首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Integrin alpha v beta 3 is distinct in its capacity to recognize the sequence Arg-Gly-Asp (RGD) in many extra-cellular matrix (ECM) components. Here, we demonstrate that in addition to the recognition of ECM components, alpha v beta 3 can interact with the neural cell adhesion molecule L1-CAM; a member of the immunoglobulin superfamily (IgSF). M21 melanoma cells displayed significant Ca(++)-dependent adhesion and spreading on immunopurified rat L1 (NILE). This adhesion was found to be dependent on the expression of the alpha v-integrin subunit and could be significantly inhibited by an antibody to the alpha v beta 3 heterodimer. M21 cells also displayed some alpha v beta 3-dependent adhesion and spreading on immunopurified human L1. Ligation between this ligand and alpha v beta 3 was also observed to promote significant haptotactic cell migration. To map the site of alpha v beta 3 ligation we used recombinant L1 fragments comprising the entire extracellular domain of human L1. Significant alpha v beta 3-dependent adhesion and spreading was evident on a L1 fragment containing Ig-like domains 4, 5, and 6. Importantly, mutation of an RGD sequence present in the sixth Ig-like domain of L1 abrogated M21 cell adhesion. We conclude that alpha v beta 3-dependent recognition of human L1 is dependent on ligation of this RGD site. Despite high levels of L1 expression the M21 melanoma cells did not display significant adhesion via a homophilic L1-L1 interaction. These data suggest that M21 melanoma cells recognize and adhere to L1 through a mechanism that is primarily heterophilic and integrin dependent. Finally, we present evidence that melanoma cells can shed and deposit L1 in occluding ECM. In this regard, alpha v beta 3 may recognize L1 in a cell-cell or cell- substrate interaction.  相似文献   

2.
Altered airway smooth muscle (ASM) function and enrichment of the extracellular matrix (ECM) with interstitial collagen and fibronectin are major pathological features of airway remodeling in asthma. We have previously shown that these ECM components confer enhanced ASM proliferation in vitro, but their action on its newly characterized secretory function is unknown. Here, we examined the effects of fibronectin and collagen types I, III, and V on IL-1beta-dependent secretory responses of human ASM cells, and characterized the involvement of specific integrins. Cytokine production (eotaxin, RANTES, and GM-CSF) was evaluated by ELISA, RT-PCR, and flow cytometry. Function-blocking integrin mAbs and RGD (Arg-Gly-Asp)-blocking peptides were used to identify integrin involvement. IL-1beta-dependent release of eotaxin, RANTES, and GM-CSF was enhanced by fibronectin and by fibrillar and monomeric type I collagen, with similar changes in mRNA abundance. Collagen types III and V had no effect on eotaxin or RANTES release but did modulate GM-CSF. Analogous changes in intracellular cytokine accumulation were found, but in <25% of the total ASM cell population. Function-blocking Ab and RGD peptide studies revealed that alpha2beta1, alpha5beta1, alphavbeta1, and alphavbeta3 integrins were required for up-regulation of IL-1beta-dependent ASM secretory responses by fibronectin, while alpha2beta1 was an important transducer for type I collagen. Thus, fibronectin and type I collagen enhance IL-1beta-dependent ASM secretory responses through a beta1 integrin-dependent mechanism. Enhancement of cytokine release from ASM by these ECM components may contribute to airway wall inflammation and remodeling in asthma.  相似文献   

3.
The extracellular matrix (ECM) provides structural support to cells and tissues and is involved in the regulation of various essential physiological processes, including neurite outgrowth. Most of the adhesive interactions between cells and ECM proteins are mediated by integrins. Integrins typically recognize short linear amino acid sequences in ECM proteins, one of the most common being Arginine-Glycine-Aspartate (RGD). The present study investigated neurite outgrowth and adhesion of identified molluscan neurons on a selection of substrates in vitro. Involvement of RGD binding sites in adhesion to the different substrates was investigated using soluble synthetic RGD peptides. The cells adhered to native (i.e., nondenatured) laminin and type IV collagen, but not to native plasma fibronectin. Denaturation of fibronectin dramatically enhanced cell adhesion. Only the adhesion to denatured fibronectin was inhibited by RGD peptides, indicating that denaturation uncovers a RGD binding site in the protein. Laminin as well as denatured fibronectin, but not type IV collagen, induced neurite outgrowth from a percentage of the RPA neurons. These results demonstrate that molluscan neurons can attach to various substrates using both RGD-dependent and RGD-independent adhesion mechanisms. This suggests that at least two different cell adhesion receptors, possibly belonging to the integrin family, are expressed in these neurons. Moreover, the results show that vertebrate ECM proteins can induce outgrowth from these neurons, suggesting that the mechanisms involved in adhesion as well as outgrowth promoting are evolutionarily well conserved. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 37–52, 1998  相似文献   

