首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The radiation environment in space is complex in terms of both the variety of charged particles and their dose rates. Simulation of such an environment for experimental studies is technically very difficult. However, with the variety of beams available at the National Space Research Laboratory (NSRL) at Brookhaven National Laboratory (BNL) it is possible to ask questions about potential interactions of these radiations. In this study, the end point examined was transformation in vitro from a preneoplastic to a neoplastic phenotype. The effects of 1?GeV/n iron ions and 1?GeV/n protons alone provided strong evidence for suppression of transformation at doses ≤5?cGy. These ions were also studied in combination in so-called mixed-beam experiments. The specific protocols were a low dose (10?cGy) of protons followed after either 5-15?min (immediate) or 16-24?h (delayed) by 1?Gy of iron ions and a low dose (10?cGy) of iron ions followed after either 5-15?min or 16-24?h by 1?Gy of protons. Within experimental error the results indicated an additive interaction under all conditions with no evidence of an adaptive response, with the one possible exception of 10?cGy iron ions followed immediately by 1?Gy protons. A similar challenge dose protocol was also used in single-beam studies to test for adaptive responses induced by 232?MeV/n protons and (137)Cs γ radiation and, contrary to expectations, none were observed. However, subsequent tests of 10?cGy of (137)Cs γ radiation followed after either 5-15?min or 8?h by 1?Gy of (137)Cs γ radiation did demonstrate an adaptive response at 8?h, pointing out the importance of the interval between adapting and challenge dose. Furthermore, the dose-response data for each ion alone indicate that the initial adapting dose of 10?cGy used in the mixed-beam setting may have been too high to see any potential adaptive response.  相似文献   

2.
Neoplastic transformation by Notch requires nuclear localization   总被引:6,自引:0,他引:6       下载免费PDF全文
Notch proteins are plasma membrane-spanning receptors that mediate important cell fate decisions such as differentiation, proliferation, and apoptosis. The mechanism of Notch signaling remains poorly understood. However, it is clear that the Notch signaling pathway mediates its effects through intercellular contact between neighboring cells. The prevailing model for Notch signaling suggests that ligand, presented on a neighboring cell, triggers proteolytic processing of Notch. Following proteolysis, it is thought that the intracellular portion of Notch (N(ic)) translocates to the nucleus, where it is involved in regulating gene expression. There is considerable debate concerning where in the cell Notch functions and what proteins serve as effectors of the Notch signal. Several Notch genes have clearly been shown to be proto-oncogenes in mammalian cells. Activation of Notch proto-oncogenes has been associated with tumorigenesis in several human and other mammalian cancers. Transforming alleles of Notch direct the expression of truncated proteins that primarily consist of N(ic) and are not tethered to the plasma membrane. However, the mechanism by which Notch oncoproteins (generically termed here as N(ic)) induce neoplastic transformation is not known. Previously we demonstrated that N1(ic) and N2(ic) could transform E1A immortalized baby rat kidney cells (RKE) in vitro. We now report direct evidence that N1(ic) must accumulate in the nucleus to induce transformation of RKE cells. In addition, we define the minimal domain of N1(ic) required to induce transformation and present evidence that transformation of RKE cells by N1(ic) is likely to be through a CBF1-independent pathway.  相似文献   

3.
Neoplastic transformation by the human gene N-myc.   总被引:17,自引:7,他引:10       下载免费PDF全文
Amplification and abundant expression of a gene known as N-myc are found frequently in advanced stages of human neuroblastoma and may play a role in the genesis of several malignant human tumors. Previous studies have shown that N-myc can cooperate with a mutant allele of the proto-oncogene c-Ha-ras to transform embryonic rat cells in culture. Here we show that N-myc can also act alone to elicit neoplastic growth of an established line of rat fibroblasts (Rat-1). We used recombinant DNA vectors to express either N-myc or its kindred gene c-myc in transfected cells. Both genes caused morphological transformation, anchorage-independent growth, and tumorigenicity. We noticed two variables that appeared to influence the ability to isolate cells transformed by N-myc and c-myc: the abundance in which the genes were expressed and biological selection to eliminate untransformed cells from the cultures. Our findings sustain the belief that N-myc is an authentic proto-oncogene, lend further credibility to the role of N-myc in the genesis of human tumors, and establish a convenient assay that can be used to explore further the properties of both N-myc and c-myc.  相似文献   

