首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The membrane-bound pigment system of green sulfur bacteria consists of light-harvesting bacteriochlorophyll a-protein and a ‘core complex’ that is associated with the reaction center (Kramer, H.J.M., Kingma, H., Swarthoff, T. and Amesz, J. (1982) Biochim. Biophys. Acta 681, 359–364). The isolation and properties of the core complex from Prosthecochloris aestuarii are described. The complex has a molecular mass of 200 ± 50 kDa and contains bacteriochlorophyll a, carotenoid and pigments absorbing near 670 nm (probably bacteriopheophytin c and an unidentified pigment). Fluorescence emission spectra and sodium dodecyl sulfate polyacrylamide gel electrophoresis showed the absence of light-harvesting bacteriochlorophyll a-protein. The preparation showed no reaction center activity. Circular and linear dichroism spectra indicated that the structure of the core complex was basically not altered by the isolation procedure. Comparison with the CD spectrum of the intrinsic membrane-bound pigment-protein complex indicates that the latter contains 14 bacteriochlorophyll a molecules (two subunits) belonging to the light-harvesting protein and about 20 bacteriochlorophyll a molecules belonging to the core complex.  相似文献   

2.
A method to simultaneously determine chlorophyll a, bacteriochlorophyll a, their respective pheophytins and elemental sulfur is described. In addition, indications are obtained for the presence of other bacteriochlorophylls, even in the presence of chlorophyll a. Samples are extracted with methanol in the dark and shaken with hexane in a separatory funnel. Virtually all chlorophyll a and pheophytin a are found in the hexane phase, in addition to about 70% of bacteriochlorophyll a and its pheophytin. The other bacteriochlorophylls are more or less evenly distributed over both phases. Sulfur is found in the hexane phase only. The method has been applied to lab and field samples. It has proven very useful for estimating vertical distribution of pigments in laminated microbial ecosystems consisting of cyanobacteria and purple sulfur bacteria.  相似文献   

3.
Raman spectra of bacteriochlorophyll a (BChl) bound to the soluble protein complex from Prosthecochloris aestuarii have been obtained at low temperature, using the resonance effect on their Qx for Soret electronic bands. These spectra show that the acetyl carbonyls of at least four of the seven molecules bound to the monomer subunit of the complex and the ketone carbonyls of at least five of them are oriented close to the mean plane of the conjugated part of the dihydrophorbin macrocycle. Up to three bacteriochlorophyll molecules may have their ketone carbonyls free from hydrogen-bonding and up to two may have their acetyl carbonyls similarly free. Several of the binding sites of the remaining conjugated carbonyls are probably the same as those binding the conjugated carbonyls of bacteriochlorophyll (and of bacteriopheophytin) in reaction centers and in antenna structures of purple bacteria and as those binding chlorophyll in the antenna of higher plants and algae. The present resonance Raman spectra confirm that the magnesium atoms of most of the seven bacteriochlorophylls are pentacoordinated. They also show that polarisation effects from their local environments induce changes in the groundstate structures of the dihydrophorbin skeletons of the complexed molecules with respect to those of isolated, monomeric bacteriochlorophyll. These changes are quasi-identical for the seven molecules. These environmental effects predominate over any structural change brought about by intermolecular bonding of the conjugated carbonyls or of the magnesium atoms. The dihydrophorbin rings of the seven molecules thus appear to be immersed in a nearly homogeneous medium of low permittivity, although specific van der Waals interactions may polarise the free carbonyls to quite different extents. The possible implications of these observations on the interpretation of the electronic spectrum of the set of complexed bacteriochlorophylls are discussed.  相似文献   

