首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane potential-current and mechanical tension of frog atrial muscle were studied in a Ca and Mg-free solution containing 1 mmol/l EGTA (Ca-free solution). Exposure to Ca-free solution resulted in a shortening of action potential duration within 1.5 min and a subsequent lengthening which were paralleled by changes in magnitude and duration of the contraction. Similarly, the slow inward current quickly disappeared and progressively reappeared with a quite slower inactivation time-course. Its reversal potential varied with [Na]0 as for a pure Na current. By 12 min in Ca-free solution, the tension-voltage relation could be interpreted as the sum of two components correlated with the slow inward current and the membrane potential respectively. Contractures in response to sustained large depolarizations had similar time courses in Ca-free solution and Ringer's containing Na-Ca exchange blockers (Mn2+ 15 mmol/l or La3+ 3 mmol/l). Intracellular Na loading by voltage-clamp depolarizations (40 mV from the resting potential for 100 ms, at 0.2 Hz) in the presence of Veratrine (7.5 X 10(-6) g/ml) caused a large progressive increase in tonic tension. An intracellular Ca2+ release is invoked, partly related to Na+ entry and partly to membrane potential changes. The potential dependent part could be influenced by intracellular Na+.  相似文献   

2.
Using the whole-cell voltage clamp (to determine the membrane current) and current clamp (to determine membrane potential) methods in conjunction with the nystatin-perforation technique, we studied the effect of methacholine (MCh) and other secretagogues on whole cell K and Cl currents in dissociated rhesus palm eccrine sweat clear cells. Application of MCh by local superfusion induced a net outward current (at a holding potential of ?60 mV and a clamp voltage of 0 mV), and a transient hyperpolarization by 5.6 mV, suggesting the stimulation of K currents. The net outward current gradually changed to the inward (presumably Cl) currents over the next 1 to 2 min of continuous MCh stimulation. During this time the membrane potential also changed from hyperpolarization to depolarization. The inward currents were increasingly more activated than outward (presumably K) currents during repeated MCh stimulations so that a net inward current (at ?60 mV) was observed after the fourth or fifth MCh stimulation. Ionomycin (10 μm) also activated both inward and outward current. The observed effect of MCh was abolished by reducing extracellular [Ca] to below 1 nm (Ca-free + 1 mm EGTA in the bath). MCh-activated outward currents were inhibited by 5 mm Ba and by 0.1 mm quinidine, although these agents also suppressed the inward currents. Bi-ionic potential measurements indicated that the contribution of Na to the membrane potential was negligible both before and after MCh or ISO (isoproterenol) stimulations and that the observed membrane current was carried mainly by K and Cl. MCh increased the bi-ionic potential by step changes in external K and Cl concentrations, further supporting that MCh-induced outward and inward currents represent K and Cl currents, respectively. Stimulation with ISO or FK (forskolin) resulted in a depolarization by about 55 mV and a net inward (most likely Cl) current independent of external Ca. CT-cAMP mimicked the effects of FK and ISO. The bi-ionic potential, produced by step changes in the external Cl concentration, increased during ISO stimulation, whereas that of K decreased. This indicates that the ISO-induced inward current is due to Cl current and that K currents were unchanged or slightly decreased during stimulation with ISO or 10 μm FK. Both myoepithelial and dark cells responded only to MCh (but not to FK) with a marked depolarization of the membrane potential due to activation of Cl, but not K, currents. We conclude that MCh stimulates Ca-dependent K and Cl currents, whereas ISO stimulates cAMP-dependent Cl currents in eccrine clear cells.  相似文献   

3.
The role of membrane depolarization in the histamine-induced contraction of the rabbit middle cerebral artery was examined by simultaneous measurements of membrane potential and isometric force. Histamine (1-100 microM) induced a concentration-dependent sustained contraction associated with sustained depolarization. Action potentials were observed during depolarization caused by histamine but not by high-K(+) solution. K(+)-induced contraction was much smaller than sustained contraction associated with the same depolarization caused by histamine. Nifedipine attenuates histamine-induced sustained contraction by 80%, with no effect on depolarization. Inhibition of nonselective cation channels with Co(2+) (100-200 microM) reversed the histamine-induced depolarization and relaxed the arteries but induced only a minor change in K(+)-induced contraction. In the presence of Co(2+) and in low-Na(+) solution, histamine-evoked depolarization and contraction were transient. We conclude that nonselective cation channels contribute to histamine-induced sustained depolarization, which stimulates Ca(2+) influx through voltage-dependent Ca(2+) channels participating in contraction. The histamine-induced depolarization, although an important and necessary mechanism, cannot fully account for sustained contraction, which may be due in part to augmentation of currents through voltage-dependent Ca(2+) channels and Ca(2+) sensitization of the contractile process.  相似文献   