4.
Summary The problem of the dependence of the biological efficiency of ionizing radiation on the Linear Energy Transfer (LET) is still unsolved. Unexpected reactions of heavy ion irradiated cellular systems such as an increasing Relative Biological Effectiveness (RBE) up to a LET of about 100 keV/µm and then a decrease below 1 oblige to dismiss some conventional interpretations. Several years ago we suggested that, especially by higher ionization density in addition to the DNA, repair systems and (or) membraneous systems could also be injured (dual target theory). Our experiments with heavy ions at the Lawrence Berkeley Laboratory with LET's between 102–970 keV/µm on different types of mutations show a strict distinction between events connected with fusion modalities (repair or misrepair) and those associated with nonfusion. With very high LET misrepair reactions such as translocations disappear, suggesting the direct damage of the repair systems and confirming our previous experiments with peak pions and ions of LET's between 1100–4800 keV/µm.Dedicated to Prof. W. Jacobi on the occasion of his 60th birthday  相似文献   

5.
6.
The neoplastic transformation of C3H mouse 10T1/2 cells was measured induced by fission-spectrum neutrons delivered at a high dose rate in five fractions over 4 days. The transformation frequency was significantly enhanced over that due to single equivalent total doses. These new data, in the low dose region, demonstrate an increased transformation frequency by fractionated versus single exposures of high-dose-rate fission-spectrum neutrons; an increase equal to that observed with low-dose-rate fission-spectrum neutrons (i.e., 0.086 rad/min). Estimates of the dose modifying factor (DMF), based upon the ratio of the initial linear portions of the induction curves for high and for low dose rates, suggest the same DMF (approximately 7.8) for both five daily fractions of high-dose-rate neutrons and for low-dose-rate neutrons. However, when these results are compared to those following high-dose-rate 60Co gamma rays (100 rad/min), the relative biological effectiveness (RBE) for low-dose-rate fission-spectrum neutrons based upon slope ratios is 19.6; similarly, the RBE relative to five daily fractions of 60Co gamma rays is 78.8.  相似文献   

7.
8.
A spontaneously immortalized, nontumorigenic mouse mammary epithelial cell line (MMEC) was transfected with an activated myc construct by electroporation. Constitutive expression of myc in MMEC resulted in anchorage independence in soft agar and tumorigenicity in nude mice. The myc-expressing MMEC showed higher saturation density, faster growth rate, and partial abrogation of serum-derived growth factor(s) requirement compared with parent MMEC. Epidermal growth factor or transforming growth factor alpha stimulated the anchorage-independent growth, but not the anchorage-dependent growth, of MMEC-myc cells. Type 1 transforming growth factor beta, on the other hand, inhibited both the anchorage-independent and anchorage-dependent growth of MMEC-myc cells. These results demonstrate that deregulated expression of myc results in neoplastic transformation iin mammary epithelial cells. Accompanying the transformation is altered sensitivity to polypeptide growth factors.  相似文献   

9.
10.
11.
Human skin fibroblasts are extremely refractory to neoplastic transformation by ionizing radiation [C. Borek, Nature 283, 776-778 (1980); M. Namba, H. Nishitani, and T. Kimoto, J. Exp. Med. 48, 303-311 (1978)] and are therefore unsuitable for quantitative studies of dose-effect relationships. We show here that a nontumorigenic human hybrid cell line (HeLa X skin fibroblast) can be neoplastically transformed by treatment with gamma radiation. Furthermore, a dose-response relationship has been established. We propose that this human hybrid cell line may be a useful system for mechanistic studies of transformation from the preneoplastic to the neoplastic state by ionizing radiation and other agents.  相似文献   