4.
The adhesion of osteoblasts to bone extracellular matrix, of which type-I collagen constitutes >85%, can modulate diverse aspects of their physiology such as growth, differentiation and mineralisation. In this study we examined the adhesion of UMR106 rat osteoblast-like cells either to a control (Col) or advanced-glycation-endproduct-modified (AGEs-Col) type I collagen matrix. We investigated the possible role of different integrin receptors in osteoblastic adhesion, by co-incubating these cells either with beta-peptide (conserved sequence 113-125 of the beta subunit of integrins) or with two other peptides, RGD (Arg-Gly-Asp) and DGEA (Asp-Gly-Glu-Ala), which are recognition sequences for the alpha-subunits of alpha(1,5)beta(1) and alpha(2)beta(1) integrins. Collagen glycation inhibited the adhesion of UMR106 osteoblasts to the matrix (40% reduction versus Col, P > 0.001). beta-Peptide showed a dose- and glycation-dependent inhibitory effect on adhesion, and at a concentration of 100 microM decreased the attachment of UMR106 cells to both matrices (42% to Col, P<0.001and 25% to AGEs-Col, P<0.01). The synthetic peptides RGD (1mM) and DGEA (5mM) inhibited the attachment of UMR106 cells to Col (30 and 20%, P > 0.01 and P< 0.001, respectively), but not to AGEs-Col. beta-Peptide induced an increase in UMR106 cell clumping and a decrease in cellular spreading, while DGEA increased spreading with cellular extensions in multiple directions. These results indicate that both alpha and beta integrin subunits participate in osteoblastic attachment to type-I collagen, probably through the alpha(1,5)beta(1) and alpha(2)beta(1) integrins. AGEs-modification of type-I collagen impairs the integrin-mediated adhesion of osteoblastic cells to the matrix, and could thus contribute to the pathogenesis of diabetic osteopenia.  相似文献   

5.
Activated monocytic cells and neutrophils adhere to substrates coated with a wide variety of proteins including albumins, catalase, casein, and various extracellular matrix proteins. This adhesion can be specifically inhibited by antibodies directed to the beta 2 integrin subunit. This adhesion to protein substrates shares some similarities with two known protein-protein recognition systems with little apparent binding specificity, namely, the interactions of heat shock proteins and histocompatibility antigens with denatured proteins or peptides. Cell adhesion and affinity chromatography experiments were performed to test the hypothesis that monocytes and neutrophils adhere to and migrate on protein substrates due to the presence of cell surface receptors that recognize common protein structures such as denatured protein epitopes. Adhesion experiments revealed that activated monocytic cells adhere more rapidly and extensively on substrates coated with denatured protein versus native protein. Both adhesion and migration on such substrates in vitro was dependent on beta 2 integrins since blocking antibodies completely interfered with these cellular responses. Affinity chromatography experiments revealed that the Mac-1 and p150,95 integrins could be isolated from monocyte-differentiated HL-60 cells or neutrophils on a denatured protein-Sepharose column. Much greater yields of the receptors were obtained on a denatured versus native protein Sepharose column. The binding of these receptors was specific in that the LFA-1 beta 2 integrin did not bind to the denatured protein column. These data provide evidence that the adhesion of activated monocytes and neutrophils to many protein substrates in vitro is due to the ability of Mac-1 and p150,95 to directly bind to denatured proteins. A model of leukocyte adhesion and invasion whereby activated leukocytes denature extracellular proteins during diapedesis, making them suitable for recognition by beta 2 integrins, is proposed.  相似文献   

