首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A human interleukin-17A (IL-17A) variant was overexpressed in Escherichia coli BL21 (DE3) under the control of a T7 promoter. The resulting insoluble inclusion bodies were isolated and solubilized by homogenization with 6 M guanidine HCl. The denatured recombinant human IL-17A variant was refolded in 20 mM Tris–HCl, pH 9.0, 500 mM arginine, 500 mM guanidine HCl, 15% glycerol, 1 mM cystamine, and 5 mM cysteine at 2–8 °C for 40 h. The refolded IL-17A variant was subsequently purified using a combination of cation-exchange, reversed-phase and fluoroapatite chromatography. The final purified product was a monodisperse and crystallizable homodimer with a molecular weight of 30,348.3 Da. The protein was active in both receptor binding competition assay and IL-17A-dependent biological activity assay using human dermal fibroblasts.  相似文献   

2.
Granzyme B (GrB) is a member of a family of serine proteases involved in cytotoxic T-lymphocyte-mediated killing of potentially harmful cells, where GrB induces apoptosis by cleavage of a limited number of substrates. To investigate the suitability of GrB as an enzyme for specific fusion protein cleavage, two derivatives of human GrB, one dependent on blood coagulation factor Xa (FXa) cleavage for activation and one engineered to be self-activating, were recombinantly expressed in Escherichia coli. Both derivatives contain a hexa-histidine affinity tag fused to the C-terminus and expressed as inclusion bodies. These were isolated and solubilized in guanidiniumHCl, immobilized on a Ni2+-NTA agarose column, and refolded by application of a cyclic refolding protocol. The refolded pro-rGrB-H6 could be converted to a fully active form by cleavage with FXa or, for pro(IEPD)-rGrB-H6, by autocatalytic processing during the final purification step. A self-activating derivative in which the unpaired cysteine of human GrB was substituted with phenylalanine was also prepared. Both rGrB-H6 and the C228F mutant were found to be highly specific and efficient processing enzymes for the cleavage of fusion proteins, as demonstrated by cleavage of fusion proteins containing the IEPD recognition sequence of GrB.  相似文献   

3.
The activity of the phytohormone cytokinin depends on a complex interplay of factors such as its metabolism, transport, stability, and cellular/tissue localization. O-glucosides of zeatin-type cytokinins are postulated to be storage and/or transport forms, and are readily deglucosylated. Transgenic tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) plants were constructed over-expressing Zm-p60.1, a maize beta-glucosidase capable of releasing active cytokinins from O- and N3-glucosides, to analyse its potential to perturb zeatin metabolism in planta. Zm-p60.1 in chloroplasts isolated from transgenic leaves has an apparent K(m) more than 10-fold lower than the purified enzyme in vitro. Adult transgenic plants grown in the absence of exogenous zeatin were morphologically indistinguishable from the wild type although differences in phytohormone levels were observed. When grown on medium containing zeatin, inhibition of root elongation was apparent in all seedlings 14 d after sowing (DAS). Between 14 and 21 DAS, the transgenic seedlings accumulated fresh weight leading later (28-32 DAS) to ectopic growths at the base of the hypocotyl. The development of ectopic structures correlated with the presence of the enzyme as demonstrated by histochemical staining. Cytokinin quantification showed that transgenic seedlings grown on medium containing zeatin accumulate active metabolites like zeatin riboside and zeatin riboside phosphate and this might lead to the observed changes. The presence of the enzyme around the base of the hypocotyl and later, in the ectopic structures themselves, suggests that the development of these structures is due to the perturbance in zeatin metabolism caused by the ectopic presence of Zm-p60.1.  相似文献   

4.
A chitinase from the hyperthermophilic archaeon Pyrococcus furiosus degrades chitin to produce diacetylchitobiose [(GlcNAc)(2)] as the end product. To further investigate the degradation mechanism of (GlcNAc)(2) in Pyrococcus spp., we cloned the gene of PH0499 from Pyrococcus horikoshii, which encodes a protein homologous to the diacetylchitobiose deacetylase of Thermococcus kodakaraensis. The deacetylase (Ph-Dac) was overexpressed as inclusion bodies in Escherichia coli Rosetta (DE3) pLys. The insoluble inclusion body was solubilized and reactivated through a refolding procedure. After several purification steps, 40 mg of soluble, thermostable (up to 80°C) Ph-Dac was obtained from 1L of culture. The apparent molecular mass of the refolded Ph-Dac was 180 kDa, indicating Ph-Dac to be a homohexamer. The refolded Ph-Dac also exhibited deacetylase activity toward (GlcNAc)(2), and the deacetylation site was revealed to be specific to the nonreducing end residue of (GlcNAc)(2). These expression and purification systems are useful for further characterization of Ph-Dac.  相似文献   

