首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mixing behavior of dimyristoylphosphatidylcholine (DMPC) with either N-palmitoyl-sphingosine (C16:0-ceramide) or N-nervonoyl-sphingosine (C24:1-ceramide) was examined using monomolecular films. While DMPC forms highly elastic liquid-expanded monolayers, both neat C16:0-ceramide and C24:1-ceramide yield stable solid condensed monomolecular films with small areas and low interfacial elasticity. Compression isotherms of mixed C16:0-ceramide/DMPC films exhibit an apparent condensation upon increasing X(cer16:0) at all surface pressures. The average area isobars, coupled with the lack of a liquid-expanded to condensed phase transition as X(cer16:0) is increased, are indicative of immiscibility of the lipids at all surface pressures. In contrast, isobars for C24:1-ceramide/DMPC mixtures show surface pressure-dependent apparent condensation or expansion and surface pressure-area isotherms show a composition and surface pressure-dependent phase transition. This suggests miscibility, albeit non-ideal, of C24:1-ceramide and DMPC in both liquid and condensed surface phases. The above could be verified by fluorescence microscopy of the monolayers and measurements of surface potential, which revealed distinctly different domain morphologies and surface potential values for the DMPC/C16:0- and DMPC/C24:1-ceramide monolayers. Taken together, whereas C16:0-ceramide and DMPC form immiscible pseudo-compounds, C24:1-ceramide and DMPC are partially miscible in both the liquid-expanded and condensed phases, and a composition and lateral pressure-dependent two-phase region is evident between the liquid-expanded and condensed regimes. Our results provide novel understanding of the regulation of membrane properties by ceramides and raise the possibility that ceramides with different acyl groups could serve very different functions in cells, relating to their different physicochemical properties.  相似文献   

2.
Multinucleate (MN) cells were induced in PtK1 cells by colcemid treatment. A large percentage of cells developed nuclear asynchrony both in relation to DNA synthesis and mitosis within one cell cycle. Asynchrony could be traced even in metaphase and anaphase cells in which interphase nuclei, PCC of S-phase nuclei and less condensed prophase-like chromosomes could be observed along with normally condensed chromosomes. The occurrence of such abnormalities in these large MN cells may be explained on the basis of an uneven distribution of inducer molecules of DNA synthesis and mitosis due to cytoplasmic compartmentation. The less condensed form of all the chromosomes except chromosome 4 could be traced in asynchronous metaphase. The failure of the less condensed chromosomes to undergo complete condensation does not always appear to result from late entry of nuclei containing these chromosomes into G2 phase. It is likely that chromosome 4 carries gene(s) for chromosome condensation, as this chromosome itself never appears in a less condensed form. The inducers for chromosome condensation may not always be available at equal concentrations to all chromosomes located in separate nuclei, thus they may sometimes fail to undergo complete condensation before other nuclei reach the end of prophase, when the nuclear envelopes of all nuclei present in the cell break down simultaneously.  相似文献   

3.
We have measured forces generated by multivalent cation-induced DNA condensation using single-molecule magnetic tweezers. In the presence of cobalt hexammine, spermidine, or spermine, stretched DNA exhibits an abrupt configurational change from extended to condensed. This occurs at a well-defined condensation force that is nearly equal to the condensation free energy per unit length. The multivalent cation concentration dependence for this condensation force gives the apparent number of multivalent cations that bind DNA upon condensation. The measurements show that the lower critical concentration for cobalt hexammine as compared to spermidine is due to a difference in ion binding, not a difference in the electrostatic energy of the condensed state as previously thought. We also show that the resolubilization of condensed DNA can be described using a traditional Manning–Oosawa cation adsorption model, provided that cation–anion pairing at high electrolyte concentrations is taken into account. Neither overcharging nor significant alterations in the condensed state are required to describe the resolubilization of condensed DNA. The same model also describes the spermidine3+/Na+ phase diagram measured previously.  相似文献   