6.
Several receptors for the extracellular matrix protein collagen have been described which belong to the superfamily of receptors collectively known as integrins. Although several integrins have been shown to interact with extracellular matrix molecules via a common recognition site, arginine-glycine-aspartic Acid (RGD), within the beta 1 integrin subfamily, only the fibronectin receptor (alpha 5 beta 1) has been convincingly shown to interact with RGD. In the present study, we tested whether a collagen receptor could interact with RGD. Adhesion of an osteosarcoma cell line, MG-63, to immobilized collagen I was inhibited by the cyclic RGD-containing peptide, C*GRGDSPC* (where C* indicates that Cys participates in disulfide), and not by the linear GRGDSP or the non-RGD-containing cyclic peptide, C*GKGESPC*. Similarly, using collagen-Sepharose affinity chromatography, a heterodimeric protein could be specifically eluted from the column by the cyclic RGD peptide. Immunoprecipitations of the eluted material with monoclonal antibodies showed reactivity with the collagen receptor alpha 2 beta 1 and not alpha 3 beta 1. Our data demonstrate that RGD peptides can interact with the collagen receptor, and the differences seen with the linear and cyclic peptide suggest that the cyclic C*GRGDSPC* has a higher avidity for the receptor than the more flexible linear GRGDSP. In this paper, we provide supportive evidence that one possible mode of collagen interaction with alpha 2 beta 1 is via the RGD recognition sequence.  相似文献   

7.
Many extracellular matrix (ECM) proteins, particularly those in the vascular system, use their classical integrin-recognition motif Arg-Gly-Asp (RGD) to interact with integrins. The RGD motif is generally located in flexible peptide loops whose variable conformation enables the relatively few integrins with broad specificity, such as alpha(v)beta(3) and alpha(IIb)beta(3), to bind to a large variety of different ECM proteins. However, certain ECM constituents, such as collagens and laminins, interact with integrins in a conformation-dependent manner, in which both the linear structure and spatial arrangement of the polypeptides are important for the formation of active binding sites. These interactions provide high specificity for the communication of cells with distinct members of the ECM.  相似文献   

8.
Macrophages (Mφs) are multifunctional immune cells which are involved in the regulation of immune and inflammatory responses, as well as in tissue repair and remodeling. In tissues, Mφs reside in areas which are rich in extracellular matrix (ECM), the structural component which also plays an essential role in regulating a variety of cellular functions. A major ECM protein encountered by Mφs is type I collagen, the most abundant of the fibril-forming collagens. In this study, the adhesion of RAW 264.7 murine Mphis to native fibrillar, monomeric, and denatured type I collagen was investigated. Using atomic force microscopy, structural differences between fibrillar and monomeric type I collagen were clearly resolved. When cultured on fibrillar type I collagen, Mphis adhered poorly. In contrast, they adhered significantly to monomeric, heat-denatured, or collagenase-modified type I collagen. Studies utilizing anti-beta1 and -beta2 integrin adhesion-blocking antibodies, RGD-containing peptides, or divalent cation-free conditions did not inhibit Mphi; adhesion to monomeric or denatured type I collagen. However, macrophage scavenger receptor (MSR) ligands and anti-MSR antibodies significantly blocked Mphi; adhesion to denatured and monomeric type I collagen strongly suggesting the involvement of the MSR as an adhesion molecule for denatured type I collagen. Further analysis by Western blot identified the MSR as the primary receptor for denatured type I collagen among Mphi; proteins purified from a heat-denatured type I collagen affinity column. These findings indicate that Mphis adhere selectively to denatured forms of type I collagen, but not the native fibrillar conformation, via their scavenger receptors.  相似文献   

