首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nienhaus K  Deng P  Kriegl JM  Nienhaus GU 《Biochemistry》2003,42(32):9647-9658
Using Fourier transform infrared (FTIR) spectroscopy combined with temperature derivative spectroscopy (TDS) at cryogenic temperatures, we have studied CO binding to the heme and CO migration among cavities in the interior of sperm whale carbonmonoxy myoglobin (MbCO) after photodissociation. Photoproduct intermediates, characterized by CO in different locations, were selectively enhanced by laser illumination at specific temperatures. Measurements were performed on the wild-type protein and a series of mutants (L104W, I107W, I28F, and I28W) in which bulky amino acid side chains were introduced to block passageways between cavities or to fill these sites. Binding of xenon was also employed as an alternative means of filling cavities. In all samples, photolyzed CO ligands were observed to initially bind at primary docking site B in the vicinity of the heme iron, from where they migrate to the secondary docking sites, the Xe4 and/or Xe1 cavities. To examine the relevance of these internal docking sites for physiological ligand binding, we have performed room-temperature flash photolysis on the entire set of proteins in the CO- and O(2)-bound form. Together with the cryospectroscopic results, these data provide a clear picture of the role of the internal sites for ligand escape from and binding to myoglobin.  相似文献   

2.
Myoglobin, a small globular heme protein that binds gaseous ligands such asO2, CO and NO reversibly at the heme iron, provides an excellent modelsystem for studying structural and dynamic aspects of protein reactions. Flashphotolysis experiments, performed over wide ranges in time and temperature, reveal a complex ligand binding reaction with multiple kinetic intermediates, resulting from protein relaxation and movements of the ligand within the protein. Our recent studies of carbonmonoxy-myoglobin (MbCO) mutant L29W, using time-resolved infrared spectroscopy in combination with x-ray crystallography, have correlated kinetic intermediates with photoproduct structures that are characterized by the CO residing in different internal protein cavities, so-called xenon holes. Here we have used Fourier transform infrared temperature derivative spectroscopy (FTIR-TDS) to further examine the role of internal cavities in the dynamics. Different cavities can be accessed by the CO ligands at different temperatures, and characteristic infrared absorption spectra have been obtained for the different locations of the CO ligand within the protein, enabling us to monitor ligand migration through the protein as well as conformational changes of the protein.  相似文献   

3.
We have combined Fourier transform infrared/temperature derivative (FTIR-TDS) spectroscopy at cryogenic temperatures and flash photolysis at ambient temperature to examine the effects of polar and bulky amino acid replacements of the highly conserved distal valine 68 in sperm whale myoglobin. In FTIR-TDS experiments, the CO ligand can serve as an internal voltmeter that monitors the local electrostatic field not only at the active site but also at intermediate ligand docking sites. Mutations of residue 68 alter size, shape, and electric field of the distal pocket, especially in the vicinity of the primary docking site (state B). As a consequence, the infrared bands associated with the ligand at site B are shifted. The effect is most pronounced in mutants with large aromatic side chains. Polar side chains (threonine or serine) have only little effect on the peak frequencies. Ligands that migrate toward more remote sites C and D give rise to IR bands with altered frequencies. TDS experiments separate the photoproducts according to their recombination temperatures. The rates and extent of ligand migration among internal cavities at cryogenic temperatures can be used to interpret geminate and bimolecular O2 and CO recombination at room temperature. The kinetics of geminate recombination can be explained by steric arguments alone, whereas both the polarity and size of the position 68 side chain play major roles in regulating bimolecular ligand binding from the solvent.  相似文献   

