共查询到20条相似文献,搜索用时 15 毫秒
1.
Sub-fossil wood is often affected by the decaying process that introduces uncertainties in the measurement of oxygen and carbon stable isotope composition in cellulose. Although the cellulose stable isotopes are widely used as climatic proxies, our understanding of processes controlling their behavior is very limited. We present here a comparative study of stable oxygen and carbon isotope ratios in tree ring cellulose in decayed and non-decayed wood samples of Swiss stone pine (Pinus cembra) trees. The intra-ring stable isotope variability (around the circumference of a single ring) was between 0.1 and 0.5‰ for δ18O values and between 0.5 and 1.6‰ for δ13C values for both decayed and non-decayed wood. Observed intra-tree δ18O variability is less than that reported in the literature (0.5–1.5‰), however, for δ13C it is larger than the reported values (0.7–1.2‰). The inter-tree variability for non-decayed wood ranges between 1.1 and 2.3‰ for δ18O values, and between 2 and 4.7‰ for δ13C values. The inter-tree differences for δ18O values are similar to those reported in the literature (1–2‰ for oxygen and 1–3‰ for carbon) but are larger for δ13C values. We have found that the differences for δ18O and δ13C values between decayed and non-decayed wood are smaller than the variation among different trees from the same site, suggesting that the decayed wood can be used for isotopic paleoclimate research. 相似文献
2.
Relative humidity- and ABA-induced variation in carbon and oxygen isotope ratios of cotton leaves 总被引:17,自引:4,他引:17
Cotton (Gossypium hirsutum L. cv. CS50) plants were grown at two levels of relative humidity (RH) and sprayed daily with abscisic acid (ABA) at four concentrations. Plants grown at lower humidity had higher transpiration rates, lower leaf temperatures and lower stomatal conductance. Plant biomass was also reduced at low humidity. Within each humidity environment, increasing ABA concentration generally reduced stomatal conductance, evaporation rates, superficial leaf density and plant biomass, and increased leaf temperature and specific leaf area. As expected, decreased stomatal conductance resulted in decreased carbon isotope discrimination in leaf material ( Δ 13Cl). Plants grown at low humidity were more enriched in 18O than those grown at high RH, as theory predicts. Within each humidity environment, increasing ABA concentration increased oxygen isotope enrichment of leaf cellulose ( Δ 18Oc) and whole‐leaf tissue ( Δ 18Ol). Values of Δ 13Cl and Δ 18Ol predicted by theoretical models were close to those observed, accounting for 79% of the measured variation in Δ 13Cl and 95% of the measured variation in Δ 18Ol. Supporting theory, Δ 13Cl and Δ 18Ol in whole‐leaf tissue were negatively related. 相似文献
3.
Oxygen stable isotope ratios of tree-ring cellulose: the next phase of understanding 总被引:3,自引:0,他引:3
Leonel da Silveira Lobo O'Reilly Sternberg 《The New phytologist》2009,181(3):553-562
Analysis of the oxygen isotope ratio of tree-ring cellulose is a valuable tool that can be used as a paleoclimate proxy. Our ability to use this tool has gone through different phases. The first began in the 1970s with the demonstration of empirical relationships between the oxygen isotope ratio of tree-ring cellulose and climate. These empirical relationships, however, did not provide us with the confidence that they are robust through time, across taxa and across geographical locations. The second phase began with a rudimentary understanding of the physiological and biochemical mechanisms responsible for the oxygen isotope ratios of cellulose, which is necessary to increase the power of this tool. This phase culminated in a mechanistic tree-ring model integrating concepts of physiology and biochemistry in a whole-plant system. This model made several assumptions about leaf water isotopic enrichment and biochemistry which, in the nascent third phase, are now being challenged, with surprising results. These third-phase results suggest that, contrary to the model assumption, leaf temperature across a large latitudinal gradient is remarkably constant and does not follow ambient temperature. Recent findings also indicate that the biochemistry responsible for the incorporation of the cellulose oxygen isotopic signature is not as simple as has been assumed. Interestingly, the results of these challenges have strengthened the tree-ring model. There are several other assumptions that can be investigated which will improve the utility of the tree-ring model. 相似文献
4.