4.
Depolarization of pancreatic beta-cells is critical for stimulation of insulin secretion by acetylcholine but remains unexplained. Using voltage-clamped beta-cells, we identified a small inward current produced by acetylcholine, which was suppressed by atropine or external Na(+) omission, but was not mimicked by nicotine, and was insensitive to nicotinic antagonists, tetrodotoxin, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DiDS), thapsigargin pretreatment, and external Ca(2+) and K(+) removal. This suggests that muscarinic receptor stimulation activates voltage-insensitive Na(+) channels distinct from store-operated channels. No outward Na(+) current was produced by acetylcholine when the electrochemical Na(+) gradient was reversed, indicating that the channels are inward rectifiers. No outward K(+) current occurred either, and the reversal potential of the current activated by acetylcholine in the presence of Na(+) and K(+) was close to that expected for a Na(+)-selective membrane, suggesting that the channels opened by acetylcholine are specific for Na(+). Overnight pretreatment with pertussis toxin or the addition of guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S) or guanosine-5'-O-(2-thiodiphosphate) (GDP-beta-S) instead of GTP to the pipette solution did not alter this current, excluding involvement of G proteins. Injection of a current of a similar amplitude to that induced by acetylcholine elicited electrical activity in beta-cells perifused with a subthreshold glucose concentration. These results demonstrate that muscarinic receptor activation in pancreatic beta-cells triggers, by a G protein-independent mechanism, a selective Na(+) current that explains the plasma membrane depolarization.  相似文献   

5.
Abstract— Cottonmouth moccasin snake venom (SV) was applied to the innervated membrane of the isolated single cell of the Sachs electric organ (electroplax) of the electric eel, Electrophorus electricus. Concentrations as low as 0.05 μg/ml irreversibly antagonized depolarization by carbamylcholine, whereas concentrations of 0.1 mg/ml or higher were required to directly and irreversibly depolarize and block electrical excitation. The active component of the venom was stable to boiling at acid pH, destroyed by boiling at alkaline pH and nondialyzable and corresponded to those fractions containing maximum phospholipase A activity demonstrable when isolated by paper electrophoresis and Sephadex filtration. Phospholipase C and lysolecithin in concentrations of 1 mg/ml and 0.2 mg/ml, respectively, depolarized and blocked electrical excitation, whereas lower concentrations did not antagonize depolarization by carbamylcholine. Triton X-100 (0.01 mg/ml) antagonized carbamylcholine, whereas 10-fold higher concentrations directly blocked electrical excitation. Hyaluronidase had no effect on resting or action potential but decreased the depolarizing response to carbamylcholine. At minimal concentrations which blocked the depolarizing response to carbamylcholine, SV caused only slight splitting of phospholipids in single cells of the Sachs organ. A concentration (1 mg/ml) of SV which blocked electrical excitation caused 80–100 per cent splitting of lecithin, phosphatidylethanolamine and phosphatidylserine, the three principal phospholipids of the electric tissue. Similar percentages of splitting of the latter two phospholipids but only about one-third of the lecithin occurred at SV concentration of 0.1 mg/ml. These results indicate that electrical excitability in the eel electroplax can be maintained in the presence of extensive phospholipid splitting. Depolarization and block of electrical excitation by relatively high concentrations of SV may have resulted from splitting of phospholipids, especially lecithin, or may have reflected action of lysophosphatide detergents produced as a result of the action of phospholipase A upon membranal phospholipids.  相似文献   

6.
Veratridine in low concentrations (20 μM) and at high pH (pH 9) acts as a synergist for carbamylcholine-induced depolarizations in the electroplax of electric eel. This potentiation is not sensitive to tetrodotoxin, but is significantly reduced by d-tubocurarine. Veratridine alone does not depolarize this preparation at the concentration used (20 μM). The increased carbamylcholine depolarization arising in the presence of veratridine does not simply sum with the carbamylcholine depolarization; the fractional contribution of veratridine to the total depolarization decreases as the carbamylcholine concentration is increased, and at 50 μM carbamylcholine no significant difference is apparent between groups with and without veratridine. Depolarization with increased external K+, unlike carbamylcholine depolarization, is not potentiated by veratridine.  相似文献   

