首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have found that chitosan, a polysaccharide present in fungal cell walls, is able to activate macrophages for enhanced mobilization of arachidonic acid in a dose- and time-dependent manner. Studies aimed at identifying the intracellular effector(s) implicated in chitosan-induced arachidonate release revealed the involvement of the cytosolic Group IV phospholipase A2 (PLA2), as judged by the inhibitory effect of methyl arachidonoyl fluorophosphonate but not of bromoenol lactone. Interestingly, priming of the macrophages with lipopolysaccharide renders the cells more sensitive to a subsequent stimulation with chitosan, and this enhancement is totally blocked by the secretory PLA2 inhibitor 3-(3-acetamide)-1-benzyl-2-ethylindolyl-5-oxy-propanesulfonic acid (LY311727). Collectively, the results of this work establish chitosan as a novel macrophage-activating factor that elicits AA mobilization in P388D1 macrophages by a mechanism involving the participation of two distinct phospholipases A2.  相似文献   

2.
Prostaglandins (PG), which are responsible for a large array of biological functions in eukaryotic cells, are produced from arachidonic acid by phospholipases and cyclooxygenase enzymes COX-1 and COX-2. We demonstrated that PG levels in cells were partly controlled by a regulatory protein, phospholipase A2 (PLA2)-activating protein (PLAA). Treatment of murine macrophages with lipopolysaccharide, interleukin-1beta, and tumor necrosis factor-alpha increased PLAA levels at early time points (2-30 min), which correlated with an up-regulation in cytosolic PLA2 and PGE2 levels. Both COX-2 and secretory PLA2 were also increased in lipopolysaccharide-stimulated macrophages, however, at later time points of 4-24 h. The role of PLAA in eicosanoid formation in macrophages was confirmed by the use of an antisense plaa oligonucleotide. Within amino acid residues 503-538, PLAA exhibited homology with melittin, and increased PGE(2) production was noted in macrophages stimulated with melittin. In addition to PLA2, we demonstrated that activation of phospholipase C and D significantly controlled PGE2 production. Finally, increased antigen levels of PLAA, COX-2, and phospholipases were demonstrated in biopsy specimens from patients with varying amounts of intestinal mucosal inflammation, which corresponded to increased levels of phospholipase activity. These results could provide a basis for the development of new therapeutic tools to control inflammation.  相似文献   

3.
BACKGROUND: Since the growth state of macrophages in local pathological sites is considered a factor that regulates the processes of many disease, such as tumors, inflammation, and atherosclerosis, the substances that regulate macrophage growth or survival may be useful for disease control. We previously reported that securiosides A and B, novel triterpene saponins, exerted macrophage-oriented cytotoxicity in the presence of a L-cell-conditioned medium containing macrophage colony-stimulating factor (M-CSF), while the compounds did not exhibit an effect on macrophages in the absence of the growth-stimulating factors. AIM: This study was undertaken to characterize the growth-inhibitory and the apoptosis-inducing activities of securioside B, focusing on the effects of the macrophage-growth factor(s), and to examine the implication of a mitochondria pathway in apoptosis induction. METHODS: The effect of securioside B on a murine macrophage cell line (BAC1.2F5) was examined by MTT assay and lactose dehydrogenase release assay in the presence of L-cell-conditioned medium, M-CSF, or granulocyte-macrophage CSF (GM-CSF). RESULT: Securioside B inhibited the growth of the cells stimulated by recombinant M-CSF or GM-CSF, but it scarcely induced cytolysis of the cells under the same conditions. Moreover, securioside B did not induce cell death when the compound only was added to the cells. On the other hand, the compound extensively induced apoptotic cell death in the presence of L-cell-conditioned medium, suggesting that apoptosis induction by securioside B requires the additional factor(s) present in L-cell-conditioned medium. Securioside B plus L-cell-conditioned medium induced the activation of caspase-3 and caspase-9, but not caspase-8. In addition, cytochrome c release from the mitochondria into the cytosol, and disrupted mitochondria membrane potential, was also observed in the apoptotic BAC1.2F5 cells. CONCLUSION: These data suggest that securioside B has growth-inhibitory activity against growth factor-stimulated macrophages, and that it induces apoptotic macrophage death through the activation of a mitochondrial pathway in the presence of L-cell-conditioned medium.  相似文献   