9.
We investigated in a colon adenocarcinoma cell line, the exclusive role of extracellular matrix (ECM) components in the absence of soluble factors regarding the integrin clustering processes, and their implication in cell adhesion, spreading and organization of the actin cytoskeleton. Caco-2 cells were shown to express at the plasma membrane 11 integrins, some of which (e.g. alpha3beta1, alpha5beta1, alpha6beta1/beta4, alpha8beta1 and alpha(v)beta1/beta5/beta6) were identified for the first time in this cell line. Cell adhesion and spreading processes were governed essentially by lamellipodium, the regulation of which was shown to be induced by two types of integrin clustering processes mediated by ECM proteins alone. During these phenomena, alpha2beta1, alpha(v)beta6 and alpha6beta1 integrins, the Caco-2 cell specific receptors of type IV collagen, fibronectin and laminin, respectively, were clustered in small focal complexes (point contacts), whereas alpha(v)beta5, the vitronectin receptor in this cell line, was aggregated in focal adhesions. The two levels of integrin clustering induced only F-actin cortical web formation organized in thin radial and/or circular filaments. We conclude thus that ECM components per se through their action on integrin clustering are involved in cell adhesion, cortical actin cytoskeleton organization and cell spreading.  相似文献   

10.
Primary normal human oral keratinocytes (NHOKs) terminally differentiate in serial subculture. To investigate whether this subculture-induced differentiation of NHOKs affects integrin expression and cell-matrix interaction, we studied the expression levels of integrin subunits and cellular response to the extracellular matrix (ECM) proteins in NHOKs at different population doublings. The phosphorylation statuses of focal adhesion kinase (FAK), extracellular signal regulated kinase (ERK), p38, and c-Jun amino-terminal kinase (JNK) were also determined in NHOK cells cultured on ECM proteins, to evaluate the functions of integrins with respect to cellular responses to ECM proteins. The expression levels of alpha3 and beta1 integrin subunits progressively decreased in NHOKs undergoing terminal differentiation. The ability of NHOKs to spread upon laminin and type I collagen significantly decreased in terminally differentiated oral keratinocytes. Keratinocyte migration was significantly increased on type I collagen for terminally differentiated NHOKs. Similar results were seen following preincubation of rapidly proliferating NHOKs with function-blocking antibodies to alpha3 or beta1 integrin subunit. In contrast, fibronectin had no effect on cellular responses in NHOKs, which were almost negligible in the expression levels of alpha5 integrin subunits. The extent of FAK phosphorylation in terminally differentiated NHOKs was notably lower than that of rapidly proliferating cells, but was enhanced in terminally differentiated cells that were cultured on type I collagen. Our results indicate that decreased expression of alpha3 and beta1 integrin subunits is responsible for differentiation-associated changes in cells behavior in terminally differentiated oral keratinocytes. Our data also show that the abrogation of the alpha5beta1 integrin function caused by omitting alpha5 subunit is linked to the loss of a cell-fibronectin interaction in human oral keratinocytes.  相似文献   

11.
Differentiation of skeletal tissues, such as bone, ligament and cartilage, is regulated by complex interaction between genetic and epigenetic factors. In the present study, we attempted to elucidate the possible role of cell-extracellular matrix (ECM) adhesion on the inhibitory regulation in chondrogenesis responding to the tension force. The midpalatal suture cartilages in rats were expanded by orthopedic force. In situ hybridization for type I and II collagens, immunohistochemical analysis for fibronectin, alpha5 and beta1 integrins, paxillin, and vinculin, and cytochemical staining for actin were used to demonstrate the phenotypic change of chondrocytes. Immunohistochemical analysis for phosphorylation and nuclear translocation of extracellular signal-regulated kinase (ERK)-1/2 was performed. The role of the cell-ECM adhesion in the response of the chondroprogenitor cells to mechanical stress and the regulation of gene expression of focal adhesion kinase (FAK) and integrins were analyzed by using an in vitro system. A fibrous suture tissue replaced the midpalatal suture cartilage by the expansive force application for 14 days. The active osteoblasts that line the surface of bone matrix in the newly formed suture tissue strongly expressed the type I collagen gene, whereas they did not express the type II collagen gene. Although the numbers of precartilaginous cells expressing alpha5 and beta1 integrin increased, the immunoreactivity of alpha5 integrin in each cell was maintained at the same level throughout the experimental period. During the early response of midpalatal suture cartilage cells to expansive stimulation, formation of stress fibers, reorganization of focal adhesion contacts immunoreactive to a vinculin-specific antibody, and phosphorylation and nuclear translocation of ERK-1/2 were observed. In vitro experiments were in agreement with the results from the in vivo study, i.e. the inhibited expression of type II collagen and upregulation in integrin expression. The arginine-glycine-aspartic acid-containing peptide completely rescued chondrogenesis from tension-mediated inhibition. Thus, we conclude that stretching activates gene expression of beta1 integrin and FAK and inhibits chondrogenesis through cell-ECM interactions of chondroprogenitor cells.  相似文献   