7.
The "late" Ca channel in squid axons   总被引:6,自引:3,他引:3       下载免费PDF全文
Squid giant axons were injected with aequorin and then treated with seawater containing 50 mM Ca and 100-465 mM K+. Measurements of light production suggested a phasic entry of Ca as well as an enhanced steady-state aequorin glow. After a test K+ depolarization, the aequorin-injected axon was stimulated for 30 min in Li seawater that was Ca-free, a procedure known to reduce [Na]i to about one-half the normal concentration. Reapplication of the elevated K+ test solution now showed that the Ca entry was virtually abolished by this stimulation in Li. A subsequent stimulation of the axon in Na seawater for 30 min resulted in recovery of the response to depolarization by high K+ noted in a normal fresh axon. In axons first tested for a high K+ response and then stimulated in Na seawater for 30 min (where [Na]i increases approximately 30%), there was approximately eight fold enhancement in this response to a test polarization. Axons depolarized with 465 mM K seawater in the absence of external Ca for several minutes were still capable of producing a large phasic entry of Ca when [Ca]0 was made 50 mM, which suggests that it is Ca entry itself rather than membrane depolarization that produced inactivation. Responses to stimulation at 60 pulses/s in Na seawater containing 50 mM Ca are at best only 5% of those measured with high K solutions. The response to repetitive stimulation is not measurable if [Ca]o is made 1 mM, whereas the response to steady depolarization is scarcely affected.  相似文献   

8.
The effects of Ba2+ ions on twitches, K+-induced contractures, and on intracellularly recorded membrane potentials (Em) and depolarizations of frog skeletal muscle fibres were investigated. Exposure of toe muscles to choline--Ringer's solution with 10(-3) M Ba2+ with Ca2+ (1.08 mM) eliminated or very greatly reduced contractures produced by 60 mM K+. In contrast, not only did the same concentration of Ba2+ ions fail to depress the twitch tension of isolated semitendinosus fibres when added to Ringer's with Ca2+, but it even restored twitches that had been eliminated in a zero Ca2+ Ringer's solution. The resting Em of sartorius muscle fibres in choline--Ringer's solution was reduced about 20 mV by 10(-3) M Ba2+. This Ba2+ ion concentration also antagonized the K+-induced depolarization. Thus in the presence of 1 mM Ba2+, 20 mM K+ hyperpolarized rather than depolarized the fibres and 60 or 123 mM K+ produced only very slowly developing, small depolarizations. These results suggest that the loss of the K+-induced contracture in choline-Ringer's caused by Ba2+ ions is due to an inhibition of the K+-induced depolarization. The latter result is consistent with previous findings of other workers that Ba2+ ions block membrane K+ channels.  相似文献   

9.
The excitation and contraction features of innervated and sympathetically denervated smooth muscle strips from cat's nictitating membrane have been studied by single sucrose gap arrangement. Increasing of smooth muscle cells sensitivity to drugs were accompanied by elevation of membrane response and the ability to generation of action potentials. Action potentials have been induced by agonists or high potassium concentration in external solution and spontaneously. In innervated muscle action potentials have been evoked as a result of depolarization by high potassium concentration of TEA blockade of potassium conductance. Induced and spontaneously generated action potentials were blocked by organic and inorganic antagonists of potential dependent Ca++ channels. In Ca-free solution action potentials were absent but might be supported by Ba++. Decrease of Na+ had no effect on smooth muscle excitability. It is supposed that activation of potential depended Ca++ channels in smooth muscle cells with pharmaco-mechanical coupling are under influence of sympathetic nerves.  相似文献   

10.
An impure preparation of acetylcholinesterase from electroplax of the electric eel can be incorporated into a bimolecular lipid membrane. The acetylcholinesterase-modified bimolecular lipid membrane shows a concentration-dependent increase in membrane conductance elicited by several agonists (acetylcholine, carbamylcholine, phenyltrimethylammonium ion, tetraethylammonium ion, decamethonium ion, and nicotine) added to the compartment opposite that to which acetylcholinesterase was originally added. Affinity and efficacy of the various agonists in generating the conductance increase were measured from dose-response curves; these are in good quantitative agreement with corresponding values observed for depolarization of intact eel electroplax. The ion conduction pathways induced by agonists in the modified bimolecular lipid membrane show a slight cation selectivity, Na ? K > Cl (3:3:1), similar to that observed for the depolarized electroplax membrane. Evidence is presented that suggests that some components other than acetylcholinesterase induce the acetylcholine receptor response in the bimolecular lipid membrane.  相似文献   