Effects of light on respiration and oxygen isotope fractionation in soybean cotyledons 总被引:7,自引:0,他引:7
M. Ribas-Carbo S. A. Robinson M. A. Gonzàlez-Meler A. M. Lennon L. Giles J. N. Siedow & J. A. Berry 《Plant, cell & environment》2000,23(9):983-989
Light effects on electron flow through the cyanide-resistant respiratory pathway, oxygen isotope fractionation and total respiration were studied in soybean (Glycine max L.) cotyledons. During the first 12 h of illumination there was an increase in both electron partitioning through the alternative pathway and oxygen isotope fractionation by the alternative oxidase. The latter probably indicates a change in the properties of the alternative oxidase. There was no engagement of the alternative oxidase in darkness and its fractionation was 27‰. In green cotyledons 60% of the respiration flux was through the alternative pathway and the alternative oxidase fractionation was 32‰. Exposing previously illuminated tissue to continuous darkness induced a decrease in the electron partitioning through the alternative pathway. However, this decrease was not directly linked with the low cellular sugar concentration resulting from the lack of light because 5 min of light every 12 h was sufficient to keep the alternative pathway engaged to the same extent as plants grown under control conditions. 相似文献
5.
Kelly DP 《FEMS microbiology letters》2008,282(2):299-306
Growing cultures and nongrowing suspensions of Halothiobacillus neapolitanus selectively fractionated (32)S and (34)S during the oxidation of the sulfane- and sulfonate-sulfur atoms of thiosulfate. Sulfate was enriched in (32)S, with delta(34)S reaching -6.3 per thousand relative to the precursor sulfonate-sulfur of thiosulfate, which was progressively resynthesized from the thiosulfate-sulfane-sulfur during thiosulfate metabolism. Polythionates, principally trithionate, accumulated during thiosulfate oxidation and showed progressive increase in the relative (34)S content of their sulfonate groups, with delta(34)S values up to +20 per thousand, relative to the substrate sulfur. The origins of the sulfur in the sulfate and polythionate products of oxidation were tracked by the use thiosulfate labelled with (35)S in each of its sulfur atoms, enabling determination of the flow of the sulfur atoms into the oxidation products. The results confirm that highly significant fractionation of stable sulfur isotopes can be catalyzed by thiobacilli oxidizing thiosulfate, but that differences in the (34)S/(32)S ratios of the nonequivalent constituent sulfur atoms of the thiosulfate used as substrate mean that the oxidative fate of each atom needs separate determination. The data are very significant to the understanding of bacterial sulfur-compound oxidation and highly relevant to the origins of biogenic sulfate minerals. 相似文献
6.
7.
J. OGÉE M. M. BARBOUR L. WINGATE D. BERT A. BOSC M. STIEVENARD C. LAMBROT M. PIERRE T. BARIAC D. LOUSTAU & R. C. DEWAR 《Plant, cell & environment》2009,32(8):1071-1090
The carbon and oxygen stable isotope composition of wood cellulose ( δ 13 Ccellulose and δ 18 Ocellulose , respectively) reveal well-defined seasonal variations that contain valuable records of past climate, leaf gas exchange and carbon allocation dynamics within the trees. Here, we present a single-substrate model for wood growth to interpret seasonal isotopic signals collected in an even-aged maritime pine plantation growing in South-west France, where climate, soil and flux variables were also monitored. Observed seasonal patterns in δ 13 Ccellulose and δ 18 Ocellulose were different between years and individuals, and mostly captured by the model, suggesting that the single-substrate hypothesis is a good approximation for tree ring studies on Pinus pinaster , at least for the environmental conditions covered by this study. A sensitivity analysis revealed that the model was mostly affected by five isotopic discrimination factors and two leaf gas-exchange parameters. Modelled early wood signals were also very sensitive to the date when cell wall thickening begins ( t wt ). Our model could therefore be used to reconstruct t wt time series and improve our understanding of how climate influences this key parameter of xylogenesis. 相似文献
8.
Carbon isotope fractionation in plants 总被引:7,自引:0,他引:7
Marion H. OLeary 《Phytochemistry》1981,20(4):553-567
Plants with the C3, C4, and crassulacean acid metabolism (CAM) photosynthetic pathways show characteristically different discriminations against 13C during photosynthesis. For each photosynthetic type, no more than slight variations are observed within or among species. CAM plants show large variations in isotope fractionation with temperature, but other plants do not. Different plant organs, subcellular fractions and metabolises can show widely varying isotopic compositions. The isotopic composition of respired carbon is often different from that of plant carbon, but it is not currently possible to describe this effect in detail. The principal components which will affect the overall isotope discrimination during photosynthesis are diffusion of CO2, interconversion of CO2 and HCO?3, incorporation of CO2 by phosphoenolpyruvate carboxylase or ribulose bisphosphate carboxylase, and respiration. Theisotope fractionations associated with these processes are summarized. Mathematical models are presented which permit prediction of the overall isotope discrimination in terms of these components. These models also permit a correlation of isotope fractionations with internal CO2 concentrations. Analysis of existing data in terms of these models reveals that CO2 incorporation in C3 plants is limited principally by ribulose bisphosphate carboxylase, but CO2 diffusion also contributes. In C4 plants, carbon fixation is principally limited by the rate of CO2 diffusion into the leaf. There is probably a small fractionation in C4 plants due to ribulose bisphosphate carboxylase. 相似文献
9.