4.
Fourier transform infrared (FTIR) spectroscopy in the CO stretch bands combined with temperature derivative spectroscopy (TDS) was used to characterize intermediate states obtained by photolysis of two sperm whale mutant myoglobins, YQR (L29(B10)Y, H64(E7)Q, T67(E10)R) and YQRF (with an additional I107(G8)F replacement). Both mutants assume two different bound-state conformations, A(0) and A(3), which can be distinguished by their different CO bands near 1965 and 1933 cm(-1). They most likely originate from different conformations of the Gln-64 side chain. Within each A substate, a number of photoproduct states have been characterized on the basis of the temperature dependence of recombination in TDS experiments. Different locations and orientations of the ligand within the protein can be distinguished by the infrared spectra of the photolyzed CO. Recombination from the primary docking site, B, near the heme dominates below 50 K. Above 60 K, ligand rebinding occurs predominantly from a secondary docking site, C', in which the CO is trapped in the Xe4 cavity on the distal side, as shown by crystallography of photolyzed YQR and L29W myoglobin CO. Another kinetic state (C") has been identified from which rebinding occurs around 130 K. Moreover, a population appearing above the solvent glass transition at approximately 180 K (D state) is assigned to rebinding from the Xe1 cavity, as suggested by the photoproduct structure of the L29W sperm whale myoglobin mutant. For both the YQR and YQRF mutants, rebinding from the B sites near the heme differs for the two A substates, supporting the view that the return of the ligand from the C', C", and D states is not governed by the recombination barrier at the heme iron but rather by migration to the active site. Comparison of YQR and YQRF shows that access to the Xe4 site (C') is severely restricted by introduction of the bulky Phe side chain at position 107.  相似文献   

5.
Using high pressure flash photolysis, we revealed that the side chain of Leu(29) controls the reaction volume of the ligand migration process in myoglobin, which is the primary factor for the unusual activation volume of ligand binding in some Leu(29) mutants. As we previously reported (Adachi, S., Sunohara, N., Ishimori, K., and Morishima, I. (1992) J. Biol. Chem. 267, 12614-12621), CO bimolecular rebinding in the L29A mutant was unexpectedly decelerated by pressurization, suggesting that the rate-determining step is switched to ligand migration. However, very slow CO bimolecular rebinding of the mutants implies that bond formation is still the rate-determining step. To gain further insights into effects of the side chain on ligand binding, we prepared some new Leu(29) mutants to measure the CO and O(2) rebinding reaction rates under high hydrostatic pressure. CO bimolecular rebinding in the mutants bearing Gly or Ser at position 29 was also decelerated upon pressurization, resulting in apparent positive activation volumes (DeltaV), as observed for O(2) binding. Based on the three-state model, we concluded that the increased space available to ligands in these mutants enhances the volume difference between the geminate and deoxy states (DeltaV(32)), which shifts the apparent activation volume to the positive side, and that the apparent positive activation volume is not due to contribution of the ligand migration process to the rate-determining step.  相似文献   

6.
Band III is a near-infrared electronic transition at ~13,000 cm(-1) in heme proteins that has been studied extensively as a marker of protein conformational relaxation after photodissociation of the heme-bound ligand. To examine the influence of the heme pocket structure and ligand dynamics on band III, we have studied carbon monoxide recombination in a variety of myoglobin mutants after photolysis at 3 K using Fourier transform infrared temperature-derivative spectroscopy with monitoring in three spectral ranges, (1) band III, the mid-infrared region of (2) the heme-bound CO, and (3) the photodissociated CO. Here we present data on mutant myoglobins V68F and L29W, which both exhibit pronounced ligand movements at low temperature. From spectral and kinetic analyses in the mid-infrared, a small number of photoproduct populations can be distinguished, differing in their distal heme pocket conformations and/or CO locations. We have decomposed band III into its individual photoproduct contributions. Each photoproduct state exhibits a different "kinetic hole-burning" (KHB) effect, a coupling of the activation enthalpy for rebinding to the position of band III. The analysis reveals that the heme pocket structure and the photodissociated CO markedly affect the band III transition. A strong kinetic hole-burning effect results only when the CO ligand resides in the docking site on top of the heme group. Migration of CO away from the heme group leads to an overall blue shift of band III. Consequently, band III can be used as a sensitive tool to study ligand dynamics after photodissociation in heme proteins.  相似文献   

7.
Neuroglobin (Ngb) is a small globular protein that binds diatomic ligands like oxygen, carbon monoxide (CO) and nitric oxide at a heme prosthetic group. We have performed FTIR spectroscopy in the infrared stretching bands of CO and flash photolysis with monitoring in the electronic heme absorption bands to investigate structural heterogeneity at the active site of Ngb and its effects on CO binding and migration at cryogenic temperatures. Four CO stretching bands were identified; they correspond to discrete conformations that differ in structural details and CO binding properties. Based on a comparison of bound-state and photoproduct IR spectra of the wild-type protein, Ngb distal pocket mutants and myoglobin, we have provided structural interpretations of the conformations associated with the different CO bands. We have also studied ligand migration to the primary docking site, B. Rebinding from this site is governed by very low enthalpy barriers (∼1 kJ/mol), indicating an extremely reactive heme iron. Moreover, we have observed ligand migration to a secondary docking site, C, from which CO rebinding involves higher enthalpy barriers.  相似文献   