4.
PHYSICAL STUDIES OF ISOLATED EUCARYOTIC NUCLEI   总被引:17,自引:8,他引:9       下载免费PDF全文
The degree of chromatin condensation in isolated rat liver nuclei and chicken erythrocyte nuclei was studied by phase-contrast microscopy as a function of solvent pH, K+ and Mg++ concentrations Data were represented as "phase" maps, and standard solvent conditions selected that reproducibly yield granular, slightly granular, and homogeneous nuclei Nuclei in these various states were examined by ultraviolet absorption and circular dichroism (CD) spectroscopy, low-angle X-ray diffraction, electron microscopy, and binding capacity for ethidium bromide Homogeneous nuclei exhibited absorption and CD spectra resembling those of isolated nucleohistone. Suspensions of granular nuclei showed marked turbidity and absorption flattening, and a characteristic blue-shift of a crossover wavelength in the CD spectra. In all solvent conditions studied, except pH < 2 3, low-angle X-ray reflections characteristic of the native, presumably superhelical, nucleohistone were observed from pellets of intact nuclei. Threads (100–200 A diameter) were present in the condensed and dispersed phases of nuclei fixed under the standard solvent conditions, and examined in the electron microscope after thin sectioning and staining Nuclei at neutral pH, with different degrees of chromatin condensation, exhibited similar binding capacities for ethidium bromide. These data suggest a model that views chromatin condensation as a close packing of superhelical nucleohistone threads but still permits condensed chromatin to respond rapidly to alterations in solvent environment.  相似文献   

5.
Human peripheral lymphocytes in G(0) phase were irradiated with 1-5 Gy of gamma rays. The biochemical and morphological changes characteristic of apoptosis were examined for 72 h after irradiation. In parallel, changes in chromatin conformation were studied by the method of anomalous viscosity time dependence (AVTD) and by measurements of nuclear halo size. An immediate and dose-dependent relaxation of chromatin, which became saturated at doses above 2-3 Gy, was revealed by the AVTD method. The state of relaxed chromatin lasted up to 12-24 h after irradiation, a response considerably longer than the time attributable to repair of radiation-induced DNA breaks. Measurements of nuclear halo size also indicated the initial relaxation of chromatin in the irradiated cells and its subsequent condensation. This condensation of chromatin as revealed with AVTD correlated well with nuclear condensation, as measured with dual fluorescence staining, and with DNA fragmentation, as measured by conventional and pulsed-field gel electrophoresis (PFGE). Late apoptotic cells did not contribute significantly to the AVTD signal, showing that the chromatin of these cells was completely condensed and fragmented.  相似文献   

6.
We have shown okadaic acid (OA) and calyculin-A (CLA) inhibition of mouse oocyte phosphoprotein phosphatase 1 (PPP1C) and/or phosphoprotein phosphatase 2A (PPP2CA) results in aberrant chromatin condensation, as evidenced by the inability to resolve bivalents. Phosphorylation of histone H3 at specific residues is thought to regulate chromatin condensation. Therefore, we examined changes in histone H3 phosphorylation during oocyte meiosis and the potential regulation by protein PPPs. Western blot and immunocytochemical analysis revealed histone H3 phosphorylation changed during mouse oocyte meiosis, with changes in chromatin condensation. Germinal vesicle-intact (GV-intact; 0 h) oocytes had no phospho-Ser10 but did have phospho-Ser28 histone H3. Oocytes that had undergone germinal vesicle breakdown (GVBD; 2 h) and progressed to metaphase I (MI; 7 h) and MII (16 h) had phosphorylated Ser10 and Ser28 histone H3 associated with condensed chromatin. To determine whether OA-induced aberrations in chromatin condensation were due to alterations in levels of histone H3 phosphorylation, we assessed phosphorylation of Ser10 and Ser28 residues following PPP inhibition. Oocytes treated with OA (1 microM) displayed increased phosphorylation of histone H3 at both Ser10 and Ser28 compared with controls. To begin to elucidate which OA-sensitive PPP is responsible for regulating chromatin condensation and histone H3 phosphorylation, we examined spatial and temporal localization of OA-sensitive PPPs, PPP1C, and PPP2CA. PPPC2A did not localize to condensed chromatin, whereas PPP1beta (PPP1CB) associated with condensing chromatin in GVBD, MI, and MII oocytes. Additionally, Western blot and immunocytochemistry confirmed presence of the PPP1C regulatory inhibitor subunit 2 (PPP1R2) in oocytes at condensed chromatin during meiosis and indicated a change in PPP1R2 phosphorylation. Inhibition of oocyte glycogen synthase kinase 3 (GSK3) appeared to regulate phosphorylation of PPP1R2. Furthermore, inhibition of GSK3 resulted in aberrant oocyte bivalent formation similar to that observed following PPP inhibition. These data suggest that PPP1CB is the OA/CLA-sensitive PPP that regulates oocyte chromatin condensation through regulation of histone H3 phosphorylation. Furthermore, GSK3 inhibition results in aberrant chromatin condensation and appears to regulate phosphorylation of PPP1R2.  相似文献   