Naturally-occurring variations in the abundances of the stable isotopes of carbon and other elements can be used to understand the dynamics of natural processes in chemistry, biochemistry, biology, medicine, ecology and other fields. The use of carbon-13 isotopic abundances as an indicator of photosynthetic function in plants has become common. The purpose of this article is to describe the physical and chemical processes that contribute to the abundances of carbon-13 in plant materials, and to provide a framework for understanding how those processes control the isotopic contents of natural materials. 相似文献
10.
11.
The 18O content of leaf water strongly influences the 18O contents of atmospheric CO2 and O2. The 18O signatures of these atmospheric gases, in turn, emerge as important indicators of large-scale gas exchange processes. Better understanding of the factors that influence the isotopic composition of leaf water is still required, however, for the quantitative utilization of these tracers. The 18O enrichment of leaf water relative to local meteoric water, is known to reflect climatic conditions. Less is known about the extent variations in the 18O content of leaf water are influenced by nonclimatic, species-specific characteristics. In a collection of 90 plant species from all continents grown under the same climatic conditions in the Jerusalem Botanical Garden we observed variations of about 9‰ in the δ18O values of stem water, δs, and of about 14‰ in the mid-day δ18O enrichment of bulk leaf water, δLW–δs. Differences between δ18O values predicted by a conventional evaporation model, δM, and δLW ranged between – 3.3‰ and + 11.8‰. The δ18O values of water in the chloroplasts (δch) in leaves of 10 selected plants were estimated from on-line CO2 discrimination measurements. Although much uncertainty is still involved in these estimates, the results indicated that δch can significantly deviate from δM in species with high leaf peclet number. The δ18O values of bulk leaf water significantly correlated with δ18O values of leaf cellulose (directly) and with instantaneous water use efficiency (A/E, inversely). Differences in isotopic characteristics among conventionally defined vegetation types were not significant, except for conifers that significantly differed from shrubs in δ18O and δ13C values of cellulose and in their peclet numbers, and from deciduous woodland species in their δ18O and δ13C values of cellulose. The results indicated that predictions of the δ18O values of leaf water (δLW, δM and δch) could be improved by considering plant species-specific characteristics. 相似文献
12.
Hydrogen and carbon isotope ratios of saponifiable lipids and cellulose nitrate from CAM, C3, and C4 plants that grew near one another were determined. The deuterium/protium (D/H) ratios of cellulose nitrate from CAM plants were much higher than those of cellulose nitrate from C3 and C4 plants, as has been observed previously. In contrast, the D/H ratios of saponifiable lipids from CAM plants did not differ from those of the same fraction from C3 and C4 plants. These observations indicate that deuterium enrichment in cellulose of CAM plants is not caused by any metabolic or physiological process which would lead to deuterium enrichment in all biochemical fractions. 相似文献
13.
14.
David M. Snider Jason J. Venkiteswaran Sherry L. Schiff John Spoelstra 《Global Change Biology》2012,18(1):356-370
The ability to use δ18O values of nitrous oxide (N2O) to apportion environmental emissions is currently hindered by a poor understanding of the controls on δ18O–N2O from nitrification (hydroxylamine oxidation to N2O and nitrite reduction to N2O). In this study fertilized agricultural soils and unfertilized temperate forest soils were aerobically incubated with different 18O/16O waters, and conceptual and mathematical models were developed to systematically explain the δ18O–N2O formed by nitrification. Modeling exercises used a set of defined input parameters to emulate the measured soil δ18O–N2O data (Monte Carlo approach). The Monte Carlo simulations implied that abiotic oxygen (O) exchange between nitrite (NO2?) and H2O is important in all soils, but that biological, enzyme‐controlled O‐exchange does not occur during the reduction of NO2? to N2O (nitrifier‐denitrification). Similarly, the results of the model simulations indicated that N2O consumption is not characteristic of aerobic N2O formation. The results of this study and a synthesis of the published literature data indicate that δ18O–N2O formed in aerobic environments is constrained between +13‰ and +35‰ relative to Vienna Standard Mean Ocean Water (VSMOW). N2O formed via hydroxylamine oxidation and nitrifier‐denitrification cannot be separated using δ18O unless 18O tracers are employed. The natural range of nitrifier δ18O–N2O is discussed and explained in terms of our conceptual model, and the major and minor controls that define aerobically produced δ18O–N2O are identified. Despite the highly complex nature of δ18O–N2O produced by nitrification this δ18O range is narrow. As a result, in many situations δ18O values may be used in conjunction with δ15N–N2O data to apportion nitrifier‐ and denitrifier‐derived N2O. However, when biological O‐exchange during denitrification is high and N2O consumption is low, there may be too much overlap in δ18O values to distinguish N2O formed by these pathways. 相似文献
15.
