首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A primary objective of the present study has been to determine the changes which occur in Rana catesbeiana liver organelle membranes during thyroxine-induced metamorphosis. To this end, enzyme and cytochrome profiles were determined for mitochondria, microsomes, and nuclear membrane fractions isolated from livers of R. catesbeiana tadpoles which had been fasted for 6 days at 15 +/- 0.5 degrees and then immersed in thyroxine, 2.6 X 10(-8) M, for periods of up to 12 days at 23.5 +/- 0.4 degrees. The ratio of total succinate-cytochrome c reductase activity in the initial homogenate fraction to the total activity of this mitochondrial "marker" enzyme recovered in the final mitochondrial fraction remained constant, approximately 0.5, throughout the course of thyroxine treatment; however, after a 3- to 4-day latency the mitochondrial protein mass recovered per unit mass of initial homogenate protein was found to increase significantly (approximately 2-fold by Day 10 of thyroxine treatment). A similar increase was also observed in the yield of microsomal, but not nuclear membrane, protein mass as a function of thyroxine treatment. Prolonged thyroxine treatment (12 days) resulted in approximately 50% decreases in tadpole liver homogenate and microsomal NADH-cytochrome c reductase specific activities; in contrast, mitochondrial and nuclear membrane NADH-cytochrome c reductase specific activities were not altered under the same conditions. In addition, homogenate and microsomal NADPH-cytochrome c reductase specific activities were found to have increased significantly after 12 days of thyroxine treatment; however, the specific activity of NADPH-cytochrome c reductase in the mitochondrial fraction was unchanged. It was also observed that thyroxine treatment resulted in increases in homogenate and microsomal glucose-6-phosphatase specific activities, whereas the mitochondrial as well as nuclear membrane glucose-6-phosphatase specific activities remained unchanged. Furthermore, in contrast to homogenate and mitochondrial monoamine oxidase specific activities, which decreased 30 and 40%, respectively, as a consequence of thyroxine treatment (12 days), the succinate-cytochrome c reductase and oligomycin-sensitive Mg2+ ATPase specific activities determined for these fractions increased significantly. In all instances, changes as a result of thyroxine treatment in membrane-localized homogenate or organelle enzyme specific activities were apparent only after a 3- to 4-day initial latent period. The in vitro effects of thyroxine (10(-10) - 10(-5) M) on the membrane-localized enzyme activities examined in this study were either negligible or, as in the case of mitochondrial succinate-cytochrome c reductase and microsomal NADH-cytochrome c reductase, opposite to the changes observed in response to in vivo thyroxine treatment, with the exception of microsomal NADPH-cytochrome c reductase activity which was enhanced approximately 2-fold by 10(-5) M thyroxine...  相似文献   

2.
A subfraction of mitochondrial membranes was prepared from osmotically lysed rat liver mitochondria by density gradient centrifugation which contained the inner boundary membrane and the contact sites between this membrane and the outer membrane. The fraction was composed of inner and outer limiting membrane components as shown by the presence of specific marker enzymes, monoamine oxidase and glycerolphosphate oxidase. Surface proteolysis analysis, studies of cytochrome c permeability, and electron microscopy revealed the localization of the inner membrane component within a right-side-out outer membrane vesicle. Moreover, the outer membrane component in this fraction exhibited a higher capacity to bind hexokinase and had a higher specific activity of glutathione transferase than the pure outer membrane. In freeze-fracture analyses the fraction showed fracture plane deflections which may be specific for hydrophobic interactions between the two membranes.  相似文献   

3.
Subcellular membrane fractions were isolated from the circular muscle of the corpus of canine stomach by differential and isopycnic sucrose density gradient centrifugation. Differential centrifugation gave a mitochondrial fraction enriched (fourfold) in cytochrome c oxidase and a microsomal fraction enriched (fourfold) in 5'-nucleotidase and NADPH-cytochrome c reductase over postnuclear supernatant. On the basis of a study using continuous gradient, a discontinuous sucrose density gradient was prepared to yield F1 to F5 fractions. The F3 fraction at the interface of 18-32% (w/w) sucrose was maximally enriched (13-fold) in 5'-nucleotidase. The fraction contained very low levels of cytochrome c oxidase but did contain NADPH-cytochrome c reductase (eightfold enrichment). The F4 fraction, at the interface of 32-40% (w/w) sucrose, was maximally enriched in NADPH-cytochrome c reductase (12-fold) and cytochrome c oxidase (6-fold). The distribution of the azide-insensitive. ATP-dependent Ca2+ uptake correlated very well with that of 5'-nucleotidase but less well with NADPH-cytochrome c reductase and not at all with cytochrome c oxidase. Sodium azide and ruthenium red inhibited the ATP-dependent Ca2+ uptake by the mitochondrial fraction and postnuclear supernatant, but not by the F3 fraction. ATP-dependent Ca2+ uptake by the F3 fraction was inhibited by calcium ionophores A23187 and ionomycin, but not by the sodium ionophore, monensin. These results are consistent with the hypothesis that the plasma membrane plays a major role ih regulating intracellular Ca2+ concentration in canine corpus circular muscle.  相似文献   