5.
In this work, the recombinant human bone morphogenetic protein 2 (rhBMP-2) gene was cloned from MG-63 cells by RT-PCR, and the protein was expressed in Escherichia coli expression system, purified by Ni–NTA column under denaturing conditions and refolded at 4 °C by urea gradient dialysis. We found that the protein refolding yield was increased with the increase of pH value from pH 6.0 to pH 9.0. The yield was 42% and 96% at pH 7.4 and pH 9.0, respectively, while that at pH 6.0 was only 3.4%. The cell culture results showed that the rhBMP-2 refolded at pH 7.4 urea gradient dialysis had higher biological activity for MG-63 cell proliferation and differentiation than that refolded at pH 9.0 since pH 7.4 is closer to the conditions in vivo leading to the formation of dimers through the interchain disulfide bond. Moreover, the biological activity for MG-63 was promoted with the increase of rhBMP-2 concentration in the cell culture medium. This work may be important for the in vitro production and biomedical application of rhBMP-2 protein.  相似文献   

6.
Human cytosolic beta-glucosidase is a monomeric enzyme that hydrolyzes various beta-d-glycosides and its real physiological role remains unclear. Here, we describe the production of this enzyme in Sf9 cells with a N-terminal 6x His tag. The production yield of the recombinant protein was in the 10 to 30 mg/l range. The protein was purified to homogeneity using two chromatographic steps, taking advantage of the 6x His tag in the first step, then using the physical and chemical properties of the protein for ionic exchange. Gel filtration analysis revealed that the protein is monomeric as expected. The kinetic parameters for 4-methylumbelliferyl beta-L-glucopyranoside, VM and KM, were measured (KM=32 microM and VM=157 micromol/h/mg at pH 7.0) and found similar to those reported for either the natural isolated enzyme or the recombinant protein expressed in COS7 cells (KM of 60-70 microM and 40 microM, respectively). Protein crystals were obtained and are now under structural investigations. In summary, we set up a heterologous expression system in Sf9 insect cells allowing the expression and production of large amounts of a pure active human protein, suitable for crystallographic studies.  相似文献   

7.
The coding sequence of the mature dalcochinase, a beta-glucosidase from Dalbergia cochinchinensis Pierre, was cloned and expressed in various systems. Expression in Escherichia coli resulted in an insoluble protein, which could be made soluble by co-expression with bacterial chaperonin GroESL. However, the enzyme had no activity. Recombinant expression in Pichia pastoris and Saccharomyces cerevisiae yielded an active enzyme. Dalcochinase was expressed under methanol induction in P. pastoris, since this was much more efficient than constitutive expression in P. pastoris or in S. cerevisiae. Addition of 0.5% casamino acids to the culture medium stabilized the pH of the culture and increased the protein yield by 3- to 5-folds. Insertion of a polyhistidine-tag either after the N-terminal alpha factor signal sequence or at the C-terminus failed to assist in purification by immobilized metal-ion affinity chromatography (IMAC) due to post-translational processing at both termini. A new construct of dalcochinase with an N-terminal truncation following the propeptide and eight histidine residues enabled its purification by IMAC, following hydrophobic interaction chromatography. The purified recombinant dalcochinase was apparently composed of differently post-translationally modified forms, but had kinetic properties and pH and temperature optima comparable to natural dalcochinase. The procedures reported here overcome the limitation in enzyme supply from natural sources, and allow further studies on structure-function relationships in this enzyme.  相似文献   

