuclear accumulation is saturable and distinct from protein transport. Nuclear import of snRNPs, in permeabilized NRK cells supplemented with somatic cell cytosol, requires the same NLS structures as those identified in micro-injected mammalian cells. In contrast to the situation in Xenopus oocytes, the m3G-cap is not required for in vitro nuclear import of U1 and U2 snRNPs in somatic cells. Instead, assembly of the Sm-core domain is both necessary and sufficient to mediate snRNP nuclear targeting. Interestingly, when the in vitro system was provided with cytosol from Xenopus oocytes instead of somatic cells, U1 and U2 snRNP nuclear import was provided with cytosol from Xenopus oocytes instead of somatic cells, U1 and U2 snRNP nuclear import was m3G-cap dependent. These results indicate that soluble cytosolic factors mediate the differential m3G-cap dependence of U1 and U2 snRNP nuclear import in somatic cells and oocytes. We also demonstrate the existence of a soluble cytosolic factor whose interaction with the U2 snRNP m3G-cap is both saturable and essential for U2 snRNP nuclear import in Xenopus oocytes.  相似文献   

14.
The role of bone morphogenetic protein 4 (BMP4) in gliomas is not clear. We hypothesized that BMP4 inhibits proliferation in the brain glioma cell line U251 through a signaling pathway involving BMP4 and the mothers against decapentaplegic homolog 4 (SMAD4) protein. We exposed U251 cells to Adriamycin (1 g) for 48 h; cell proliferation (MTT assay), expression of BMP4 and SMAD4 (mRNA: qPCR; protein: Western blot) were studied. We further altered expression of BMP4 by overexpression or siRNA silencing, and documented cell responses to Adriamycin. Proliferation of U251 cells was significantly inhibited upon exposure to Adriamycin. This inhibition was associated with increased expression of BMP4. Further, proliferation of U251 cells was inhibited when BMP4 was overexpressed. BMP4 expression negatively correlated with expression of SMAD4, such that elevated levels of BMP4 were associated with decreased expression of SMAD4 and vice versa. The Adriamycin-induced inhibition of proliferation of U251 cells was attenuated when BMP4 was knocked down by siRNA. To conclude, BMP4 is associated with inhibition of proliferation of U251 cells; the effects of BMP4 involve the BMP4-Smad signaling pathway. BMP4 has a potential as a target for glioma therapy.  相似文献   

15.
16.
17.
The ATPase associated with various cellular activities (AAA-ATPase) p97 (p97) has been implicated in the retrotranslocation of target proteins for delivery to the cytosolic proteasome during endoplasmic reticulum-associated degradation (ERAD). Apolipoprotein B-100 (apoB-100) is an ERAD substrate in liver cells, including the human hepatoma, HepG2. We studied the potential role of p97 in the ERAD of apoB-100 in HepG2 cells using cell permeabilization, coimmunoprecipitation, and gene silencing. Degradation was abolished when HepG2 cytosol was removed by digitonin permeabilization, and treatment of intact cells with the proteasome inhibitor MG132 caused accumulation of ubiquitinated apoB protein in the cytosol. Cross-linking of intact cells with the thiol-cleavable agent dithiobis(succinimidylpropionate) (DSP), as well as nondenaturing immunoprecipitation, demonstrated an interaction between p97 and intracellular apoB. Small interfering ribonucleic acid (siRNA)-mediated reduction of p97 protein increased the intracellular levels of newly synthesized apoB-100, predominantly because of a decrease in the turnover of newly synthesized apoB-100 protein. However, although the posttranslational degradation of newly synthesized apoB-100 was delayed by p97 knockdown, secretion of apoB-100 was not affected. Knockdown of p97 also impaired the release of apoB-100 and polyubiquitinated apoB into the cytosol. In summary, our results suggest that retrotranslocation and proteasomal degradation of apoB-100 can be dissociated in HepG2 cells, and that the AAA-ATPase p97 is involved in the removal of full-length apoB from the biosynthetic pathway to the cytosolic proteasome.  相似文献   