4.
ATP increases intracellular calcium concentration ([Ca(2+)](i)) in supraoptic nucleus (SON) neurons in hypothalamo-neurohypophyseal system explants loaded with the Ca(2+)-sensitive dye, fura 2-AM. Involvement of P2X purinergic receptors (P2XR) in this response was anticipated, because ATP stimulation of vasopressin release from hypothalamo-neurohypophyseal system explants required activation of P2XRs, and activation of P2XRs induced an increase in [Ca(2+)](i) in dissociated SON neurons. However, the ATP-induced increase in [Ca(2+)](i) persisted after removal of Ca(2+) from the perifusate ([Ca(2+)](o)). This suggested involvement of P2Y purinergic receptors (P2YR), because P2YRs induce Ca(2+) release from intracellular stores, whereas P2XRs are Ca(2+)-permeable ion channels. Depletion of [Ca(2+)](i) stores with thapsigargin (TG) prevented the ATP-induced increase in [Ca(2+)](i) in zero, but not in 2 mM [Ca(2+)](o), indicating that both Ca(2+) influx and release of intracellular Ca(2+) contribute to the ATP response. Ca(2+) influx was partially blocked by cadmium, indicating a contribution of voltage-gated Ca(2+) channels. PPADS (pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid), and iso-PPADS, P2XR antagonists, attenuated, but did not abolish, the ATP-induced increase in [Ca(2+)](i). Combined treatment with PPADS or iso-PPADS and TG prevented the response. A cocktail of P2YR agonists consisting of UTP, UDP, and 2-methylthio-ADP increased [Ca(2+)](i) (with or without tetrodotoxin) that was markedly attenuated by TG. 2-Methylthio-ADP alone induced consistent and larger increases in [Ca(2+)](i) than UTP or UDP. MRS2179, a specific P2Y(1)R antagonist, eliminated the response to ATP in zero [Ca(2+)](o). Thus, both P2XR and P2YR participate in the ATP-induced increase in [Ca(2+)](i), and the P2Y(1)R subtype is more prominent than P2Y(2)R, P2Y(4)R, or P2Y(6)R in SON.  相似文献   

5.
Phagocytosis of non-opsonized microorganisms by macrophages initiates innate immune responses for host defense against infection. Cytosolic phospholipase A(2) is activated during phagocytosis, releasing arachidonic acid for production of eicosanoids, which initiate acute inflammation. Our objective was to identify pattern recognition receptors that stimulate arachidonic acid release and cyclooxygenase 2 (COX2) expression in macrophages by pathogenic yeast and yeast cell walls. Zymosan- and Candida albicans-stimulated arachidonic acid release from resident mouse peritoneal macrophages was blocked by soluble glucan phosphate. In RAW264.7 cells arachidonic acid release, COX2 expression, and prostaglandin production were enhanced by overexpressing the beta-glucan receptor, dectin-1, but not dectin-1 lacking the cytoplasmic tail. Pure particulate (1, 3)-beta-D-glucan stimulated arachidonic acid release and COX2 expression, which were augmented in a Toll-like receptor 2 (TLR2)-dependent manner by macrophage-activating lipopeptide-2. However, arachidonic acid release and leukotriene C(4) production stimulated by zymosan and C. albicans were TLR2-independent, whereas COX2 expression and prostaglandin production were partially blunted in TLR2(-/-) macrophages. Inhibition of Syk tyrosine kinase blocked arachidonic acid release and COX2 expression in response to zymosan, C. albicans, and particulate (1, 3)-beta-D-glucan. The results suggest that cytosolic phospholipase A(2) activation triggered by the beta-glucan component of yeast is dependent on the immunoreceptor tyrosine-based activation motif-like domain of dectin-1 and activation of Syk kinase, whereas both TLR2 and Syk kinase regulate COX2 expression.  相似文献   

6.
Selective activation of phospholipase D2 by unsaturated fatty acid.   总被引:3,自引:0,他引:3  
Although oleate has been implicated in the regulation of phospholipase D (PLD) activity, the molecular identity of the oleate-stimulated PLD is still poorly understood. We now report that oleate selectively stimulates the enzymatic activity of PLD2 but not of PLD1, with an optimal concentration of 20 microM in vitro. Intriguingly, phosphatidylinositol 4,5-bisphosphate (PIP2) synergistically stimulates the oleate-dependent PLD2 activity with an optimal concentration of 2.5 microM. These results provide the first evidence that oleate is a PLD2-specific activating factor and PLD2 activity is synergistically stimulated by oleate and PIP2.  相似文献   