8.
Candida peltata (NRRL Y-6888) produced beta-glucosidase when grown in liquid culture on various substrates (glucose, xylose, L-arabinose, cellobiose, sucrose, and maltose). An extracellular beta-glucosidase was purified 1,800-fold to homogeneity from the culture supernatant of the yeast grown on glucose by salting out with ammonium sulfate, ion-exchange chromatography with DEAE Bio-Gel A agarose, Bio-Gel A-0.5m gel filtration, and cellobiose-Sepharose affinity chromatography. The enzyme was a monomeric protein with an apparent molecular weight of 43,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration. It was optimally active at pH 5.0 and 50 degrees C and had a specific activity of 108 mumol.min-1.mg of protein-1 against p-nitrophenyl-beta-D-glucoside (pNP beta G). The purified beta-glucosidase readily hydrolyzed pNP beta G, cellobiose, cellotriose, cellotetraose, cellopentaose, and cellohexaose, with Km values of 2.3, 66, 39, 35, 21, and 18 mM, respectively. The enzyme was highly tolerant to glucose inhibition, with a Ki of 1.4 M (252 mg/ml). Substrate inhibition was not observed with 40 mM pNP beta G or 15% cellobiose. The enzyme did not require divalent cations for activity, and its activity was not affected by p-chloromercuribenzoate (0.2 mM), EDTA (10 mM), or dithiothreitol (10 mM). Ethanol at an optimal concentration (0.75%, vol/vol) stimulated the initial enzyme activity by only 11%. Cellobiose (10%, wt/vol) was almost completely hydrolyzed to glucose by the purified beta-glucosidase (1.5 U/ml) in both the absence and presence of glucose (6%). Glucose production was enhanced by 8.3% when microcrystalline cellulose (2%, wt/vol) was treated for 24 h with a commercial cellulase preparation (cellulase, 5 U/ml; beta-glucosidase, 0.45 U/ml) that was supplemented with purified beta-glucosidase (0.4 U/ml).  相似文献   

9.
The devR-devS (Rv 3133c-Rv 3132c) two-component system of Mycobacterium tuberculosis was identified in our laboratory by RNA subtractive hybridization. This genetic system was predicted to encode a response regulator and histidine protein kinase, respectively. The putative histidine kinase protein DevS was overexpressed to high levels in Escherichia coli as a fusion protein with a hexahistidine tag, His(6)-DevS201, in the form of inclusion bodies. Here we report a "redox-based" method of matrix-bound renaturation of DevS protein. The refolded protein was biochemically active in an autophosphorylation reaction characteristic of histidine kinases and was suitable for the generation of polyclonal antibodies and as an antigen in ELISA.  相似文献   

10.
Expression of maize 9-lipoxygenase was performed and optimized in Escherichia coli Rosetta(DE3)pLysS. The purity of recombinant protein obtained during Q-Sepharose and Octyl-Sepharose chromatographies in an LP system at 4°C was >95%. Maximum activity of the lipoxygenase reaction was observed at pH 7.5. Enzyme stability was studied at pH 4.5 to 9.5 and in the presence of different compounds: phenylmethanesulfonyl fluoride, β-mercaptoethanol, ammonium sulfate, and glycerol. HPLC and GC-MS analysis showed that enzyme produced 99% 9S-hydroperoxide from linoleic acid. 13-Hydroperoxide (less than 1%) consisted of S- and R-enantiomers in ratio 2 : 3.  相似文献   

11.
Interleukin-2 (IL-2) can stimulate T cell proliferation and differentiation when binding to its receptor on T cells. It produces a marked effect by enhancing the cytotoxicity of CD8+ T cells and natural killer cells. Granulocyte-macrophage colony stimulating factor (GM-CSF) is associated with many cells proliferation, such as dendritic cells, macrophages. Here, we report the construction, expression and purification of a bifunctional protein, hIL-2/GM-CSF, which may facilitate interaction between T cells and the antigen presentation cells and improve the efficiency of antigen presentation. We found that the use of chemicals and temperature shift is a peculiar system for induction of the Escherichia coli transformed with an IPTG-regulated hIL-2/GM-CSF expression vector in this research. After renaturation, anion exchange chromatography, metal affinity chromatography, and strict endotoxin-free cation exchange chromatography, the fusion protein devoid of endotoxin showed high purity. Cell proliferation experiments proved that this bifunctional protein retains both hIL-2 and GM-CSF biological activities. These results will facilitate the numerous subsequent studies on this bifunctional molecule.  相似文献   