8.
Using Fourier transform infrared (FTIR) spectroscopy combined with temperature derivative spectroscopy (TDS) at cryogenic temperatures, we have studied CO binding to the heme and CO migration among cavities in the interior of the dimeric hemoglobin of Scapharca inaequivalvis (HbI) after photodissociation. By combining these studies with X-ray crystallography, three transient ligand docking sites were identified: a primary docking site B in close vicinity to the heme iron, and two secondary docking sites C and D corresponding to the Xe4 and Xe2 cavities of myoglobin. To assess the relevance of these findings for physiological binding, we also performed flash photolysis experiments on HbICO at room temperature and equilibrium binding studies with dioxygen. Our results show that the Xe4 and Xe2 cavities serve as transient docking sites for unbound ligands in the protein, but not as way stations on the entry/exit pathway. For HbI, the so-called histidine gate mechanism proposed for other globins appears as a plausible entry/exit route as well.  相似文献   

9.
Geminate CO rebinding in myoglobin is studied for two viscous solvents, trehalose and sol-gel (bathed in 100% glycerol) at several temperatures. Mutations in key distal hemepocket residues are used to eliminate or enhance specific relaxation modes. The time-resolved data are analyzed with a modified Agmon-Hopfield model which is capable of providing excellent fits in cases where a single relaxation mode is dominant. Using this approach, we determine the relaxation rate constants of specific functionally important modes, obtaining also their Arrhenius activation energies. We find a hierarchy of distal pocket modes controlling the rebinding kinetics. The "heme access mode" (HAM) is responsible for the major slow-down in rebinding. It is a solvent-coupled cooperative mode which restricts ligand return from the xenon cavities. Bulky side-chains, like those His64 and Trp29 (in the L29W mutant), operate like overdamped pendulums which move over and block the binding site. They may be either unslaved (His64) or moderately slaved (Trp29) to the solvent. Small side-chain relaxations, most notably of leucines, are revealed in some mutants (V68L, V68A). They are conjectured to facilitate inter-cavity ligand motion. When all relaxations are arrested (H64L in trehalose), we observe pure inhomogeneous kinetics with no temperature dependence, suggesting that proximal relaxation is not a factor on the investigated timescale.  相似文献   

10.
Site-specific mutants of human myoglobin (Mb) have been prepared, in which Leu29 (B10) is replaced by Ala(L29A) or Ile(L29I), in order to examine the influence of this highly conserved residue in the hydrophobic clusters of the heme distal site on the heme environmental structure and ligand binding properties of Mb. Structural characterizations of these recombinant Mbs are studied by electronic absorption, infrared (IR), one- and two-dimensional proton nuclear magnetic resonance spectroscopies, and ligand-binding kinetics by laser photolysis measurements under ambient and high pressures (up to 2000 bar). Multiple split carbon monoxide (CO) stretch bands in the IR spectra of mutant Mbs exhibit a relative decrease of the 1945 cm-1 band (approximately 50%) which is associated with an upright binding geometry of CO, accompanied by an increase of the tilted CO conformer at 1932 cm-1. On the basis of these results, replacement of Leu29(B10) by Ala or Ile appears to allow bound CO to rotate from a conformation pointing toward the beta meso carbon of the heme group to the one pointing toward the alpha meso carbon atom, presumably filling the space left by removal of the delta 2 carbon atom of Leu29(B10). These substitutions cause the rate constants for CO and O2 association to decrease almost 3-5-fold. Present results show that CO and O2 bindings to the heme iron of Mb are controlled by Leu29(B10) by influencing the structure of close vicinity of the heme and the geometry of iron-bound ligand. Further, mutant Mbs (Leu72(E15)----Ala and Leu104 (G5)----Ala) which have altered residues in another hydrophobic clusters around proximal and distal site are also examined.  相似文献   