7.
The stimulation of O2.- generation by phorbol 12-myristate 13-acetate (PMA) in human neutrophil-derived cytoplasts was inhibited by a variety of phospholipase A2 inhibitors in a concentration-dependent manner. Inhibition was found to be independent of the order of addition of the inhibitor and PMA. The most potent inhibitor, RO 31-4639, inhibited O2.- generation with an IC50 value (concentration causing 50% inhibition) of 1.5 microM. The addition of either arachidonic acid or SDS, in the presence of the inhibitors, was able to restore O2.- generation. The results suggest that arachidonic acid, released by phospholipase A2, is necessary for both the activation and the maintenance of O2.- generation by the NADPH oxidase.  相似文献   

8.
Two closely related cell lines were characterized in their responses to extracellular ATP (ATPo): the fibroblast cell line L929 and a TNF-resistant variant L929/R. Both lines showed ATPo-activated increases in intracellular Ca2+, inward current, and sustained depolarization of the plasma membrane, cell responses compatible with activation of purinergic receptors of the P2y, P2x, or P2z subtype; however, only the L929/R variant was susceptible to ATPo-dependent early permeabilization of the plasma membrane to hydrophilic solutes of M(r) below 900, a response uniquely caused by the activation of P2z receptors. Both cell types were susceptible to the cytotoxic effect of ATPo, but killing of the L929/R variant required much shorter incubations in the presence of this nucleotide. Morphologic examination of ATPo-challenged L929 and L929/R cells showed that cell death occurred by two alternative mechanisms: colloido-osmotic lysis or apoptosis. Occurrence of apoptosis was confirmed by agarose gel analysis of cellular DNA. Although ATPo caused a fast mobilization of intracellular Ca2+, neither colloido-osmotic lysis nor apoptosis were Ca2+ dependent. Our results show that the L929/R variant, but not the L929 parental fibroblast cell line, expresses functional purinergic receptors of the P2z subtype. The presence of P2z receptors confers to L929/R cells enhanced susceptibility to ATPo-mediated cytotoxicity.  相似文献   

9.
10.
Treatment with dibutyryl cyclic AMP (dBcAMP) of the human, premonocytic U937 cell line results in differentiation toward a monocyte/granulocyte-like cell. This differentiation enables the cell to activate cytosolic phospholipase A2 (cPLA2) to release arachidonate upon stimulation. In contrast, undifferentiated cells are unable to release arachidonate even when stimulated with calcium ionophores. In the present research, a role for phospholipase D (PLD) in the regulation of cPLA2 was shown based on a number of observations. First, the ionomycin- and fMLP-stimulated production of arachidonate in differentiated cells was sensitive to ethanol (2% (v/v)). Ethanol acts as an alternate substrate in place of water for PLD producing phosphatidylethanol (PEt) instead of phosphatidic acid. Indeed, ionomycin stimulation of differentiated cells produced a 14-fold increase in PEt levels. Further evidence for the involvement of PLD in the regulation of cPLA2 came from the observation that the stimulated production of diacylglycerol (for which phosphatidic acid is a major source) was greatly diminished in undifferentiated cells as compared to differentiated cells. Moreover, the normally deficient activation of cPLA2 in undifferentiated cells could be stimulated to release arachidonate if the cells were electroporated in the presence of GTP[gamma]S and MgATP. This treatment stimulates phosphatidylinositol-4,5-bisphosphate (PIP2) production which appears to activate PLD and cPLA2 in subsequent steps. The phosphatidic acid (and diacylglycerol derived from phosphatidic acid) appears to greatly regulate the action of cPLA2 by an unknown mechanism, and undifferentiated cells lack the ability to stimulate PLD activity due to a dysfunction of PIP2 production.  相似文献   

11.
Suzuki T  Obara Y  Moriya T  Nakata H  Nakahata N 《FEBS letters》2011,585(24):3978-3984
A2A adenosine receptor (A2AR), P2Y1 receptor (P2Y1R) and P2Y12 receptor (P2Y12R) are predominantly expressed on human platelets. The individual role of each of these receptors in platelet aggregation has been actively reported. Previously, hetero-oligomerization between these three receptors has been shown to occur. Here, we show that Ca2+ signaling evoked by the P2Y1R agonist, 2-methylthioladenosine 5’ diphosphate (2MeSADP) was significantly inhibited by the A2AR antagonist (ZM241385 and SCH442416) and the P2Y12R antagonist (ARC69931MX) using HEK293T cells expressing the three receptors. It was confirmed that inhibition of P2Y1R signaling by A2AR and P2Y12R antagonists was indeed mediated through A2AR and P2Y12R using 1321N1 human astrocytoma cells which do not express P2Y receptors. We expect that intermolecular signal transduction and specific conformational changes occur among components of hetero-oligomers formed by these three receptors.  相似文献   