11.
Membrane properties of isolated mudpuppy taste cells   总被引:13,自引:3,他引:10       下载免费PDF全文
The voltage-dependent currents of isolated Necturus lingual cells were studied using the whole-cell configuration of the patch-clamp technique. Nongustatory surface epithelial cells had only passive membrane properties. Small, spherical cells resembling basal cells responded to depolarizing voltage steps with predominantly outward K+ currents. Taste receptor cells generated both outward and inward currents in response to depolarizing voltage steps. Outward K+ currents activated at approximately 0 mV and increased almost linearly with increasing depolarization. The K+ current did not inactivate and was partially Ca++ dependent. One inward current activated at -40 mV, reached a peak at -20 mV, and rapidly inactivated. This transient inward current was blocked by tetrodotoxin (TTX), which indicates that it is an Na+ current. The other inward current activated at 0 mV, peaked at 30 mV, and slowly inactivated. This more sustained inward current had the kinetic and pharmacological properties of a slow Ca++ current. In addition, most taste cells had inwardly rectifying K+ currents. Sour taste stimuli (weak acids) decreased outward K+ currents and slightly reduced inward currents; bitter taste stimuli (quinine) reduced inward currents to a greater extent than outward currents. It is concluded that sour and bitter taste stimuli produce depolarizing receptor potentials, at least in part, by reducing the voltage-dependent K+ conductance.  相似文献   

12.
Sympathetic stimulation induces weak salivation compared with parasympathetic stimulation. To clarify this phenomenon in salivary glands, we investigated cAMP-induced modulation of Ca(2+)-activated Cl(-) secretion from rat parotid and submandibular acinar cells because fluid secretion from salivary glands depends on the Cl(-) secretion. Carbachol (Cch), a Ca(2+)-increasing agent, induced hyperpolarization of the cells with oscillatory depolarization in the current clamp mode of the gramicidin-perforated patch recording. In the voltage clamp mode at -80 mV, Cch induced a bumetanide-sensitive oscillatory inward current, which was larger in rat submandibular acinar cells than in parotid acinar cells. Forskolin and IBMX, cAMP-increasing agents, did not induce any marked current, but they evoked a small nonoscillatory inward current in the presence of Cch and suppressed the Cch-induced oscillatory inward current in all parotid acinar cells and half (56%) of submandibular acinar cells. In the current clamp mode, forskolin + IBMX evoked a small nonoscillatory depolarization in the presence of Cch and reduced the amplitude of Cch-induced oscillatory depolarization in both acinar cells. The oscillatory inward current estimated at the depolarized membrane potential was suppressed by forskolin + IBMX. These results indicate that cAMP suppresses Ca(2+)-activated oscillatory Cl(-) secretion of parotid and submandibular acinar cells at -80 mV and possibly at the membrane potential during Cch stimulation. The suppression may result in the weak salivation induced by sympathetic stimulation.  相似文献   

13.
The effect of acidosis on the electrical activity of isolated rat atrial myocytes was investigated using the patch-clamp technique. Reducing the pH of the bathing solution from 7.4 to 6.5 shortened the action potential. Acidosis had no significant effect on transient outward or inward rectifier currents but increased steady-state outward current. This increase was still present, although reduced, when intracellular Ca(2+) was buffered by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA); BAPTA also inhibited acidosis-induced shortening of the action potential. Ni(2+) (5 mM) had no significant effect on the acidosis-induced shortening of the action potential. Acidosis also increased inward current at -80 mV and depolarized the resting membrane potential. Acidosis activated an inwardly rectifying Cl(-) current that was blocked by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), which also inhibited the acidosis-induced depolarization of the resting membrane potential. It is concluded that an acidosis-induced increase in steady-state outward K(+) current underlies the shortening of the action potential and that an acidosis-induced increase in inwardly rectifying Cl(-) current underlies the depolarization of the resting membrane potential during acidosis.  相似文献   