4.
In barley (Hordeum vulgare L.) root cells, activity for oxidizing protoporphyrinogen to protoporphyrin (protoporphyrinogen oxidase), a step in chlorophyll and heme synthesis, was found both in the crude mitochondrial fraction and in a plasma membrane enriched fraction separated by a sucrose gradient technique utilized for preparing plasma membranes. The specific activity (expressed as nanomoles of protoporphyrin formed per hour per milligram protein) in the mitochondrial fraction was 8 and in the plasma membrane enriched fraction was 4 to 6. The plasma membrane enriched fraction exhibited minimal cytochrome oxidase activity and no carotenoid content, indicating little contamination with mitochondrial or plastid membranes. Etioplasts from etiolated barley leaves exhibited a protoporphyrinogen oxidase specific activity of 7 to 12. Protoporphyrinogen oxidase activity in the barley root mitochondrial fraction and etioplast extracts was more than 90% inhibited by assay in the presence of the diphenyl ether herbicide acifluorfen methyl, but the activity in the plasma membrane enriched fraction exhibited much less inhibition by this herbicide (12 to 38% inhibition) under the same assay conditions. Acifluorfen-methyl inhibition of the organellar (mitochondrial or plastid) enzyme was maximal upon preincubation of the enzyme with 4 mm dithiothreitol, although a lesser degree of inhibition was noted if the organellar enzyme was preincubated in the presence of other reductants such as glutathione or ascorbate. Acifluorfen-methyl caused only 20% inhibition if the enzyme was preincubated in buffer without reductants. Incubation of barley etioplast extracts with the earlier tetrapyrrole precursor coproporphyrinogen and acifluorfen-methyl resulted in the accumulation of protoporphyrinogen, which could be converted to protoporphyrin even in the presence of the herbicide by the addition of the plasma membrane enriched fraction from barley roots. These findings have implications for the toxicity of diphenyl ether herbicides, whose light induced tissue damage is apparently caused by accumulation of the photoreactive porphyrin intermediate, protoporphyrin, when the organellar protoporphyrinogen oxidase enzyme is inhibited by herbicides. Our results suggest that the protoporphyrinogen that accumulates as a result of herbicide inhibition of the organellar enzyme can be oxidized to protoporphyrin by a protoporphyrinogen oxidizing activity that is located at sites such as the plasma membrane, which is much less sensitive to inhibition by diphenylether herbicides.  相似文献   