11.
For many years, myoglobin has served as a paradigm for structure–function studies in proteins. Ligand binding and migration within myoglobin has been studied in great detail by crystallography and spectroscopy, showing that gaseous ligands such as O2, CO, and NO not only bind to the heme iron but may also reside transiently in three internal ligand docking sites, the primary docking site B and secondary sites C and D. These sites affect ligand association and dissociation in specific ways. Neuroglobin is another vertebrate heme protein that also binds small ligands. Ligand migration pathways in neuroglobin have not yet been elucidated. Here, we have used Fourier transform infrared temperature derivative spectroscopy at cryogenic temperatures to compare the influence of the side chain volume of amino acid residue B10 on ligand migration to and rebinding from docking sites in myoglobin and neuroglobin.  相似文献   

12.
Olson JS  Soman J  Phillips GN 《IUBMB life》2007,59(8-9):552-562
The pathways for ligand entry and exit in myoglobin have now been well established by a wide variety of experimental results, including pico- to nano- to microsecond transient absorbance measurements and time-resolved X-ray crystallographic measurements. Trp insertions have been used to block, one at a time, the three major cavities occupied by photodissociated ligands. In this work, we review the effects of the L29(B10)W mutation, which places a large indole ring in the initial 'docking site' for photodissociated ligands. Then, the effects of blocking the Xe4 site with I28W, V68W, and I107W mutations and the Xe1 cavity with L89W, L104W, and F138W mutations are described. The structures of four of these mutants are shown for the first time (Trp28, Trp68, Trp107, and Trp 138 sperm whale metMb). All available results support a 'side path' mechanism in which ligands move into and out of myoglobin by outward rotation of the HisE7 side chain, but after entry can migrate into internal cavities, including the distal Xe4 and proximal Xe1 binding sites. The distal cavities act like the pocket of a baseball glove, catching the ligand and holding it long enough for the histidine gate to close and facilitate internal coordination with the heme iron atom. The physiological role of the proximal Xe1 site is less clear because changes in the size of this cavity have minimal effects on overall O(2) binding parameters.  相似文献   

13.
Fouier-transform infrared (FTIR) difference spectra of several His-E7 and Val-E11 mutants of sperm whale carbonmonoxymyoglobin were obtained by photodissociation at cryogenic temperatures. The IR absorption of the CO ligand shows characteristic features for each of the mutants, both in the ligand-bound (A) state and in the photodissociated (B) state. For most of the mutants, a single A substate band is observed, which points to the crucial role of the His-E7 residue in determining the A substrate spectrum of the bound CO in the native structure. The fact that some of the mutants show more than one stretch band of the bound CO indicates that the appearance of multiple A substates is not exclusively connected to the presence of His-E7. In all but one mutant, multiple stretch bands of the CO in the photodissociated state are observed; these B substates are thought to arise from discrete positions and/or orientations of the photodissociated ligand in the heme pocket. The red shifts of the B bands with respect to the free-gas frequency indicate weak binding in the heme pocket. The observation of similar red shifts in microperoxidase (MP-8), where there is no residue on the distal side, suggests that the photodissociated ligand is still associated with the heme iron. Photoselection experiments were performed to determine the orientation of the bound ligand with respect to the heme normal by photolyzing small fractions of the sample with linearly polarized light at 540 nm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We have determined eight X-ray structures of myoglobin mutant L29W at various experimental conditions. In addition, infrared spectroscopic experiments are presented, which are discussed in the light of the X-ray structures. Two distinct conformations of the CO-ligated protein were identified, giving rise to two stretching bands of heme-bound CO. If L29W MbCO crystals are illuminated around 180 K, a deoxy species is formed. The CO molecules migrate to the proximal side of the heme and remain trapped in the so-called Xe1 cavity upon temperature decrease to 105 K. The structure of this photoproduct is almost identical to the equilibrium high-temperature deoxy Mb structure. If the temperature is cycled to increasingly higher values, CO recombination is observed. Three intermediate structures have been determined during the rebinding process. Efficient recombination occurs only above 180 K, the characteristic temperature for the onset of protein dynamics. Rebinding is remarkably slow because bulky residues His64 and Trp29 block important migration pathways of the CO molecule.  相似文献   