14.
We have begun studying the role of membrane lipids in the exocytotic release process using the pheochromocytoma clone, PC12. The phospholipid fatty acid composition of the cells was modified by growth in the presence of specific fatty acids. None of the fatty acid modifications affected K+-stimulated release of [3H] norepinephrine. This observation indicates that the individual steps of the secretion process, including the extent of depolarization produced by K+, the response of the voltage-dependent Ca2+ channels to depolarization, and the subsequent steps in Ca2+-dependent exocytosis were unaffected by the fatty acid changes. In contrast, exocytosis evoked by stimulation of nicotinic cholinergic receptors with carbamylcholine or direct activation of action potential Na+ channels with veratridine was diminished in cells enriched with unsaturated fatty acids. The diminished output of the release systems was observed at all concentrations of carbamylcholine and veratridine tested. Since the events of exocytosis subsequent to Ca2+ influx were unaffected by unsaturated fatty acids, it appears likely that the magnitude of the depolarization produced by carbamylcholine and veratridine was reduced. The loss of carbamylcholine-stimulated release did not correlate with the simple presence of the fatty acids, but paralleled closely the time and concentration-dependent changes in the phospholipid fatty acid composition. However, when oleate and arachidonate were simultaneously added to the culture medium, the inhibitory effects on carbamylcholine-stimulated release were additive, whereas the changes in fatty acid composition were antagonistic. Thus, exposure of PC12 cells to unsaturated fatty acids causes specific, reversible decreases in the activities of at least 2 stimulus/secretion systems. However, the mechanistic explanation for these changes is not readily apparent from a simple analysis of total phospholipid fatty acid composition.  相似文献   

15.
The physiological properties of mechanical response and the ultrastructure in the longitudinal body wall muscle (LBWM) of the opisthobranch mollusc Dolabella auricularia were studied to obtain information about excitation-contraction coupling in somatic smooth muscles responsible for smooth and slow body movement of molluscans. The contracture tension produced by 400 mM K was not affected by Mn ions (5--10 mM) and low pH (up to 4.0), but was reduced by procaine (2 mM). The K-contracture tension was not readily eliminated in a Ca-free solution containing ethylene glycol-bis(beta-aminoethyl ether)N,N,N',N'- tetraacetate (EGTA). A large contracture tension was also produced by rapid cooling of the surrounding fluid from 20 degrees to 5 degrees--3 degrees C even when the preparation showed no mechanical response to 400 mM K after prolonged (more than 2 h) soaking in the Ca-free solution. These results indicate that the LBWM fibers contain a large amount of intracellularly stored Ca which can be effectively released by membrane depolarization. The fibers were connected with each other, forming the gap junctions, the desmosomes, and the intermediate junctions. The sarcoplasmic reticulum (SR) consisted of vesicular and tubular elements, and was mostly located near the fiber surface. The plasma membrane showed marked tubular invaginations of 600-800 A in diameter, with many branches (surface tubules), extending inwards for approximately 2 micron. These surface tubules were closely apposed to the SR, and the bridgelike structures analogous to those in the triadic junction of vertebrate skeletal muscle were observed in the space between the surface tubules and the SR. It is suggested that the influence of membrane depolarization is transmitted inwards along the surface tubules to cause the release of Ca from the SR.  相似文献   

16.
The intermediate (IK(Ca)) and small (SK(Ca)) conductance Ca(2+)-sensitive K(+) channels in endothelial cells (ECs) modulate vascular diameter through regulation of EC membrane potential. However, contribution of IK(Ca) and SK(Ca) channels to membrane current and potential in native endothelial cells remains unclear. In freshly isolated endothelial cells from mouse aorta dialyzed with 3 microM free [Ca(2+)](i) and 1 mM free [Mg(2+)](i), membrane currents reversed at the potassium equilibrium potential and exhibited an inward rectification at positive membrane potentials. Blockers of large-conductance, Ca(2+)-sensitive potassium (BK(Ca)) and strong inward rectifier potassium (K(ir)) channels did not affect the membrane current. However, blockers of IK(Ca) channels, charybdotoxin (ChTX), and of SK(Ca) channels, apamin (Ap), significantly reduced the whole-cell current. Although IK(Ca) and SK(Ca) channels are intrinsically voltage independent, ChTX- and Ap-sensitive currents decreased steeply with membrane potential depolarization. Removal of intracellular Mg(2+) significantly increased these currents. Moreover, concomitant reduction of the [Ca(2+)](i) to 1 microM caused an additional increase in ChTX- and Ap-sensitive currents so that the currents exhibited theoretical outward rectification. Block of IK(Ca) and SK(Ca) channels caused a significant endothelial membrane potential depolarization (approximately 11 mV) and decrease in [Ca(2+)](i) in mesenteric arteries in the absence of an agonist. These results indicate that [Ca(2+)](i) can both activate and block IK(Ca) and SK(Ca) channels in endothelial cells, and that these channels regulate the resting membrane potential and intracellular calcium in native endothelium.  相似文献   