12.
Islet neogenesis associated protein-related protein (INGAPrP) is thought to be involved in the differentiation of non-insulin-producing cells to insulin-secreting cells. INGAPrP is a mouse gene product that has a 72% identical amino acid sequence to a known islet-generating factor, hamster islet-neogenesis-associated protein (INGAP), which acts by differentiating pancreatic ductal cells into beta-cells. The three-dimensional structure of these proteins is unknown. The structure would provide information about the conformation of the active portion of INGAP, the so-called INGAP pentadecapeptide, leading to a well-defined target for rational drug design. An efficient procedure for the production of INGAPrP would facilitate the process of structure determination. We have successfully produced and isolated (15)N-labeled INGAPrP by expression in Escherichia coli Rosetta (DE3) cells in Spectra-9 media followed by a two-step purification and refolding protocol. The hexahistidine tag engineered at the N-terminus of the protein is used in the first step for standard immobilized-metal affinity chromatography purification under denaturing conditions. The secondary purification step utilizes a gel permeation chromatography column, producing homogeneous INGAPrP as well as refolding the protein. To verify that the protein was folded, we performed a (1)H-(15)N HSQC NMR experiment that showed excellent dispersion of signals, indicative of a folded protein. We also performed circular dichroism experiments, which demonstrated the presence of secondary structure. In summary, we report the first expression and isolation of INGAPrP, as well as demonstrate that our method produces a folded protein, which is necessary for structure determination.  相似文献   

13.
We have constructed and optimized a high yielding Escherichia coli expression system to produce glycosylation-free human procathepsin K and have developed conditions for refolding this enzyme. Recombinant human procathepsin K (EC 3.4.22.38) was expressed in E. coli, refolded from inclusion bodies, and further purified by Superdex 75 size-exclusion chromatography. Purified procathepsin K had a [MH]+ of 35,063 Da which is in agreement with the predicted mass of the construct. Amino-terminal sequence analysis matched the predicted sequence with no secondary sequence detected. Purified procathepsin K activated under autocatalytic conditions to a final specific activity of 23 micromol 7-amido-4-methylcoumarin liberated/min/mg of enzyme using the fluorescent peptide substrate benzyloxycarbonyl-phenylalanine-arginine-7-amido-4-methylcoumarin. This expression and refolding procedure yielded 50 mg of purified, glycosylation-free human procathepsin K from 1 liter of E. coli cell culture and enabled the determination of the structure of human procathepsin K at 2.6 A resolution.  相似文献   

14.
A β-glucosidase was isolated from Clostridium thermocellum; the enzyme was localized in the periplasmic space.It was purified in a five-step procedure including ion-exchange chromatography on DEAE-Cellulose, chromatography on HA-Ultrogel and DEAE-Sephadex, gel filtration on AcA 34 Ultrogel and isoelectric focusing.The final preparation was purified 944-fold with a recovery of about 5% of the initial enzyme activity.Polyacrylamide disc electrophoresis of the purified enzyme gave a single band at pH 8.3. The enzyme is active towards cellobiose and p-nitrophenyl-β-D-glucoside(PNPG) and developed maximum activities at pH 6.0 and 65°C. A molecular weight of 50,000 daltons was estimated by gel filtration and the enzyme was isoelectric at pH 4.68.  相似文献   

15.
A beta-glucosidase was isolated from Candida guilliermondii, a yeast capable of growth on cellobiose. The enzyme was partially purified by treatment with polyethyleneimine and ammonium sulfate precipitation. Further purification was achieved by affinity chromatography using a Sepharose 4B matrix to which oxidized salicin was coupled through adipic dihydrazide. The final product was a 12.5-fold purification of the crude extract with a recovery of 27% of the initial enzyme activity. Polyacrylamide disc electrophoresis of the purified enzyme gave a single band. A km of 1.25 x 10(-4)M was obtained using p-nitrophenyl beta-D-glucopyranoside as the substrate. The optimum pH for enzyme activity was 6.8. Maximum activity was observed at temperature of 37 degrees C. Enzyme activity was completely inhibited by Hg++, Pb++, and Zn++ ions. The molecular weight of the enzyme is 48,000 as estimated by sucrose density gradient centrifugation.  相似文献   