4.
Bacteriochlorophyll a-protein from Prosthecochloris aestuarii strain 2K was oriented in a pulsed electric field. The room temperature linear dichroism spectrum of the oriented protein in the Qy region of the bacteriochlorophyll a absorption exhibits a single asymmetrical peak at 813 nm with a shoulder extending to the blue. The ≈12 nm fullwidth of the linear dichroism peak is only about half that of the 300 K absorption spectrum. The linear dichroism at 813 nm was not saturated at field strengths of up to 15 kV/cm. The time dependence of the linear dichroism suggests that the orienting particles are aggregates of at least some tens of bacteriochlorophyll a-protein trimers. The linear dichroism peak coincides in wavelength with the 813-nm peak of the 300 K, 4th derivative absorption spectrum of the protein and is therefore attributed to the bacteriochlorophyll a Qy exciton transition observed in absorption at the same wavelength.  相似文献   

5.
Preliminary atomic coordinates are presented for the seven bacteriochlorophylls constituting the core of one subunit of the trimeric water soluble bacteriochlorophyll a-protein from the green photosynthetic bacterium Prosthecochloris aestuarii, strain 2K, formerly identified as Chlorobium limicola, strain 2K. The coordinates were derived from a 2.8 Å resolution electron density map based on four isomorphous heavy-atom derivatives, and adjusted to have stereochemically acceptable bond lengths and angles.  相似文献   

6.
The multi-layered microbial mats in the sand flats of Great Sippewissett Salt Marsh were found to have five distinct layers of phototrophic organisms. The top 1–3 mm contained oxygenic phototrophs. The lower 3–4 mm contained anoxygenic phototrophic bacteria. The uppermost gold layer contained diatoms and cyanobacteria, and chlorophyll a was the major chlorophyll. The next layer down was green and was composed of primarily filamentous cyanobacteria containing chlorophyll a. This was followed by a bright pink layer of bacteriochlorophyll b-containing purple sulfur bacteria. The lowest layer was a thin dull green layer of green sulfur bacteria containing bacteriochlorophyll c. The distribution of the chlorophylls with depth revealed that two-thirds of the total chlorophyll in the mat was composed of bacteriochlorophylls present in the anoxygenic phototrophys. The cyanobacterial layers and both purple sulfur bacterial layers had photoautotrophic activity. Light was attenuated in the uppermost layers so that less than 5% of the total radiation at the surface penetrated to the layers of anoxygenic phototrophys.  相似文献   

7.
A new bacteriochlorophyll from brown-colored chlorobiaceae   总被引:4,自引:0,他引:4  
A new bacteriochlorophyll has been isolated by thin layer chromatography from all strains of the brown-colored Chlorobiaceae Chlorobium phaeobacteroides and Chlorobium phaeovibrioides. The new bacteriochlorophyll e —like the bacteriochlorophylls c and d—represents the major amount of bacteriochlorophyll in the cells in addition to small amounts of bacteriochlorophyll a. Bacteriochlorophyll e can be differentiated from the bacteriochlorophylls c and d by its absorption maxima in aceton and its different R f -value in the thin layer chromatogram. The structure of the new bacteriochlorophyll e has been elucidated on the basis of mass spectra, 1H- and 13C-NMR-spectra, the UV/VIS-spectrum as well as IR-, ORD-, and CD-spectra. The new bacteriochlorophyll has the same relationship to bacteriochlorophyll c as chlorophyll b from green plants to chlorophyll a; therefore, bacteriochlorophyll e represents the first formyl-substituted chlorophyll from bacteria. Similar to the bacteriochlorophylls c and d, the new bacteriochlorophyll e consists of a mixture of at least three homologues which differ from each other by different substituents on the pyrrol rings II and III.Abbreviations Used DSM Deutsche Sammlung von Mikroorganismen, Göttingen - Bchl. bacteriochlorophyll - Bph. bacteriopheophytin - P phytol - Gg geranylgeraniol - F farnesol - C Chlorobium This work was made possible by the technology program of the Bundesministerium für Forschung und Technologie.  相似文献   