18.
Anaplerosis, the net synthesis in mitochondria of citric acid cycle intermediates, and cataplerosis, their export to the cytosol, have been shown to be important for insulin secretion in rodent beta cells. However, human islets may be different. We observed that the enzyme activity, protein level, and relative mRNA level of the key anaplerotic enzyme pyruvate carboxylase (PC) were 80-90% lower in human pancreatic islets compared with islets of rats and mice and the rat insulinoma cell line INS-1 832/13. Activity and protein of ATP citrate lyase, which uses anaplerotic products in the cytosol, were 60-75% lower in human islets than in rodent islets or the cell line. In line with the lower PC, the percentage of glucose-derived pyruvate that entered mitochondrial metabolism via carboxylation in human islets was only 20-30% that in rat islets. This suggests human islets depend less on pyruvate carboxylation than rodent models that were used to establish the role of PC in insulin secretion. Human islets possessed high levels of succinyl-CoA:3-ketoacid-CoA transferase, an enzyme that forms acetoacetate in the mitochondria, and acetoacetyl-CoA synthetase, which uses acetoacetate to form acyl-CoAs in the cytosol. Glucose-stimulated human islets released insulin similarly to rat islets but formed much more acetoacetate. β-Hydroxybutyrate augmented insulin secretion in human islets. This information supports previous data that indicate beta cells can use a pathway involving succinyl-CoA:3-ketoacid-CoA transferase and acetoacetyl-CoA synthetase to synthesize and use acetoacetate and suggests human islets may use this pathway more than PC and citrate to form cytosolic acyl-CoAs.  相似文献   

19.
AB toxins consist of an enzymatic A subunit and a cell-binding B subunit(1). These toxins are secreted into the extracellular milieu, but they act upon targets within the eukaryotic cytosol. Some AB toxins travel by vesicle carriers from the cell surface to the endoplasmic reticulum (ER) before entering the cytosol(2-4). In the ER, the catalytic A chain dissociates from the rest of the toxin and moves through a protein-conducting channel to reach its cytosolic target(5). The translocated, cytosolic A chain is difficult to detect because toxin trafficking to the ER is an extremely inefficient process: most internalized toxin is routed to the lysosomes for degradation, so only a small fraction of surface-bound toxin reaches the Golgi apparatus and ER(6-12). To monitor toxin translocation from the ER to the cytosol in cultured cells, we combined a subcellular fractionation protocol with the highly sensitive detection method of surface plasmon resonance (SPR)(13-15). The plasma membrane of toxin-treated cells is selectively permeabilized with digitonin, allowing collection of a cytosolic fraction which is subsequently perfused over an SPR sensor coated with an anti-toxin A chain antibody. The antibody-coated sensor can capture and detect pg/mL quantities of cytosolic toxin. With this protocol, it is possible to follow the kinetics of toxin entry into the cytosol and to characterize inhibitory effects on the translocation event. The concentration of cytosolic toxin can also be calculated from a standard curve generated with known quantities of A chain standards that have been perfused over the sensor. Our method represents a rapid, sensitive, and quantitative detection system that does not require radiolabeling or other modifications to the target toxin.  相似文献   

20.
Cytoplasmic Ca2+ is a major regulator of exocytosis in secretory cells; however, the Ca(2+)-dependent mechanisms that trigger secretion have not been elucidated. Protein kinase C (PKC) has been proposed to be an important Ca(2+)-dependent component of this regulation; however, the effects of this enzyme on the exocytotic apparatus have not been identified. We developed a PKC-deficient, semi-intact PC12 cell system in which direct stimulatory effects of purified PKC on Ca(2+)-dependent norepinephrine secretion were studied. The reconstitution of optimal Ca(2+)-activated norepinephrine secretion by semi-intact PC12 cells required the addition of MgATP and cytosolic proteins. PKC-deficient cytosol exhibited reduced reconstituting activity that was fully restored by the addition of purified PKC. The restoration of Ca(2+)-dependent norepinephrine secretion by PKC required the presence of other proteins in the cytosol, in particular, a high molecular weight protein. The high molecular weight protein was identified as p145, a recently characterized 145-kDa brain protein. The addition of PKC enhanced phosphorylation of p145 under conditions of fully reconstituted Ca(2+)-activated norepinephrine secretion. The results indicate that 1) PKC is neither necessary nor sufficient for Ca(2+)-activated secretion, whereas other cytosolic proteins are required; and 2) the stimulation of Ca(2+)-activated secretion by PKC is dependent upon cytosolic proteins such as p145 and may be largely mediated through the phosphorylation of p145.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号