An oxygen isotope chronometer for cellulose deposition: the successive leaves formed by tillers of a C4 perennial grass 下载免费PDF全文
Hai Tao Liu Fang Yang Xiao Ying Gong Rudi Schäufele Hans Schnyder 《Plant, cell & environment》2017,40(10):2121-2132
Multiannual time series of (palaeo)hydrological information can be reconstructed from the oxygen isotope composition of cellulose (δ18OCel) in biological archives, for example, tree rings, but our ability to temporally resolve information at subannual scale is limited. We capitalized on the short and predictable leaf appearance interval (2.4 d) of a perennial C4 grass (Cleistogenes squarrosa), to assess its potential for providing highly time‐resolved δ18OCel records of vapour pressure deficit (VPD). Plants grown at low (0.63 kPa) or high (1.58 kPa) VPD were swapped between VPD environments and exposed to the new environment for 7 d with simultaneous 13CO2 labelling. Then, leaves were sampled by age/position along individual tillers. Five leaves at different developmental stages were growing simultaneously. The period of most‐active leaf elongation, from 10 to 90% of final length, lasted 6.6 d, and ~80% of all carbon and oxygen incorporation in whole‐leaf cellulose occurred within 7 d. Cellulose deposition stopped at (or shortly after) full leaf expansion. The direction of change, low‐to‐high or high‐to‐low VPD, had no differential effect on new oxygen and carbon incorporation in cellulose. Successive leaves produced by tillers of C. squarrosa provide a δ18OCel record useful for reconstructions of short‐term hydrological dynamics. 相似文献
16.
Experimental investigation of nitrogen and oxygen isotope fractionation in nitrate and nitrite during denitrification 总被引:1,自引:0,他引:1
Kay Knöller Carsten Vogt Marika Haupt Stefan Feisthauer Hans-Hermann Richnow 《Biogeochemistry》2011,103(1-3):371-384
In batch experiments, we studied the isotope fractionation of nitrogen and oxygen during denitrification of two bacterial strains (Azoarcus sp. strain DSM 9056 and Pseudomonas pseudoalcaligenes strain F10). Denitrification experiments were conducted with succinate and toluene as electron donor in three waters with a distinct oxygen isotope composition. Nitrate consumption was observed in all batch experiments. Reaction rates for succinate experiments were more than six times higher than those for toluene experiments. Nitrogen and oxygen isotopes became progressively enriched in the remaining nitrate pool in the course of the experiments; the nitrogen and oxygen isotope fractionation varied between 8.6–16.2 and 4.0–7.3‰, respectively. Within this range, neither electron donors nor the oxygen isotope composition of the medium affected the isotope fractionation process. The experimental results provide evidence that the oxygen isotope fractionation during nitrate reduction is controlled by a kinetic isotope effect which can be quantified using the Rayleigh model. The isotopic examination of nitrite released upon denitrification revealed that nitrogen isotope fractionation largely follows the fractionation of the nitrate pool. However, the oxygen isotope values of nitrite are clearly influenced by a rapid isotope equilibration with the oxygen of the ambient water. Even though this equilibration may in part be due to storage, it shows that under certain natural conditions (re-oxidation of nitrite) the nitrate pool may also be indirectly affected by an isotope equilibration. 相似文献
17.