12.
The DNA unwinding method was used to estimate DNA breakage in Chinese hamster cells exposed to heavy ions with LET in the range of 750-5000 keV/micron. Comparison of the primary induced unwinding rate per dose unit for ions with various track diameters but similar LET showed a pronounced influence on the track diameter. Low-energy ions, producing thin tracks with diameters (penumbra) in the submicrometer region, were almost two orders of magnitude less efficient than more energetic ions producing tracks with diameters of several micrometers and about three orders of magnitude less efficient than X-rays. For the thin tracks, clustering of breaks was indicated by comparison of the DNA unwinding rates in two different alkaline solutions. The results indicate that the unwinding rate cannot be used as a good measurement for DNA breaks in this case. The residual unwinding remaining after 4 h of repair at 37 degrees C correlated well with the ability of the various ions to produce cell-killing.  相似文献   

13.
14.
It has been suggested that the ratio complex/simple exchanges can be used as a biomarker of exposure to high-LET radiation. We tested this hypothesis in vivo, by considering data from several studies that measured complex exchanges in peripheral blood from humans exposed to mixed fields of low- and high-LET radiation. In particular, we studied data from astronauts involved in long-term missions in low-Earth-orbit, and uterus cancer patients treated with accelerated carbon ions. Data from two studies of chromosomal aberrations in astronauts used blood samples obtained before and after space flight, and a third study used blood samples from patients before and after radiotherapy course. Similar methods were used in each study, where lymphocytes were stimulated to grow in vitro, and collected after incubation in either colcemid or calyculin A. Slides were painted with whole-chromosome DNA fluorescent probes (FISH), and complex and simple chromosome exchanges in the painted genome were classified separately. Complex-type exchanges were observed at low frequencies in control subjects, and in our test subjects before the treatment. No statistically significant increase in the yield of complex-type exchanges was induced by the space flight. Radiation therapy induced a high fraction of complex exchanges, but no significant differences could be detected between patients treated with accelerated carbon ions or X-rays. Complex chromosomal rearrangements do not represent a practical biomarker of radiation quality in our test subjects.  相似文献   

15.
16.
The lck proto-oncogene encodes a lymphocyte-specific member of the src family of protein tyrosine kinases. Here we demonstrate that pp56lck is phosphorylated in vivo at a carboxy-terminal tyrosine residue (Tyr-505) analogous to Tyr-527 of pp60c-src. Substitution of phenylalanine for tyrosine at this position resulted in increased phosphorylation of a second tyrosine residue (Tyr-394) and was associated with an increase in apparent kinase activity. In addition, this single point mutation unmasked the oncogenic potential of pp56lck in NIH 3T3 cell transformation assays. Viewed in the context of similar results obtained with pp60c-src, it is likely that the enzymatic activity and transforming ability of all src-family protein tyrosine kinases can be regulated by carboxy-terminal tyrosine phosphorylation. We further demonstrate that overexpression of pp56lck in the murine T-cell lymphoma LSTRA as a result of a retroviral insertion event produces a kinase protein that despite wild-type primary structure is nevertheless hypophosphorylated at Tyr-505. Thus, control of normal growth in this lymphoid cell line may have been abrogated through acquisition of a posttranslationally activated version of pp56lck.  相似文献   

17.
Normal mast cells can be propagated in culture when medium is supplemented with interleukin-3 (IL-3). We demonstrate that Abelson-MuLV (Ab-MuLV) infection of mast cells eliminates dependence on IL-3 for growth. By contrast, Harvey, BALB, and Moloney MSV, which also productively infect mast cells, are unable to relieve IL-3 dependence. Ab-MuLV-induced IL-3-independent lines express the v-abl-specific transforming protein and have phenotypic characteristics of mast cells. These cells also possess high cloning efficiencies in soft agarose and are tumorigenic in nude mice. In addition, Ab-MuLV induces transplantable mastocytomas in pristane-primed adult mice resistant to lymphoid transformation, defining a new hematopoietic target for malignant transformation by this virus. None of the Ab-MuLV-derived transformants express or secrete detectable levels of IL-3 nor is their growth inhibited by anti-IL-3 serum. These results argue that Ab-MuLV abrogation of the IL-3 requirement is not due to an autocrine mechanism.  相似文献   