15.
Nitrophorin 4 (NP4) is one of seven nitric oxide (NO) transporting proteins in the blood-sucking insect Rhodnius prolixus. In its physiological function, NO binds to a ferric iron centered in a highly ruffled heme plane. Carbon monoxide (CO) also binds after reduction of the heme iron. Here we have used Fourier transform infrared spectroscopy at cryogenic temperatures to study CO and NO binding and migration in NP4, complemented by x-ray cryo-crystallography on xenon-containing NP4 crystals to identify cavities that may serve as ligand docking sites. Multiple infrared stretching bands of the heme-bound ligands indicate different active site conformations with varying degrees of hydrophobicity. Narrow infrared stretching bands are observed for photodissociated CO and NO; temperature-derivative spectroscopy shows that these bands are associated with ligand docking sites close to the extremely reactive heme iron. No rebinding from distinct secondary sites was detected, although two xenon binding cavities were observed in the x-ray structure. Photolysis studies at approximately 200 K show efficient NO photoproduct formation in the more hydrophilic, open NP4 conformation. This result suggests that ligand escape is facilitated in this conformation, and blockage of the active site by water hinders immediate reassociation of NO to the ferric iron. In the closed, low-pH conformation, ligand escape from the active site of NP4 is prevented by an extremely reactive heme iron and the absence of secondary ligand docking sites.  相似文献   

16.
After photodissociation, ligand rebinding to myoglobin exhibits complex kinetic patterns associated with multiple first-order geminate recombination processes occurring within the protein and a simpler bimolecular phase representing second-order ligand rebinding from the solvent. A smooth transition from cryogenic-like to solution phase properties can be obtained by using a combination of sol-gel encapsulation, addition of glycerol as a bathing medium, and temperature tuning (-15 --> 65 degrees C). This approach was applied to a series of double mutants, myoglobin CO (H64L/V68X, where X = Ala, Val, Leu, Asn, and Phe), which were designed to examine the contributions of the position 68(E11) side chain to the appearance and disappearance of internal rebinding phases in the absence of steric and polar interactions with the distal histidine. Based on the effects of viscosity, temperature, and the stereochemistry of the E11 side chain, the three major phases, B --> A, C --> A, and D --> A, can be assigned, respectively, to ligand rebinding from the following: (i) the distal heme pocket, (ii) the xenon cavities prior to large amplitude side chain conformational relaxation, and (iii) the xenon cavities after significant conformational relaxation of the position 68(E11) side chain. The relative amplitudes of the B --> A and C --> A phases depend markedly on the size and shape of the E11 side chain, which regulates sterically both ligand return to the heme iron atom and ligand migration to the xenon cavities. The internal xenon cavities provide a transient docking site that allows side chain relaxations and the entry of water into the vacated distal pocket, which in turn slows ligand recombination markedly.  相似文献   

17.
Structural dynamics of myoglobin   总被引:3,自引:0,他引:3  
Conformational fluctuations have been invoked to explain the observation that the diffusion of small ligands through a protein is a global phenomenon, as suggested (for example) by the oxygen induced fluorescence quenching of buried tryptophans. In enzymes processing large substrates, a channel to the catalytic site is often seen in the crystal structure; on the other hand in small globular proteins, it is not known if the cavities identified in the interior space are important in controlling their function by defining specific pathways in the diffusion to the active site. This point is addressed in this paper, which reports some relevant results obtained on myoglobin, the hydrogen atom of molecular biology. Protein conformational relaxations have been extensively investigated with myoglobin because the photosensivity of the adduct with CO, O2 and NO allows us to follow events related to the migration of the ligand through the matrix. Results obtained by laser photolysis, molecular dynamics simulations, X-ray diffraction of intermediate states of wt type and mutant myoglobins are briefly summarized. Crystallographic data on the photochemical intermediate of a new triple mutant of sperm whale myoglobin (Mb-YQR) show, for the first time, the photolyzed CO* sitting in one of the Xe-binding cavities, removed from the heme group. These results support the viewpoint that pre-existing 'packing defects' in the protein interior play a major role in controlling the dynamics of ligand binding, including oxygen, and thereby acquire a survival value.  相似文献   