12.
Konigame VC  Siu ER  Royer C  Lucas TF  Porto CS  Abdalla FM 《Steroids》2011,76(14):1582-1589
The aim of the present study was to investigate the activation of rapid signaling events by 17β-estradiol in the rat uterus. 17β-Estradiol induced a rapid increase of total [3H]-inositol phosphate accumulation in the whole uterus and endometrium, but not in the myometrium. The effect of 17β-estradiol in the endometrium was blocked by phospholipase C (PLC) inhibitor (U73122), estrogen receptors antagonist (ICI 182,780), exportin CRM1 inhibitor (leptomycin B) and selective inhibitor of the SRC family of protein tyrosine kinases (PP2). Furthermore, a selective agonist of ESR1 (PPT) and a selective agonist of GPER (G-1) also induced a rapid increase of total [3H]-inositol phosphate accumulation in the endometrium. The G-1 effects were blocked by GPER antagonist (G-15). 17β-Estradiol and G-1 promoted an additive effect on total [3H]-inositol phosphate accumulation. In conclusion, the present results indicate that a rapid activation of the PLC-mediated phosphoinositide hydrolysis occurred in the rat endometrium after 17β-estradiol stimulation, and this effect was mediated by ESR1 that underwent nuclear export after hormone stimulation, and that GPER activation may play an additive role for this response. These rapid actions might be one of the key steps that mediate the estrogen-dependent activation of cellular events in the endometrium.  相似文献   

13.
Anterior pituitary cells release ATP and express several subtypes of purinergic P2 receptors, but their biophysical properties and roles in spontaneous and receptor-controlled electrical activity have not been characterized. Here we focused on extracellular ATP actions in gonadotrophs from embryonic, neonatal, and adult rats. In cells from all three age groups, the Ca2+-mobilizing agonist GnRH induced oscillatory, hyperpolarizing, nondesensitizing, and slow deactivating currents. In contrast, ATP induced nonoscillatory, depolarizing, slowly desensitizing, and rapidly deactivating current, indicating that these cells express cation-conducting P2X channels but not Ca2+-mobilizing P2Y receptors. The amplitudes of P2X current response and the rates of receptor desensitization were dependent on ATP concentration. The biophysical and pharmacological properties of P2X currents were consistent with the expression of P2X2 subtype of channels in these cells. ATP-induced rapid depolarization of gonadotrophs lead to initiation of firing in quiescent cells, an increase in the frequency of action potentials in spontaneously active cells, and a transient stimulation of LH release. ATP also influenced GnRH-induced current and membrane potential oscillations and LH release in an extracellular Ca2+-dependent manner. These inositol 1,4,5-triphosphate-dependent oscillations were facilitated, slowed, or stopped, depending of ATP concentration, the time of its application, and the level of Ca2+ content in intracellular stores. These results indicate that, in gonadotrophs, P2X receptors could operate as pacemaking channels and modulators of GnRH-controlled electrical activity and secretion.  相似文献   

14.
15.
The purinergic P2Y receptors are G-protein coupled receptors (GPCRs) that control many physiological processes by mediating cellular responses to purines, pyrimidines and their analogues. They can be used as potential therapeutic targets in a variety of disease conditions. Therefore, it is critical to identify new members of this family of receptors from the human genome and characterize them for their role in health and disease. In the present work, molecular modeling was carried out for the 21 known P2Y receptors. Binding site analysis was done on the basis of docking and site-directed mutagenesis data. Thus, conserved features of P2Y receptors could be formulated. These features can be used to determine the purinergic nature of potential P2Y receptors in the human genome. We applied this knowledge to human genome GPCR sequences found by sensitive sequence search techniques and identified two orphan receptors, namely GPR34 and GP171 that have all the necessary conserved features of P2Y receptors.  相似文献   