12.
13.
Secreted lysosomal cysteine proteases (cathepsins) are involved in degradation and remodeling of the extracellular matrix, thus contributing to cell adhesion and migration. Among the eleven human lysosomal cysteine proteases, only procathepsin X contains an RGD motif located in a highly exposed region of the propeptide, which may allow binding of the proenzyme to RGD-recognizing integrins. Here, we have tested procathepsin X for cell-adhesive properties and found that it supports integrin alpha(v)beta(3)-dependent attachment and spreading of human umbilical vein endothelial cells. Using site-directed mutants of procathepsin X, we proved that this effect is mediated by the RGD sequence within the proregion of the protease. Endogenous procathepsin X is transported to the plasma membrane, accumulates in vesicles at lamellipodia of the human umbilical vein endothelial cell, and is partly associated with the cell surface, as shown by immunofluorescence. In addition, procathepsin X is partly co-localized with integrin beta(3), as detected by immunogold electron microscopy. A direct interaction between endogenous procathepsin X and alpha(v)beta(3) was demonstrated by co-immunoprecipitation. Moreover, surface plasmon resonance analysis revealed significant and RGD-dependent binding of procathepsin X to integrin alpha(v)beta(3). Our results provide for the first time evidence that the extracellular function of cathepsin X may include binding to integrins thereby modulating the attachment of migrating cells to ECM components.  相似文献   

14.
Integrins are a complex family of divalent cation-dependent cell adhesion receptors composed of one alpha and one beta subunit noncovalently bound to one another. A subset of integrins contains the alpha v subunit in association with one of several beta subunits (e.g. beta 3, beta 5, beta 1). We have recently identified a novel integrin beta subunit, beta 6, that is present in a number of epithelial cell lines. Using a polyclonal antibody raised against the carboxyl-terminal peptide of beta 6, we have now identified the integrin heterodimer, alpha v beta 6, on the surface of two human carcinoma cell lines. Using affinity chromatography of lysates from the pancreatic carcinoma cell line, FG-2, we demonstrate that alpha v beta 6 binds to fibronectin, but not to vitronectin or collagen I. In contrast, the alpha v beta 5 integrin, which is also expressed on FG-2 cells, binds exclusively to vitronectin. Immobilized collagen I does not interact with alpha v integrins, but binds beta 1-containing integrins. Both alpha v beta 6 and alpha v beta 5 are eluted from their respective immobilized ligands by a hexa-peptide containing the sequence Arg-Gly-Asp (RGD). RGD is highly effective in the presence of Ca2+, somewhat less effective in Mg2+, and virtually inactive in Mn2+. These results suggest that alpha v beta 6 functions as an RGD-dependent fibronectin receptor in FG-2 carcinoma cells. In agreement with this notion, cell adhesion assays show that FG-2 cell attachment to fibronectin is only partially inhibited by anti-beta 1 integrin antibodies, implying that other fibronectin receptors may be involved. Taken together with recent reports on the vitronectin receptor function of alpha v beta 5, our results suggest that the previously described carcinoma cell integrin, alpha v beta x (Cheresh, D. A., Smith, J. W., Cooper, H. M., and Quaranta, V. (1989) Cell 57, 59-69), is a mixture of at least two different receptors: alpha v beta 5, mediating adhesion to vitronectin, and alpha v beta 6, mediating adhesion to fibronectin.  相似文献   