5.
A postsynaptic density (PSD) fraction, including some adherent subsynaptic web material, has been isolated from dog cerebral cortex by a short-procedure modification of methods of Davis and Bloom (21, 22) and Cotman and Taylor (20), using Triton X-100. The fraction has been visualized by thin-section, replica, and negative (phosphotungstic acid) staining electron microscopy and its proteins separated by high-resoltuion SDS gel electrophoresis. Morphologically, the preparation seems to be quite pure, with very little membrane contamination. The density is composed of protein, no nuclei acids, and very little phospholipids being detectable. The fraction had no ATPase or GTPase activity, but it did have a very small amount of cytochrome c oxidase activity (of a specific activity less than 0.5 percent that of a mitochondrial fraction) and a small amount of 5'- nucleotidase activity (of a specific activity between 6 and 7 percent that of a synaptic membrane fraction). Electron micrographs reveal cup-shaped structures approximately 400nm long and approximately 40nm wide, made up of apparent particles 13-28nm in diameter. However, en face views, and particularly micrographs of replicas and PTA-stained preparations, reveal a disk-shaped structure, outside diameter approximately 400 nm, in which filaments are seen to extend from the central part of the density. High resolution gel electrophoresis studies indicated some 15 major proteins and perhaps 10 or more minor ones; the predominant protein had a mol wt of 51,000, followed by ones at 45,000, 40,000, 31,000, 26,000, and several at 100,000. A comparison by gel electrophoresis of density fraction proteins with those of a lysed synaptosomal membrane fraction containing some adherent densities indicated some comigrating proteins, but the major membrane fraction protein, mol wt 52,000, was not found in the density fraction. Antibodies raised against the density fraction reacted with a preparation of solubilized synaptic membrane proteins. By both these criteria, it was considered that the density and the synaptic membrane have some proteins in common. By separately mixing (125)I-labeled myelin, synaptic vesicle, and mitochondrial fraction proteins with synaptosomes, and then isolating the density fraction from the mixture, it was concluded that a major 26,000 mol wt density fraction protein was common to both mitochondria and density, that none of the proteins of the density were contaminants from the mitochondrial fraction, that a minor approximately 150,000 band was a contaminant from the synaptic vesicle fraction, and that the moderately staining PSD fraction protein of 17,000 mol wt band was the result of contamination by the major basic protein of myelin. On the basis of the marker enzymatic assays and the mixing experiments, it is considered that the density fraction is moderately pure biochemically, and that its protein composition, aside from a few exceptions noted above, reflects its in situ character.  相似文献   

6.
Highly purified mitochondria from rat liver were separated into six sub-fractions by differential centrifugation. The sub-fractions represent a spectrum from “heavy” to “very light” mitochondria. Enzymes representative of mitochondrial compartments were assayed to see whether functional differences occurred among the various mitochondrial sub-fractions. Respiratory control and NADH oxidase activity, both of which are indicators of mitochondrial structural integrity, were also measured. An enzyme marker for endoplasmic reticulum (glucose-6-phosphatase, G-6-Pase) was also assayed. Specific activities for monoamine oxidase (outer membrane marker), cytochrome oxidase (inner membrane marker) and malate-cytochrome c reductase did not vary within experimental error in all sub-fractions; similarly, for respiratory control and NADH oxidase activity. Malate dehydrogenase, a component of malate-cytochrome c reductase is located within the matrix surrounded by the inner membrane. Specific activity of adenylate kinase (located between the outer and inner membrane) decreased markedly from the “heavy” mitochondria to the “very light” fractions. Specific activity for G-6-Pase, very low in the “heavy” fractions, increased markedly in the “light” to “very light” fractions. Isopycnic density centrifugation on a linear sucrose density gradient of each of the fractions indicated that the correlation coefficient for the sucrose concentrations at which cytochrome oxidase and G-6-Pase activities peaked was 0.995. Thus the “light” to “very light” mitochondria may represent mitochondria whose outer membrane is still contiguous with the endoplasmic reticulum. Microsomes containing the endoplasmic reticulum peaked on the gradient at a significantly lower sucrose concentration than any of the mitochondrial sub-fractions. A buoyant effect of endoplasmic reticulum still attached to any of the mitochondrial sub-fractions would be expected to lower the density of attached mitochondria and thus give rise to “light” and “very light” mitochondria.  相似文献   

7.
–From a pool of hemispheres, optic lobes and cerebellum of chick 3 fractions containing synaptosomes have been prepared. They were obtained by subcellular fractionation of a homogenate and centrifugation of a crude mitochondrial suspension on a discontinuous Ficoll density gradient in iso-osmoticsucrose. The synaptosomal fractions were isolated from bands at the interface of 5–9, 9–12 and 12–16% Ficoll. The characterization of these fractions by marker enzymes, such as lactate dehydrogenase, acetyl-cholinesterase, monoamine oxidase, acid phosphatase and rotenone-sensitive and -insensitive NADH: cytochrome c reductase is reported. Electron microscopic analyses showed that the first fraction (AB) at the 5–9% Ficoll interface contained myelin and other membrane fragments as well as synaptosomes, the second fraction (C) at the 9–12% Ficoll interface contained mainly synaptosomes, and the third fraction (D) at the 12–16% Ficoll interface contained synaptosomes and free mitochondria. A fourth fraction (E) was obtained as a pellet, and was enriched in free mitochondria. There was fair agreement between the distribution pattern of the marker enzyme activities and the particles of the fractions seen by electron microscopy. The content of glycoprotein-bound N-acetylneuraminic acid and total phospholipid of these fractions has been determined. Relative to the mitochondrial fraction (E) the synaptosome fraction contained on basis of particulate protein, respectively, 2–3 times as much protein-bound N-acetylneuraminic acid and 10–20 per cent more total phospholipid.  相似文献   