17.
Membrane responses to norepinephrine in cultured brown fat cells   总被引:2,自引:0,他引:2       下载免费PDF全文
We used the "perforated-patch" technique (Horn, R., and A. Marty, 1988. Journal of General Physiology. 92:145-159) to examine the effects of adrenergic agonists on the membrane potentials and membrane currents in isolated cultured brown fat cells from neonatal rats. In contrast to our previous results using traditional whole-cell patch clamp, 1-23-d cultured brown fat cells clamped with the perforated patch consistently showed vigorous membrane responses to both alpha- and beta-adrenergic agonists, suggesting that cytoplasmic components essential for the thermogenic response are lost in whole-cell experiments. The membrane responses to adrenergic stimulation varied from cell to cell but were consistent for a given cell. Responses to bath-applied norepinephrine in voltage-clamped cells had three possible components: (a) a fast transient inward current, (b) a slower outward current carried by K+ that often oscillated in amplitude, and (c) a sustained inward current largely by Na+. The fast inward and outward currents were activated by alpha-adrenergic agonists while the slow inward current was mediated by beta-adrenergic agonists. Oscillating outward currents were the most frequently seen response to norepinephrine stimulation. Activation of this current, termed IK,NE, was independent of voltage and seemed to be carried by Ca2(+)-activated K channels since the current oscillated in amplitude at constant membrane potential and gradually decreased when the cells were bathed with calcium-free external solution. IK,NE had a novel pharmacology in that it could be blocked by 4-aminopyridine, tetraethylammonium, apamin, and charybdotoxin. Both IK,NE and the voltage-gated K channels also present in brown fat (Lucero, M. T., and P. A. Pappone, 1989a. Journal of General Physiology. 93:451-472) may play a role in maintaining cellular homeostasis in the face of the high metabolic activity involved in thermogenesis.  相似文献   

18.
Addition of low concentrations of acetylcholine or carbamylcholine to solutions bathing a black lipid membrane into which electroplax acetylcholinesterase has been incorporated elicits a dramatic increase in the membrane conductance. This change is prevented or reversed by addition of neostigmine or atropine to the system. The magnitude of the conductance increase of the acetylcholinesterase-treated membrane is proportional to the fourth power of the carbamylcholine concentration and, at constant carbamylcholine concentration, to the fourth power of the enzyme concentration in the medium.  相似文献   

19.
A contraction of the rabbit ear artery can be induced by depolarizing the cells with a K-rich solution if Ca is present. 10(-9)-10(-6) M noradrenaline and 10(-8)-10(-7) M histamine cause a contraction of this tissue without modifying the membrane potential. If the histamine concentration exceeds 10(-7) M some depolarization of the membrane also occurs. Both noradrenaline and histamine also induce a contraction in Ca-free medium, even if La is present. None of these stimuli produces action potentials or fluctuations of the membrane potential. Besides these tonic contractions, the ear artery can also produce phasic contractions when 10 mM TEA is added to the medium. Such contractions are caused by the appearance of action potentials which are Ca dependent and which are similar to those appearing in visceral smooth muscle. A study of 45Ca fluxes has revealed that K depolarization and noradrenaline cause only a small increase in 45Ca uptake by the cells, while noradrenaline also releases cellular Ca, even in Ca-free medium. A comparison of tension development and 45Ca release induced by noradrenaline in Ca-free medium suggests that Ca extrusion could be very efficient in the rabbit ear artery and that it could play a direct role in its relaxation.  相似文献   

20.
In micromolar concentrations both antagonists suppressed CA2+ entry and simultaneously elevate the agonist-induced plasma membrane depolarization due to Na+ inward current via these channels. Potentiation by nicardipine of the Na+ current induced by the platelet-activating factor, was revealed. Both antagonists caused plasma membrane depolarization suppressed by Na+ and Ca2+ ions. The depolarization disappeared after substitution of NaCl by an isotonic solution of choline chloride. The antagonists nicardipine and verapamil seem to modulate the platelet receptor-operated channels suppressing Ca2+ entry and elevating Na+ current via these channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号