18.
The use of heavy charged particles in radiotherapy potentially represents an advance towards better local tumour control and a decrease in morbidity related to radiation injury of healthy tissues surrounding the target volume. This assertion only holds, however, if treatment planning systems give a real representation of the three-dimensional dose distribution, including physical and biological aspects, especially for heavier ions. The influence of linear energy transfer on the biological effects, its variations related to depth, particle, target tissue, position in the Bragg peak, etc. make the possible models for treatment planning extremely complex. A brief review of the problems to be addressed and some solutions is presented from the radiation oncologistàs point of view.  相似文献   

19.
Although several investigators have reported that exposure to mammalian carcinogens induces abnormal tumorlike growths and teratogenic remodeling in planarians, there is no general agreement that these, or comparable responses in any other invertebrates, model mammalian carcinogenesis. To investigate this question, freshwater planarians of the species Dugesia dorotocephala were exposed to culture water containing an initiator and a promoter, either alone or in combination. Cadmium, a potent carcinogen, was used as an initiator in the protocol. Treatment with sublethal concentrations of cadmium sulfate produced a benign, but persistent, tumor in a small percentage of the planarians. The addition of 12-O-tetradecanoylphorbol-13-acetate (TPA), a phorbol ester and well-known promoter, to the cadmium-containing solutions resulted in the induction of a progressive, potentially lethal, transplantable tumor in a large proportion of the treated flatworms. Light and electron microscopy revealed this particular tumor to be composed both of immature cells and of a single mature cell type: newly differentiated, but transformed, reticular cells. Further examination of the infiltrating tissue formations elucidated the profile of differentiation, from a population of mitotically active transformed stem cells through the transitional stages in the associated reticuloma. These results suggest that 1) the freshwater planarian displays the major phenomenology of mammalian cocarcinogenesis and that 2) the planarian reticuloma models several important features of a neoplastic stem cell disease.  相似文献   

20.
The ability of cloned Rous sarcoma virus (RSV) DNA encoding the v-src oncogene to neoplastically transform normal, diploid Syrian hamster embryo (SHE) cells was examined. Transfection of RSV DNA into early passage SHE cells resulted in a low but significant number of tumors when treated cells were injected into nude mice. Tumors formed with a low frequency (two tumors out of ten sites injected) and only after a long latency period (14 weeks). In contrast to the normal SHE cells, several different carcinogen-induced preneoplastic immortal SHE cell lines were highly susceptible to transformation by the v-src oncogene to the neoplastic phenotype. Tumors formed with high efficiency and a short latency period (less than 3 weeks). Further studies were performed to determine the basis for the inefficient transformation of the normal SHE cells. NeoR clones isolated after cotransfection of SHE cells with pSV2-neo and RSV DNAs were neither morphologically altered nor immortal and did not contain detectable levels of the v-src gene product. These results suggest that neoplastic transformation by v-src DNA in the normal cells is initially suppressed. However, cells from a v-src-induced tumor expressed v-src RNA, and antibody to v-src protein precipitated from the tumor cells a 60,000-molecular-weight protein which displayed protein kinase activity. Karyotypic analyses confirmed that the tumor was derived from Syrian hamster cells and suggested that it was clonal in nature. These results indicate that the v-src oncogene was primarily responsible for neoplastic transformation of SHE cells. In contrast to the results with the v-src oncogene, our previous studies showed that v-Ha-ras oncogene alone is unable to induce neoplastic transformation of SHE cells. Furthermore, the v-myc oncogene was able to compliment v-Ha-ras to neoplastically transform SHE cells, while cotransfection with v-src plus v-myc did not increase the incidence of tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号