15.
Cardiac fibroblasts (CFs) regulate myocardial remodeling by proliferating, differentiating, and secreting extracellular matrix (ECM) proteins. B‐type natriuretic peptide (BNP) is anti‐fibrotic, inhibits collagen production, augments matrix metalloproteinases, and suppresses CF proliferation. Recently, we demonstrated that the ECM protein fibronectin (FN) augmented production of BNP's second messenger, 3′, 5′ cyclic guanosine monophosphate (cGMP) in CFs, supporting crosstalk between FN, BNP, and its receptor, natriuretic peptide receptor A (NPR‐A). Here, we address the specificity of FN to augment cGMP generation by investigating other matrix proteins, including collagen IV which contains RGD motifs and collagen I and poly‐L ‐lysine, which have no RGD domain. Collagen IV showed increased cGMP generation to BNP similar to FN. Collagen I and poly‐L ‐lysine had no effect. As FN also interacts with integrins, we then examined the effect of integrin receptor antibody blockade on BNP‐mediated cGMP production. On FN plates, antibodies blocking RGD‐binding domains of several integrin subtypes had little effect, while a non‐RGD domain interfering integrin αvβ3 antibody augmented cGMP production. Further, on uncoated plates, integrin αvβ3 blockade continued to potentiate the BNP/cGMP response. These studies suggest that both RGD containing ECM proteins and integrins may interact with BNP/NPR‐A to modulate cGMP generation. J. Cell. Physiol. 225: 251–255, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
The increase of tumor cell adhesion to the subendothelium in the presence of TGF-beta 1 is thought to be mediated by two major events: an enrichment of extracellular matrix proteins secreted by endothelial cells and an increase of the integrins on the surface of tumor cells. In this study, we analyzed the effect of TGF-beta 1 on the adhesion of a mammary adenocarcinoma cell line (MDA-MB-231) to the matrix of human microvascular endothelial cells (HMEC-1). The adhesion of TGF-beta 1-treated tumor cells to a non-treated matrix or to purified matrix proteins was enhanced, while no increase was observed when non-treated tumor cells were let to adhere to a matrix secreted by HMEC-1 in the presence of the cytokine. Thus, the increase of cell adhesion was due to the effect of TGF-beta 1 on tumor cells and not to the matrix enrichment induced by this cytokine. The hyper-adhesion was inhibited by the RGD peptide and EDTA indicating that integrins were involved. Integrin subunits concentrations (alpha 5, alpha v and beta 1) on the surface of TGF-beta 1-treated tumor cells were not modified, while confocal microscopy showed a reorganization of beta 1 integrin subunits on the cell surface and in the cytoplasm resulting in actin fibers reorganization in the cytoskeleton. This indicates that the enhanced adhesion of TGF-beta 1-treated MDA-MB-231 cells to the subendothelium is due to a qualitative change of integrins.  相似文献   

17.
The N-terminal fragment (FNZN) of the fibronectin-binding protein FNZ from Streptococcus equi subspecies zooepidemicus was investigated as to effects on murine cell interactions with extracellular matrix proteins. FNZN bound to immobilized fibronectin (FN) and native, but not denatured, collagen type I. FNZN had no effect on primary adhesion of cells from the murine myoblastic C2C12 cell line to immobilized fibronectin. C2C12 cells adhered to immobilized FNZN, a process that was not inhibited by anti-human FN IgG or by an inhibitor of integrin alphaVbeta3. C2C12 cells lack collagen-binding beta1 integrins and neither adhere to native collagen nor mediate contraction of three-dimensional collagen gels. FNZN stimulated collagen gel contraction by C2C12 cells but not adhesion of C2C12 cells to collagen. Experiments with an alphaVbeta3-inhibitor suggested that FNZN promoted contraction by a process requiring alphaVbeta3. Our data suggest that FNZN by binding to cells, collagen, and FN modulate complex adhesive processes mediated by the alphaVbeta3 integrin. Since alphaVbeta3-mediated contractile events function to counteract edema formation during inflammation, it is possible that FNZN and its secreted homologue FNE modulate edema responses in infected tissues.  相似文献   