18.
We report the results of an extended molecular dynamics simulation on the migration of photodissociated carbon monoxide in wild-type sperm whale myoglobin. Our results allow following one possible ligand migration dynamics from the distal pocket to the Xe1 cavity via a path involving the other xenon binding cavities and momentarily two additional packing defects along the pathway. Comparison with recent time resolved structural data obtained by Laue crystallography with subnanosecond to millisecond resolution shows a more than satisfactory agreement. In fact, according to time resolved crystallography, CO, after photolysis, can occupy the Xe1 and Xe4 cavities. However, no information on the trajectory of the ligand from the distal pocket to the Xe1 is available. Our results clearly show one possible path within the protein. In addition, although our data refer to a single trajectory, the local dynamics of the ligand in each cavity is sufficiently equilibrated to obtain local structural and thermodynamic information not accessible to crystallography. In particular, we show that the CO motion and the protein fluctuations are strictly correlated: free energy calculations of the migration between adjacent cavities show that the migration is not a simple diffusion but is kinetically or thermodynamically driven by the collective motions of the protein; conversely, the protein fluctuations are influenced by the ligand in such a way that the opening/closure of the passage between adjacent cavities is strictly correlated to the presence of CO in its proximity. The compatibility between time resolved crystallographic experiments and molecular dynamics simulations paves the way to a deeper understanding of the role of internal dynamics and packing defects in the control of ligand binding in heme proteins.  相似文献   

19.
A ligand binding pocket has been created on the proximal side of the heme in porcine myoglobin by site-directed mutagenesis. Our starting point was the H64V/V68H double mutant which has been shown to have bis-histidine (His68 and His93) heme coordination [Dou, Y., Admiraal, S. J., Ikeda-Saito, M., Krzywda, S., Wilkinson, A. J., Li, T., Olson, J. S., Prince, R. C., Pickering, I. J., George, G. N. (1995) J. Biol. Chem. 270, 15993-16001]. The replacement of the proximal His93 ligand by noncoordinating Ala (H64V/V68H/H93A) or Gly (H64V/V68H/H93G) residues resulted unexpectedly in a six-coordinate low-spin species in both ferric and ferrous states. To test the hypothesis that the sixth coordinating ligand in the triple mutants was the imidazole of His97, this residue was mutated to Phe, in the quadruple mutants, H64V/V68H/H93A/H97F and H64V/V68H/H93G/H97F. The ferric quadruple mutants show a clear water/hydroxide alkaline transition and high cyanide and CO affinities, characteristics similar to those of wild-type myoglobin. The nu(Fe-CO) and nu(C-O) stretching frequencies in the ferrous-CO state of the quadruple mutants indicate that the "proximal" ligand binding heme pocket is less polar than the distal pocket in the wild-type protein. Thus, we conclude that the proximal heme pocket in the quadruple mutants has a similar affinity for exogenous ligands to the distal pocket of wild-type myoglobin but that the two pockets have different polarities. The quadruple mutants open up new approaches for developing heme chemistry on the myoglobin scaffold.  相似文献   

20.
A triple mutant of sperm whale myoglobin (Mb) [Leu(B10) --> Tyr, His(E7) --> Gln, and Thr(E10) --> Arg, called Mb-YQR], investigated by stopped-flow, laser photolysis, crystallography, and molecular dynamics (MD) simulations, proved to be quite unusual. Rebinding of photodissociated NO, O2, and CO from within the protein (in a "geminate" mode) allows us to reach general conclusions about dynamics and cavities in proteins. The 3D structure of oxy Mb-YQR shows that bound O2 makes two H-bonds with Tyr(B10)29 and Gln(E7)64; on deoxygenation, these two residues move toward the space occupied by O2. The bimolecular rate constant for NO binding is the same as for wild-type, but those for CO and O2 binding are reduced 10-fold. While there is no geminate recombination with O2 and CO, geminate rebinding of NO displays an unusually large and very slow component, which is pretty much abolished in the presence of xenon. These results and MD simulations suggest that the ligand migrates in the protein matrix to a major "secondary site," located beneath Tyr(B10)29 and accessible via the motion of Ile(G8)107; this site is different from the "primary site" identified by others who investigated the photolyzed state of wild-type Mb by crystallography. Our hypothesis may rationalize the O2 binding properties of Mb-YQR, and more generally to propose a mechanism of control of ligand binding and dissociation in hemeproteins based on the dynamics of side chains that may (or may not) allow access to and direct temporary sequestration of the dissociated ligand in a docking site within the protein. This interpretation suggests that very fast (picosecond) fluctuations of amino acid side chains may play a crucial role in controlling O2 delivery to tissue at a rate compatible with physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号