Hydrogen and oxygen isotope ratios of tree-ring cellulose for riparian trees grown long-term under hydroponically controlled environments 总被引:1,自引:0,他引:1
Saplings of three riparian tree species (alder, birch and cottonwood) were grown for over 5 months in a hydroponics system
that maintained the isotopic composition of source water in six treatments, ranging from –120 to +180‰δD and –15 to +10‰δ18O. The trees were grown in two greenhouses maintained at 25°C and at either 40 or 75% relative humidity, creating differences
in transpiration rates and leaf water isotopic evaporative enrichment. The cellulose produced in the annual growth ring was
linearly related to source water with differences in both slope and offset associated with greenhouse humidity. The slope
of the isotopic composition of source water versus tree-ring cellulose was less than 1 for both δD and δ18O indicating incomplete isotopic exchange of carbohydrate substrate with xylem water during cellulose synthesis. Tests using
the outer portion of the tree-ring and new roots were similar and showed that the tree-ring values were representative of
the cellulose laid down under the imposed environmental conditions. The fraction of H and O in carbohydrate substrate that
isotopically exchange with medium water was calculated to be 0.36 and 0.42 respectively, and biochemical mechanisms for these
observed fractions are discussed. A mechanistic model of the biochemical fractionation events for both δD and δ18O leading to cellulose synthesis was robust over the wide range of cellulose stable isotope ratios. The experimental results
indicate that both water source and humidity information are indeed recorded in tree-ring cellulose. These results help to
resolve some of the disparate observations regarding the interpretation of stable isotope ratios in tree-rings found in the
literature.
Received: 4 January 1999 / Accepted: 12 August 1999 相似文献
18.
Deuterium isotope effects and fractionation factors of N1...H3–N3 hydrogen bonded Watson–Crick A:T base pairs of two DNA dodecamers are presented here. Specifically, two-bond deuterium isotope effects on the chemical shifts of 13C2 and 13C4, 213C2 and 213C4, and equilibrium deuterium/protium fractionation factors of H3, , were measured and seen to correlate with the chemical shift of the corresponding imino proton, H3. Downfield-shifted imino protons associated with larger values of 213C2 and 213C4 and smaller values, which together suggested that the effective H3–N3 vibrational potentials were more anharmonic in the stronger hydrogen bonds of these DNA molecules. We anticipate that 213C2, 213C4 and values can be useful gauges of hydrogen bond strength of A:T base pairs. 相似文献
19.
The δ13C(en) and δ18O(en) values of goat and gazelle enamel carbonate indicate that Neandertals at Amud Cave, Israel (53-70 ka) lived under different ecological conditions than did anatomically modern humans at Qafzeh Cave, Israel (approximately 92 ka). During the Last Glacial Period, Neandertals at Amud Cave lived under wetter conditions than those in the region today. Neither faunal species ate arid-adapted C4 plants or drought-stressed C3 plants. The variation in gazelle δ18O(en) values suggests multiple birth seasons, which today occur under wetter than normal conditions. The magnitude and pattern of intra-tooth variation in goat δ18O(en) values indicate that rain fell throughout the year unlike today.Anatomically modern humans encountered a Qafzeh Cave region that was more open and arid than Glacial Period Amud Cave, and more open than today's Upper Galilee region. Goat δ13C(en) values indicate feeding on varying amounts of C4 plants throughout the year. The climate apparently ameliorated higher in the sequence; but habitats remained more open than at Amud Cave. Both gazelles and goats fed on C3 plants in brushy habitats without any inclusion of C4 plants. The magnitude of intra-tooth variation in goat δ18O(en) values, however, suggest that some rain fell throughout the year, and the relative representation of woodland dwelling species indicates the occurrence of woodlands in the region.Climate differences affecting the distribution of plants and animals appear to be the significant factor contributing to behavioral differences previously documented between Neandertals and anatomically modern humans in the region. Climate forcing probably affected the early appearances of anatomically modern humans, although not the disappearance of Neandertals from the Levant. 相似文献
20.
利用稳定氢氧同位素定量区分白刺水分来源的方法比较 总被引:6,自引:0,他引:6
水是影响植物分布的重要生态因子之一,对植物水源的研究有助于在全球变化背景下了解植物的时空分布格局.根据同位素质量守恒,利用稳定氢氧同位素可以确定植物水分来源,相关的方法也不断改进.利用三源线性混合模型、多源线性混合模型、吸水深度模型以及动态模型分别对格尔木白刺(Nitraria Tangutorum)的水分来源进行了对比研究,发现格尔木白刺主要吸收利用50-100 cm处的土壤水及地下水.在研究方法上,各模型都有自己的应用范围和局限:三源线性混合模型一般只能在植物吸收的水分来源不超过3个的情况下运行;多源线性混合模型弥补了三源线性混合模型的不足,可以同时比较多种来源水各自对白刺的贡献率及贡献范围;吸水深度模型弥补了混合模型中不能计算白刺对土壤水的平均吸水深度的缺陷;动态模型则会为未来降水格局变化对植物的时空分布的影响研究起很大作用.针对不同的适用范围,模型的选择及综合应用会更广泛.但是,该技术还存在一些不足,需要结合测定土水势,富氘水的示踪等方法来弥补. 相似文献