8.
H.J.M. Kramer  H. Kingma  T. Swarthoff  J. Amesz 《BBA》1982,681(3):359-364
Excitation spectra were measured at 4 K of bacteriochlorophyll a fluorescence in reaction center containing pigment-protein complexes obtained from the green photosynthetic bacterium Prosthecochloris aestuarii. Excitation spectra for the longest-wave emission (838 nm) showed bands of bacteriochlorophyll a, carotenoid, and of a pigment with absorption bands at 670, 438 and possibly near 420 nm, which is probably identical to an unidentified porphyrin described in the preceding paper (Swarthoff, T., Kramer, H.J.M. and Amesz, J. (1982) Biochim. Biophys. Acta 681, 354–358). At room temperature the longest-wave emission is stimulated by a magnetic field, which indicates that at least part of the emission is delayed fluorescence brought about by a reversal of the primary charge separation. Below about 150 K no stimulation was observed. The excitation spectra for short-wave emission (828 nm) were very similar to the absorption spectrum of the isolated antenna bacteriochlorophyll a-protein complex, and showed bands of bacteriochlorophyll a only. This indicates that two forms of the antenna protein exist that are spectroscopically similar: a soluble form that is released by treatment with guanidine hydrochloride and a bound form that remains attached to the reaction center complex. The bands of the antenna complexes were weak in the excitation spectra of the 838 nm fluorescence, which indicates that the efficiency of energy transfer to the reaction center complex is low.  相似文献   

9.
Absorption and CD spectra of bacteriochlorophyll a proteins and bacteriochlorophyll a reaction center complexes from two strains of Chlorobium limicola were recorded at 77 °K. Visual inspection showed that the Qy-band of chlorophyll in either protein was split into at least five components. Analysis of the spectra in terms of asymmetric Gaussian component pairs by means of computer program GAMET showed that six components are necessary to fit the spectra from strain 2K. These six components are ascribed to an exciton interaction between the seven bacteriochlorophyll a molecules in each subunit. The clear difference between the exciton splitting in the two bacteriochlorophyll a proteins shows that the arrangement of the chlorophyll molecules in each subunit must be slightly different.

The spectra for the bacteriochlorophyll a reaction center complexes have a component at 834 nm (absorption) and 832 nm (CD) which does not appear in the spectra of the bacteriochlorophyll a proteins. The new component is ascribed to a reaction center complex which is combined with bacteriochlorophyll a proteins to form the bacteriochlorophyll a reaction center complex. The complete absorption (or CD) spectrum for a given bacteriochlorophyll a reaction center complex can be described to a first approximation in terms of the absorption (or CD) spectrum for the corresponding bacteriochlorophyll a protein plus the new component ascribed to the reaction center complex.  相似文献   


10.
Assignments are proposed for the long wavelength absorption bands observed in the reaction center of Rhodopseudomonas viridis. The assignments are based on a theoretical treatment in which quantum mechanical calculations are first carried out on the individual chromophores of the reaction center. The energies and wave functions that are obtained are then introduced into an exciton-type perturbation treatment in which extensive configuration interaction is carried out between the excited states of the four bacteriochlorophylls and two bacteriopheophytins of the reaction center. Calculated values for absorption maxima, transition moments, linear dichroism, and rotational strength are compared with experiments in an attempt to distinguish among different assignments. The calculations alone do not lead to unambiguous assignments; indeed it is difficult to account for the reaction center spectra without introducing assumptions as to the effects of the protein on the energy levels of the individual molecules. Even if these effects are treated as free parameters, the experimental spectra still provide useful constraints that restrict the models that are possible. The major result of this work is that the weak 850-nm absorption band is due, primarily, to the higher energy exciton state of the bacteriochlorophyll special pair. Accounting for the 960-nm absorption band of the low energy exciton state of the special pair requires either that a large spectroscopic effect of the protein be introduced, or possibly, that charge transfer states play a major spectroscopic role. The difference in spectra seen in the formation of oxidized or triplet state reaction centers can be understood in terms of a combination of electrochromic effects and modified exciton interactions.  相似文献   