16.
17.
18.
Evidence is accumulating to support the presence of P2X purinergic receptors in the heart. However, the biological role of this receptor remains to be defined. The objectives here were to determine the role of cardiac P2X receptors in modulating the progression of post-myocardial infarction ischemic heart failure and to investigate the underlying mechanism. The P2X4 receptor (P2X4R) is an important subunit of native cardiac P2X receptors, and the cardiac-specific transgenic overexpression of P2X4R (Tg) was developed as a model. Left anterior descending artery ligation resulted in similar infarct size between Tg and wild-type (WT) mice (P > 0.1). However, Tg mice showed an enhanced cardiac contractile performance at 7 days, 1 mo, and 2 mo after infarction and an increased survival at 1 and 2 mo after infarction (P < 0.01). The enhanced intact heart function was manifested by a greater global left ventricular developed pressure and rate of contraction of left ventricular pressure in vitro and by a significantly increased fractional shortening and systolic thickening in the noninfarcted region in vivo (P < 0.05). The salutary effects on the ischemic heart failure phenotype were seen in both sexes and were not the result of any difference in infarct size in Tg versus WT hearts. An enhanced contractile function of the noninfarcted area in the Tg heart was likely an important rescuing mechanism. The cardiac P2X receptor is a novel target to treat post-myocardial infarction ischemic heart failure.  相似文献   

19.
Manoalide, an unusual nonsteroidal sesterterpenoid recently isolated from sponge, antagonizes phorbol-induced inflammation but not that induced by arachidonic acid, suggesting that manoalide acts prior to the cyclooxygenase step in prostaglandin synthesis, possibly by inhibiting phospholipase A2. We have now studied the inhibitory effect of manoalide on a homogeneous preparation of phospholipase A2 from cobra venom. For a given concentration of manoalide, the inhibition of phospholipase A2 activity toward dipalmitoylphosphatidylcholine/Triton X-100 mixed micelles is time-dependent and plateaus at about 85% inhibition of the initial velocity even after extensive preincubation. Metal ions (Ca2+, Ba2+, Mn2+) increase the inhibition, while lysophosphatidylcholine and substrate micelles protect. Increasing manoalide concentration shows increasing inhibition of the initial velocity until a plateau is reached, giving a typical saturation curve with a linear double-reciprocal plot. Under typical conditions (20-min preincubation, 40 degrees C, pH 7.1), 50% inhibition is achieved at a manoalide concentration of about 2 X 10(-6) M. The data indicate that manoalide is a potent inhibitor of the cobra venom phospholipase A2. Manoalide is now shown to react irreversibly with lysine residues in the enzyme. Surprisingly, the cobra venom phospholipase normally acts poorly on phosphatidylethanolamine as substrate, but after reaction with manoalide, the enzyme is somewhat more active toward this substrate rather than being inhibited. This suggests that a lysine residue may be important in understanding the substrate specificity of phospholipase A2.  相似文献   

20.
CD69 is a signal transducing disulfide-linked homodimer functionally expressed on platelets, CD3bright thymocytes, and activated lymphocytes. In an attempt to investigate early molecular events in CD69-mediated cell activation we studied the relative contribution of phospholipase A2 (PLA2) and phosphatidylinositol-specific phospholipase C-dependent pathways during platelet activation induced by CD69 stimulation. Thromboxane A2 (TXA2) synthetase inhibitor and TXA2R inhibitor R68070 were able to inhibit platelet aggregation induced by CD69 stimulation, indicating that TXA2 was the main mediator of the response. CD69-induced arachidonic acid release and TXA2 production were essentially PLA2 dependent because they could be blocked by the PLA2 inhibitor quinacrine. Inositol 1,3,4-trisphosphate generation was clearly detectable after CD69 cross-linking, but it was completely abrogated by quinacrine and R68070 and therefore secondary to TXA2 release and TXA2R engagement. Finally, direct measurement of enzymatic activity in vitro using radiolabeled phospholipid vesicles showed that CD69 cross-linking resulted in PLA2-dependent arachidonic acid and lysophosphatidylcholine generation from phosphatidylcholine, which was sensitive to quinacrine but not to R68070. By contrast, CD69-induced 1,2-diacylglycerol release from phosphatidylinositol 4,5-bisphosphate was blocked by both inhibitors. These results indicate a preferential involvement of PLA2 in CD69-dependent signal transduction in platelets and provide evidence for the unique role of PLA2-mediated activation pathways in transmembrane receptor signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号