18.
beta 1 integrin containing complexes have been implicated as the primary adhesion structures in many lymphocyte extracellular matrix (ECM) interactions. However, many B lymphocytes lack surface expression of the beta 1 subunit, implying that this subpopulation of lymphoid cells must employ alternate adhesion structures if they are to maintain an interactive capacity with ECM. An examination of the adherence properties of the beta 1 integrin-negative B cell line JY indicated that these cells exhibit little or no basal adherence to any of the ECM components examined. However, these cells could be induced to adhere to the ECM components fibronectin, laminin, and vitronectin following treatment with PMA. Blocking studies with monoclonal antibodies indicated the alpha v beta 3 integrin complex was involved in the attachment to each of these ligands. However, the adherence to fibronectin displayed a complex pattern of inhibition suggesting the involvement of other ECM receptors. The utilization of the alpha v beta 3 complex was not unique to the JY cell line. Other B cell lines were observed to employ alpha v beta 3, and these lines similarly lacked expression of beta 1 integrin. These results indicate that alpha v beta 3 can act as a lymphoid ECM-adhesion structure which may provide an alternative means for lymphocytes to interact with ECM. Furthermore, these studies provide evidence for the presence of lymphoid-associated alpha v beta 3 integrins with regulatable activity, which contrasts with the constitutive adhesive potential of these complexes when present on other cell types.  相似文献   

19.
Adhesion to extracellular matrix (ECM) proteins plays a crucial role in invasive fungal diseases. ECM proteins bind to the surface of Paracoccidioides brasiliensis yeast cells in distinct qualitative patterns. Extracts from Pb18 strain, before (18a) and after animal inoculation (18b), exhibited differential adhesion to ECM components. Pb18b extract had a higher capacity for binding to ECM components than Pb18a. Laminin was the most adherent component for both samples, followed by type I collagen, fibronectin, and type IV collagen for Pb18b. A remarkable difference was seen in the interaction of the two extracts with fibronectin and their fragments. Pb18b extract interacted significantly with the 120-kDa fragment. Ligand affinity binding assays showed that type I collagen recognized two components (47 and 80kDa) and gp43 bound both fibronectin and laminin. The peptide 1 (NLGRDAKRHL) from gp43, with several positively charged amino acids, contributed most to the adhesion of P. brasiliensis to Vero cells. Synthetic peptides derived from peptide YIGRS of laminin or from RGD of both laminin and fibronectin showed the greatest inhibition of adhesion of gp43 to Vero cells. In conclusion, this work provided new molecular details on the interaction between P. brasiliensis and ECM components.  相似文献   

20.
Type XVII collagen (BP180) is a keratinocyte transmembrane protein that exists as the full-length protein in hemidesmosomes and as a 120-kDa shed ectodomain in the extracellular matrix. The largest collagenous domain of type XVII collagen, COL15, has been described previously as a cell adhesion domain (Tasanen, K., Eble, J. A., Aumailley, M., Schumann, H., Baetge, J, Tu, H., Bruckner, P., and Bruckner-Tuderman, L. (2000) J. Biol. Chem. 275, 3093-3099). In the present work, the integrin binding of triple helical, human recombinant COL15 was tested. Solid phase binding assays using recombinant integrin alpha(1)I, alpha(2)I, and alpha(10)I domains and cell spreading assays with alpha(1)beta(1)- and alpha(2)beta(1)-expressing Chinese hamster ovary cells showed that, unlike other collagens, COL15 was not recognized by the collagen receptors. Denaturation of the COL15 domain increased the spreading of human HaCaT keratinocytes, which could migrate on the denatured COL15 domain as effectively as on fibronectin. Spreading of HaCaT cells on the COL15 domain was mediated by alpha(5)beta(1) and alpha(V)beta(1) integrins, and it could be blocked by RGD peptides. The collagen alpha-chains in the COL15 domain do not contain RGD motifs but, instead, contain 12 closely related KGD motifs, four in each of the three alpha-chains. Twenty-two overlapping, synthetic peptides corresponding to the entire COL15 domain were tested; three peptides, all containing the KGD motif, inhibited the spreading of HaCaT cells on denatured COL15 domain. Furthermore, this effect was lost by mutation from D to E (KGE instead of KGD). We suggest that the COL15 domain of type XVII collagen represents a specific collagenous structure, unable to interact with the cellular receptors for other collagens. After being shed from the cell surface, it may support keratinocyte spreading and migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号