11.
Two-dimensional electronic chirality-induced signals of excitons in the photosynthetic Fenna-Matthews-Olson complex from two species of green sulfur bacteria (Chlorobium tepidum and Prosthecochloris aestuarii) are compared. The spectra are predicted to provide sensitive probes of local protein environment of the constituent bacteriochlorophyll a chromophores and reflect electronic structure variations (site energies and couplings) of the two complexes. Pulse polarization configurations are designed that can separate the coherent and incoherent exciton dynamics contributions to the two-dimensional spectra.  相似文献   

12.
The orientation of pigments and pigment-protein complexes of the green photosynthetic bacterium Prosthecochloris aestuarii was studied by measurement of linear dichroism spectra at 295 and 100 K. Orientation of intact cells and membrane vesicles (Complex I) was obtained by drying on a glass plate. The photochemically active pigment-protein complexes (photosystem-protein complex and reaction center pigment-protein complex) and the antenna bacteriochlorophyll a protein were oriented by pressing a polyacrylamide gel. The data indicate that the near-infrared transitions (Qy) of bacteriochlorophyll c and most bacteriochlorophyll a molecules have a relatively parallel orientation to the membrane, whereas the Qy transitions of the bacteriochlorophyll a in the antenna protein are oriented predominantly perpendicularly to the membrane. Carotenoids and the Qx transitions (590–620 nm) of bacteriochlorophyll a, not belonging to the bacteriochlorophyll a protein, have a relatively perpendicular orientation to the membrane. The absorption and linear dichroism spectra indicate the existence of different pools of bacteriochlorophyll c in the chlorosomes and of carotenoid and bacteriopheophytin c in the cell membrane. The results suggest that the photosystem-protein and reaction center pigment-protein complexes are oriented with their short axes approximately perpendicular to the plane of the membrane. The symmetry axis of the bacteriochlorophyll a protein has an approximately perpendicular orientation.  相似文献   

13.
The bacteriochlorophylls a of 38 strains belonging to 15 different species of the purple sulfur bacteria (Chromatiaceae) were studied with respect to the nature of the esterifying alcohol. The classical bacteriochlorophyll aP containing phytol is the main bacteriochlorophyll in all strains. The new bacteriochlorophyll aGg occurs as a minor component in addition to bacteriochlorophyll aP only in five species.The esterifying alcohol of the bacteriochlorophyll a of the reaction centers of all seven type strains of the Chlorobiaceae was shown to be phytol.The compounds withR f -values between the bacteriophaeophytins aP and aGg found by thin-layer-chromatography were shown to be artifacts of the preparation technique.All strains of the bacteriochlorophyll b-containing purple bacteria have phytol as the major esterifying alcohol; in addition, small amounts of bacteriochlorophyll b are esterified with another alcohol which is most probably all-trans-geranylgeraniol.

Abkürzungen DSM Deutsche Sammlung von Mikroorganismen - Bchl. Bacteriochlorophyll Herrn Prof. Dr. Dr. e. h. Hans Brockmann zum 70. Geburtstag gewidmet.  相似文献   

14.
J.C. Leclerc  J. Hoarau  R. Remy 《BBA》1979,547(2):398-409
Using fourth derivative analysis, differences between room and low temperature absorption spectra were studied. The positions of most absorption bands of the water-soluble, accessory pigment complex, the phycobilisome, remained unchanged after cooling. The stability of the wavelength positions of chlorophyll a forms in vivo as a function of temperature (Gulyaev, B.A. and Litvin, F.F. (1967) Biofizika 12, 845–854) was generally confirmed. The wavelength positions of all chlorophyll a forms in the P-700 chlorophyll a protein complex were unchanged when the preparations were cooled to ?196°C. Likewise, with other chlorophyll-containing materials: the light-harvesting chlorophyll ab protein complex and the thylakoids of higher plants, algae, and cyanobacteria, the wavelength positions of most chlorophyll a forms were stable upon cooling. An exception was a 680 nm chlorophyll a band which was generally split at low temperature into two bands with the materials investigated. An interpretation of the multiplicity of chlorophyll spectral forms and the spectral changes induced by cooling for these forms is given using exciton theory and the energy-coupling variation of chlorophyll a molecules.  相似文献   