7.
At metaphase, DNA in a human chromosome is estimated to be compacted at least 10,000 fold in length. However, the higher order mechanisms by which the chromosomes are organized in interphase and subsequently further condensed in mitosis have largely remained elusive. One generally overlooked participant in chromosome condensation is DNA replication. Many early studies of eukaryotic chromosome organization and cell fusions have suggested that DNA replication plays a role in chromosome compaction. Recent phenotypic analysis of Drosophila DNA replication mutants has revitalized this old idea. In this review, the role of DNA replication in chromosome condensation will be examined.  相似文献   

8.
Chromosome condensation is critical for accurate inheritance of genetic information. The degree of condensation, which is reflected in the size of the condensed chromosomes during mitosis, is not constant. It is differentially regulated in embryonic and somatic cells. In addition to the developmentally programmed regulation of chromosome condensation, there may be adaptive regulation based on spatial parameters such as genomic length or cell size. We propose that chromosome condensation is affected by a spatial parameter called the chromosome amount per nuclear space, or “intranuclear DNA density.” Using Caenorhabditis elegans embryos, we show that condensed chromosome sizes vary during early embryogenesis. Of importance, changing DNA content to haploid or polyploid changes the condensed chromosome size, even at the same developmental stage. Condensed chromosome size correlates with interphase nuclear size. Finally, a reduction in nuclear size in a cell-free system from Xenopus laevis eggs resulted in reduced condensed chromosome sizes. These data support the hypothesis that intranuclear DNA density regulates chromosome condensation. This suggests an adaptive mode of chromosome condensation regulation in metazoans.  相似文献   

9.
Yang H  Ren Q  Zhang Z 《FEMS yeast research》2006,6(8):1254-1263
When starved of essential nutrients, yeast cells cease mitotic division and enter an alternative state called the 'stationary phase'. In this paper, we report that stationary cells enter two major pathways: meiosis and apoptosis. Using transmission electron microscopy, five types of cell were identified in the stationary phase: (1) cells with chromosome condensed nuclei; (2) cells with normal, homogeneously stained nuclei; (3) sporulated cells; (4) apoptotic cells, in which chromatin, but not individual chromosomes, was condensed; and (5) dead cells, in which nuclei and cytoplasm were degraded. Further evidence using live cell imaging and mutation analysis suggested that cells with condensed chromosomes underwent meiosis, whereas chromatin condensed cells underwent apoptotic cell death. Cells with homogeneous nuclei are believed to be in the true resting state and undergo cell death when starvation continues. Chromosome or chromatin condensation may serve as a hallmark of life or death for stationary cells.  相似文献   

10.
The nucleoids of the various pleomorphic forms of Chlamydia psittaci have been examined by direct observation of infected cells and by observations on isolated particles. The fixation and staining methods used were the same as those routinely used for the examination of bacteria to facilitate the comparison of chlamydial fine structure with that of bacteria. The nucleoids of reticulate bodies were composed of fine fibrils which extended throughout these particles. The nucleoids of intermediate bodies are characterized by an electron-dense mass with which the fibrous elements are associated in a structurally coherent manner. As condensation of the intermediate bodies proceeds, the electron-dense mass becomes eccentrically located and the fibers form a distinct radiating structure. Large elementary bodies have a few fibers associated with their condensed electron-dense nucleoids but the more condensed mature elementary bodies have a very discrete and homogeneous electron-dense nucleoid which is separated from the cytoplasmic elements of these particles by a very distinct electron-transparent space. These highly condensed elementary body nucleoids are usually ovoid, but may be elongated or irregular, and a small number of these structures react very strongly with ruthenium red. While the nucleoid structure of reticulate bodies resembles that of the bacterial cell, both the condensation process and the nucleoid morphologies which result from it in intermediate and elementary bodies have no parallels among the bacteria. Thus we conclude that major differences in nucleoid organization exist between the chlamydia and the bacteria.  相似文献   

11.
Nucleo-cytoplasmic translocation of histone H1 during the HeLa cell cycle   总被引:1,自引:0,他引:1  
  相似文献   

12.
Based on the ground state of counterions condensed on a DNA molecule, a model has been developed to successfully detect the process of DNA condensation. Through further investigation, the process of DNA condensation strongly depends on the correlation distance between condensed counterions on DNA molecules. Generally, there are two routes. The process of DNA condensation with the correlation distance between condensed counterions being 2 nm or 4 nm is different from the one with the correlation distance between condensed counterions being 3 nm or 5 nm. Effects of ionic strength on the diameter of toroidal condensates originate from the increase of correlation distance between condensed counterions.  相似文献   