16.
17.
We have developed a new single-step system, using a DEAE matrix, to immobilize and/or purify fusion proteins containing the choline-binding domain of the Streptococcus pneumoniae murein hydrolases. We have constructed a choline-binding-domain--beta-galactosidase chimera, which can be purified by this procedure and shows a high beta-galactosidase activity when immobilized in the column. A vector plasmid, pCUZ1, containing the lppp-5/lac promoter as well as 13 restriction sites, was constructed to facilitate the cloning and expression of gene fusions. This plasmid also allows the selection of recombinants by the well-known blue/white 5-bromo-4-chloro-3-indolyl-beta-D-galactoside procedure. A chimera between the choline-binding domain and the pneumococcal hemolysin was also constructed and purified using pCUZ1.  相似文献   

18.

Background

The large-scale production of G-protein coupled receptors (GPCRs) for functional and structural studies remains a challenge. Recent successes have been made in the expression of a range of GPCRs using Pichia pastoris as an expression host. P. pastoris has a number of advantages over other expression systems including ability to post-translationally modify expressed proteins, relative low cost for production and ability to grow to very high cell densities. Several previous studies have described the expression of GPCRs in P. pastoris using shaker flasks, which allow culturing of small volumes (500 ml) with moderate cell densities (OD600 ~15). The use of bioreactors, which allow straightforward culturing of large volumes, together with optimal control of growth parameters including pH and dissolved oxygen to maximise cell densities and expression of the target receptors, are an attractive alternative. The aim of this study was to compare the levels of expression of the human Adenosine 2A receptor (A2AR) in P. pastoris under control of a methanol-inducible promoter in both flask and bioreactor cultures.

Results

Bioreactor cultures yielded an approximately five times increase in cell density (OD600 ~75) compared to flask cultures prior to induction and a doubling in functional expression level per mg of membrane protein, representing a significant optimisation. Furthermore, analysis of a C-terminally truncated A2AR, terminating at residue V334 yielded the highest levels (200 pmol/mg) so far reported for expression of this receptor in P. pastoris. This truncated form of the receptor was also revealed to be resistant to C-terminal degradation in contrast to the WT A2AR, and therefore more suitable for further functional and structural studies.

Conclusion

Large-scale expression of the A2AR in P. pastoris bioreactor cultures results in significant increases in functional expression compared to traditional flask cultures.  相似文献   

19.
Interleukin-13 (IL-13) is a pleiotropic cytokine that elicits both proinflammatory and anti-inflammatory immune responses. Recent studies underscore its role in several diseases, including asthma and cancer. Solution studies of IL-13 and its soluble receptors may facilitate the design of antagonists/agonists which would require milligram quantities of specifically labeled protein. A synthetic gene encoding human IL-13 (hIL-13) was inserted into the pMAL-c2 vector with a cleavage site for the tobacco etch virus (TEV) protease. Coexpression of the fusion protein and TEV protease led to in vivo cleavage, resulting in high levels of hIL-13 production. hIL-13, localized to inclusion bodies, was purified and refolded to yield approximately 2 mg per liter of bacteria grown in minimal media. Subsequent biochemical and biophysical analysis of both the unlabeled and (15)N-labeled protein revealed a bioactive helical monomer. In addition, the two disulfide bonds were unambiguously demonstrated to be Cys29-Cys57 and Cys45-Cys71 by a combined proteolytic digestion and mass spectrometric analysis.  相似文献   

20.
Human trpS gene was cloned into the expression vector pET-24a(+) to yield pET-24a(+)-HTrpRS, which could direct the synthesis of a mammalian derived protein in Escherichia coli BL21-CodonPlus(DE3)-RIL. The vector allows overproduction and single-step purification of His(6)-tagged human tryptophanyl-tRNA synthetase by the facilitation of metal (Ni(2+)) chelate affinity chromatography. The expression level of human TrpRS was about 40% of total cell proteins after isopropyl beta-D-thiogalactoside induction. The overproduced human TrpRS-His(6) could be purified to homogeneity within 2 h and about 24 mg purified enzyme could be obtained from 400 ml cell culture. The His(6) tag at C terminus had little effect on the binding ability of its substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号