15.
Spectral characterization of five chlorophyll-protein complexes   总被引:5,自引:5,他引:0       下载免费PDF全文
Sodium dodecyl sulfate-solubilized chloroplast internal membranes of higher plants (cowpea [Vigna unguiculata L. Walp], chinese cabbage [Brassica chinensi L.], and tobacco [Nicotiana tabacum L.]) are resolved by polyacrylamide gel electrophoresis into two chlorophyll a- and three chlorophyll a,b-proteins. A small portion (about 15%) of the membrane chlorophyll migrates as a component of high electrophoretic mobility and presumably consists of detergent-complexed, protein-free pigment.

One of the chlorophyll a-proteins is qualitatively similar to the P700 chlorophyll a-protein but contains a much larger proportion of total chlorophyll (about 30%) than previously reported. The second chlorophyll a-protein is a recently discovered component of the membrane and accounts for about 7% of the total chlorophyll. The absorption and fluorescence emission spectra of these two chlorophyll a-proteins differ.

The three chlorophyll a,b-proteins are components of the chloroplast membrane chlorophyll a,b-light-harvesting complex which was previously resolved as a single chlorophyll-protein band. The two additional chlorophyll a,b-proteins observed in our work probably represent larger aggregates contained within that membrane complex which are preserved under the solubilization and electrophoretic conditions used here.

  相似文献   

16.
Jeanette S. Brown 《BBA》1980,591(1):9-21
A spectroscopic study of chlorophyll-protein complexes isolated from Euglena gracilis membranes was carried out to gain information about the state of chlorophyll in vivo and energy transfer in photosynthesis. The membranes were dissociated by Triton X-100 and separated into fractions by sucrose gradient centrifugation and hydroxyapatite chromatography. Four different types of chlorophyll-protein complexes were distinguished from each other and from detergent-solubilized chlorophyll in these fractions by examination of their absorption, fluorescence excitation (400–500 nm) and emission spectra at low temperature. These types were: (1). A mixture of antenna chlorophyll a- and chlorophyll ab-proteins with an absorption maximum at 669 and emission at 682 nm; (2) a P-700-chlorophyll a-protein (chlorophyll: P-700 = 30 : 1), termed CPI with an absorption maximum at 676 nm and emission maxima at 698 and 718 nm; (3) a second chlorophyll a-protein (CPI-2) less enriched in P-700, with an absorption maximum at 676 nm and emission maxima at 680, 722 and 731 nm; (4) a third chlorophyll a-protein (CPa1) with no P-700, absorption maxima at 670 and 683 nm, and an unusually sharp emission maximum at 687 nm. Treatment of CPa1 with sodium dodecyl sulfate drastically altered its spectroscopic properties indicating that at least some chlorophyll-proteins isolated with this detergent are partially denatured. The results suggest that the complex absorption spectra of chlorophyll in vivo are caused by varying proportions of different chlorophyll-protein complexes, each with different groups of chlorophyll molecules bound to it and making up a unique entity in terms of electronic transitions.  相似文献   