13.
Mammalian chromosome replication was studied by the aid of premature chromosome condensation (PCC). After induction of PCC the sites of DNA replication appear as “gaps” between condensed chromosomal regions. These condensed particles are unineme before and bineme after DNA replication. The two phases are due mainly to the unineme or bineme nature of the particles. During early S-phase almost all particles are unineme, during late S-phase they are bineme and there is only one transitory stage between these two main stages. Premature chromosome condensation was studied in detail on a specific human chromosome 22 which is marked by its heterochromatin constitution. This led to easy identification of these elements in S-phase PCC (S-PCC) preparations. For each stage of the S-phase there was a reproducible pattern of condensed chromosomal particles making up the whole chromosome. The number of these particles was rather limited and a complementary pattern was found in early versus late S-phase. The pattern of early S-PCC corresponded to the banding pattern of G-banded prometaphase chromosomes; the pattern of late S-PCC, to R-banded prometaphase chromosomes. Thus, “gaps” and condensed particles as observed after PCC induction are obviously homologous to chromosome replication units. Replication of constitutive heterochromatin occurred during the very late S-phase. During this stage PCC induction led to condensation of the heterochromatin into several small, highly fluorescent particles.  相似文献   

14.
Condensed chromatin and cell inactivation by single-hit kinetics   总被引:4,自引:0,他引:4  
Mammalian cells are extremely sensitive to gamma rays at mitosis, the time at which their chromatin is maximally condensed. The radiation-induced killing of mitotic cells is well described by single-hit inactivation kinetics. To investigate if radiation hypersensitivity by single-hit inactivation correlated with chromatin condensation, Chinese hamster ovary (CHO) K1 (wild-type) and xrs-5 (radiosensitive mutant) cells were synchronized by mitotic shake-off procedures and the densities of their chromatin cross sections and their radiosensitivities were measured immediately and 2 h into G1 phase. The chromatin of G1-phase CHO K1 cells was dispersed uniformly throughout their nuclei, and its average density was at least three times less than in the chromosomes of mitotic CHO K1 cells. The alpha-inactivation co-efficient of mitotic CHO K1 cells was approximately 2.0 Gy(-1) and decreased approximately 10-fold when cells entered G1 phase. The density of chromatin in CHO xrs-5 cell chromosomes at mitosis was greater than in CHO K1 cell chromosomes, and the radiosensitivity of mitotic CHO xrs-5 cells was the greatest with alpha = 5.1 Gy(-1). In G1 phase, CHO xrs-5 cells were slightly more resistant to radiation than when in mitosis, but a significant proportion of their chromatin was found to remain in condensed form adjacent to the nuclear membrane. These studies indicate that in addition to their known defects in DNA repair and V(D)J recombination, CHO xrs-5 cells may also be defective in some process associated with the condensation and/or dispersion of chromatin at mitosis. Their radiation hypersensitivity could result, in part, from their DNA remaining in compacted form during interphase. The condensation status of DNA in other mammalian cells could define their intrinsic radiosensitivity by single-hit inactivation, the mechanism of cell killing which dominates at the dose fraction size (1.8-2.0 Gy) most commonly used in radiotherapy.  相似文献   

15.
A simple theoretical model for the effects of impurities on biomembranes is proposed. The model accounts for the cholesterol-induced decrease of membrane phase transition temperature, membrane condensation above the gel to liquid crystalline phase transition, and increase in lateral compressibility. The model also predicts that addition of molecules such as cholesterol and polypeptides to membranes results in unmasking of a continuous phase transition. This results in a second broad peak in the calorimetric curves for melting of lipid-cholesterol mixtures, and the appearance of a second melting transition in membranes modified by the incorporation of polypeptides. The theory assumes that the membrane may be adequately described by a kink model, and that impurities are randomly distributed in the membrane. The difference in size and shape of impurity molecules, compared to membrane lipids, results in a spatial disordering in the membrane which in turn causes increased chain disorder and membrane condensation, as well as a decrease in the cooperativity of melting. The second transition results from a second expansion of the condensed, partially disordered membrane, which takes place over a several degree temperature range. This transition, although unmasked by boundary effects of non-lipid molecules, does not correspond to melting of a boundary annulus or phase separation.  相似文献   