17.
Candidatus Chloracidobacterium (Cab.) thermophilum is a recently discovered aerobic chlorophototroph belonging to the phylum Acidobacteria. From analyses of genomic sequence data, this organism was inferred to have type-1 homodimeric reaction centers, chlorosomes, and the bacteriochlorophyll (BChl) a-binding Fenna–Matthews–Olson protein (FMO). Here, we report the purification and characterization of Cab. thermophilum FMO. Absorption, fluorescence emission, and CD spectra of the FMO protein were measured at room temperature and at 77 K. The spectroscopic features of this FMO protein were different from those of the FMO protein of green sulfur bacteria (GSB) and suggested that exciton coupling of the BChls in the FMO protein is weaker than in FMO of GSB especially at room temperature. HPLC analysis of the pigments extracted from the FMO protein only revealed the presence of BChl a esterified with phytol. Despite the distinctive spectroscopic properties, the residues known to bind BChl a molecules in the FMO of GSB are well conserved in the primary structure of the Cab. thermophilum FMO protein. This suggests that the FMO of Cab. thermophilum probably also binds seven or possibly eight BChl a(P) molecules. The results imply that, without changing pigment composition or structure dramatically, the FMO protein has acquired properties that allow it to perform light harvesting efficiently under aerobic conditions.  相似文献   

18.
《BBA》1986,850(2):300-309
Chlorophyll-protein complexes previously isolated from low-light (80 μE·m−2·s−1) log cultures of the marine dinoflagellate, Glenodinium sp., were further characterized. SDS solubilization in combination with polyacrylamide gel electrophoresis in the presence of Deriphat 160-C resolved four discrete chlorophyll-protein bands. In order to elucidate the functional role of Glenodinium sp., room-temperature absorption and fluorescence spectra, protein composition, and pigment molar ratios were obtained for each complex. Results indicated that complex I was analogous to the green plant Photosystem I complex and was also associated with light-harvesting chlorophyll c2. Complex II was highly enriched in chlorophyll c2, devoid of peridinin, and demonstrated energy transfer from chlorophyll c to chlorophyll a within the complex, indicating the presence of a light-harvesting component. Based on peridinin: chlorophyll a ratios and fluorescence excitation spectra analyses for complexes III and IV, it was concluded that these complexes contained functional peridinin-chlorophyll a-protein complexes. Changing the ionic environment during isolation of the complexes, or altering the growth irradiance of Glenodinium sp. cultures, resulted in a significant alteration of distribution of chlorophyll a among the chlorophyll-protein complexes.  相似文献   

19.
We report comparative absorbance and fourth derivative absorbance spectra of two different bacteriochlorophyll a-proteins at 5 K in each of two different cryogenic solvent mixtures. In previous studies at 5 K each protein was observed in only one of these mixtures (not the same one). For the protein from Prosthecochloris aestuarii strain 2K, whose structure is known, the solvent effect is relatively small; for the protein from Chlorobium limicola f. sp. thiosulfatophilum strain 6230 (Tassajara), the effect is much more pronounced. From these results together with earlier results at 300 K, we conclude there may be slight conformational differences of the Prosthecochloris protein between the crystalline form used for X-ray diffraction studies and that in a cryogenic solvent. By comparing spectral features of the two proteins in the same solvent, we are able for the first time to assign all seven of the expected exciton levels in each protein. These occur at 793, 801, 806, 810, 814, 819, and 825 nm in the Prosthecochloris protein, and at 793, 802, 806, 810, 816, 820, and 823 nm in the Chlorobium protein.  相似文献   

20.
An improved procedure for the electrophoretic fractionation of higher plant chlorophyllprotein complexes is described. Compared with currently used systems, it greatly reduces the amount of chlorophyll that is found unassociated with protein after electrophoresis and resolves four chlorophyll-protein complexes. The slowest migrating band has a red adsorption maximum at 674 nm or greater, contains chlorophyll a but not chlorophyll b, and has a molecular weight equivalency of 110,000. These properties are similar to the previously described CPI or P700-chlorophyll a-protein complex. The amount of the total chlorophyll in this material is increased by two to three fold over that present in the equivalent complex fractionated by previous procedures. The other three chlorophyll-protein complexes contain both chlorophylls a and b, and have molecular weight equivalencies of 80,000, 60,000, and 46,000. None of these complexes seems to correspond directly to the previously characterized light-harvesting chlorophyll ab-protein complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号