16.
Ke F  Luu YK  Hadjiargyrou M  Liang D 《PloS one》2010,5(10):e13308
Organic solvents offer a new approach to formulate DNA into novel structures suitable for gene delivery. In this study, we examined the in situ behavior of DNA in N, N-dimethylformamide (DMF) at low concentration via laser light scattering (LLS), TEM, UV absorbance and Zeta potential analysis. Results revealed that, in DMF, a 21bp oligonucleotide remained intact, while calf thymus DNA and supercoiled plasmid DNA were condensed and denatured. During condensation and denaturation, the size was decreased by a factor of 8-10, with calf thymus DNA forming spherical globules while plasmid DNA exhibited a toroid-like conformation. In the condensed state, DNA molecules were still able to release the counterions to be negatively charged, indicating that the condensation was mainly driven by the excluded volume interactions. The condensation induced by DMF was reversible for plasmid DNA but not for calf thymus DNA. When plasmid DNA was removed from DMF and resuspended in an aqueous solution, the DNA was quickly regained a double stranded configuration. These findings provide further insight into the behavior and condensation mechanism of DNA in an organic solvent and may aid in developing more efficient non-viral gene delivery systems.  相似文献   

17.
18.
Peptide segment couplings are now widely utilized in protein chemical synthesis. One of the key structures for the strategy is the peptide thioester. Peptide thioester condensation, in which a C‐terminal peptide thioester is selectively activated by silver ions then condensed with an amino component, is a powerful tool. But the amino acid adjacent to the thioester is at risk of epimerization. During the preparation of peptide thioesters by the Boc solid‐phase method, no substantial epimerization of the C‐terminal amino acid was detected. Epimerization was, however, observed during a thioester–thiol exchange reaction and segment condensation in DMSO in the presence of a base. In contrast, thioester–thiol exchange reactions in aqueous solutions gave no epimerization. The epimerization during segment condensation was significantly suppressed with a less polar solvent that is applicable to segments in thioester peptide condensation. These results were applied to a longer peptide thioester condensation. The epimer content of the coupling product of 89 residues was reduced from 27% to 6% in a condensation between segments of 45 and 44 residues for the thioester and the amino component, respectively. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Chromosome condensation and sister chromatid pairing in budding yeast   总被引:30,自引:9,他引:21       下载免费PDF全文
We have developed a fluorescent in situ hybridization (FISH) method to examine the structure of both natural chromosomes and small artificial chromosomes during the mitotic cycle of budding yeast. Our results suggest that the pairing of sister chromatids: (a) occurs near the centromere and at multiple places along the chromosome arm as has been observed in other eukaryotic cells; (b) is maintained in the absence of catenation between sister DNA molecules; and (c) is independent of large blocks of repetitive DNA commonly associated with heterochromatin. Condensation of a unique region of chromosome XVI and the highly repetitive ribosomal DNA (rDNA) cluster from chromosome XII were also examined in budding yeast. Interphase chromosomes were condensed 80-fold relative to B form DNA, similar to what has been observed in other eukaryotes, suggesting that the structure of interphase chromosomes may be conserved among eukaryotes. While additional condensation of budding yeast chromosomes were observed during mitosis, the level of condensation was less than that observed for human mitotic chromosomes. At most stages of the cell cycle, both unique and repetitive sequences were either condensed or decondensed. However, in cells arrested in late mitosis (M) by a cdc15 mutation, the unique DNA appeared decondensed while the repetitive rDNA region appeared condensed, suggesting that the condensation state of separate regions of the genome may be regulated differently. The ability to monitor the pairing and condensation of sister chromatids in budding yeast should facilitate the molecular analysis of these processes as well as provide two new landmarks for evaluating the function of important cell cycle regulators like p34 kinases and cyclins. Finally our FISH method provides a new tool to analyze centromeres, telomeres, and gene expression in budding yeast.  相似文献   

20.
THE GENESIS OF CONDENSED SEQUENCES IN THE TETHYAN JURASSIC   总被引:2,自引:0,他引:2  
Pelagic limestones of the west Sicilian Middle Jurassic are used as type examples in this examination of Tethyan condensed sequences. Two main processes were involved in the genesis of this type of deposit: stratigraphic condensation (minimal sediment input) and reworking. The lack of nannoplankton during most of the Jurassic caused stratigraphic condensation, and the particular environment in which these beds were deposited – that of topographic high – was considerably influenced by currents; thus reworking led to a further reduction in sediment thickness. The presence of algal stromatolites in certain condensed sequences and the traces of boring algae in associated ferromanganese nodules suggest deposition within the photic zone. A maximum depth of 200 metres is inferred. Many features of condensed sequences are comparable with those on Recent seamounts; these include presence of ferromanganese nodules and crusts, mixed faunas, calcarenite lenses, algal biscuits, and evidence of submarine solution and lithification. Jurassic Tethyan condensed sequences can thus be interpreted as ancient seamount deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号