8.
The activity of cholinephosphotransferase was measured in the subcellular fractions of guinea-pig lung. The specific activity of the enzyme was highest in a fraction, intermediate in density between mitochondria and microsomes. Similar subcellular distribution patterns were observed for both cholinephosphotransferase and rotenone-insensitive NADH-cytochrome c reductase, an enzyme associated with the outer membrane of mitochondria and endoplasmic reticulum, suggesting that cholinephosphotransferase may be localized in both of these organelles. The distribution of cholinephosphotransferase activity in the subfractions of mitochondria and the intermediate fractions recovered by linear density gradient paralleled that of the mitochondrial outer membrane marker enzyme, monoamine oxidase. RNA content of a subfraction enriched in cholinephosphotransferase and monoamine oxidase was not typical to that of either rough or smooth endoplasmic reticulum. The results of this study suggest that in guinea-pig lung, cholinephosphotransferase is localized in both the outer membrane of mitochondria, and the endoplasmic reticulum.  相似文献   

9.
On solubilization with Triton X-100 of sarcoplasmic reticulum vesicles isolated by differential centrifugation, the Ca2+-ATPase is selectively extracted while approximately half of the initial Mg2+-, or ‘basal’, ATPase remains in the Triton X-100 insoluble residue. The insoluble fraction, which does not contain the 100 000 dalton polypeptide of the Ca2+-ATPase, contains high levels of cytochrome c oxidase. Furthermore, its Mg2+-ATPase activity is inhibited by specific inhibitors of mitochondrial ATPase, indicating that the ‘basal’ ATPase separated from the Ca2+-ATPase by detergent extraction originates from mitochondrial contaminants.To minimize mitochondrial contamination, sarcoplasmic reticulum vesicles were fractionated by sedimentation in discontinuous sucrose density gradients into four fractions: heavy, intermediate and light, comprising among them 90–95% of the initial sarcoplasmic reticulum protein, and a very light fraction, which contains high levels of Mg2+-ATPase. Only the heavy, intermediate and light fractions originate from sarcoplasmic reticulum; the very light fraction is of surface membrane origin. Each fraction of sarcoplasmic reticulum origin was incubated with calcium phosphate in the presence of ATP and the loaded fractions were separated from the unloaded fractions by sedimentation in discontinuous sucrose density gradients. It was found that vesicles from the intermediate fraction had, after loading, minimal amounts of mitochondrial and surface membrane contamination, and displayed little or no Ca2+-independent basal ATPase activity. This shows conclusively that the basal ATPase is not an intrinsic enzymatic activity of the sarcoplasmic reticulum membrane, but probably originates from variable amounts of mitochondrial and surface membrane contamination in sarcoplasmic reticulum preparations isolated by conventional procedures.  相似文献   

10.
NADH-dependent 3,4-benzpyrene hydroxylase activity was detected in the purified mitochondrial outer membrane fraction from the livers of rats treated with 3-methylcholanthrene. The specific activity in the outer membrane fraction is nearly equal to that of microsomes, a level too high to be accounted for only by the microsomal contamination. On the other hand, the NADPH-dependent 3,4-benzpyrene hydroxylase activity in the outer membrane fraction is about 50% of that of microsomes. The ratio of the specific activity of NADPH- to NADH-dependent 3,4-benzpyrene hydroxylase in microsomal fraction was about 3.5, while that of the outer membrane fraction was about 1.5. Moreover, it was found that NADH-dependent 3,4-benzpyrene hydroxylase activity in mitochondrial outer membrane from control rat liver was cyanide-insensitive, while that in microsomes was cyanide-sensitive. These results suggest the presence in the mitochondrial outer membrane fraction of aryl hydrocarbon hydroxylase activity which uses as electron donor NADH nearly to the same extent as NADPH. The hydroxylase system is composed of cyanide-insensitive cytochrome P-450 and is inducible markedly by 3-methylcholanthrene treatment. The probable electron transfer pathways in the mitochondrial outer membrane cytochrome P-450 oxidase system are discussed.  相似文献   

11.
We have utilized an in situ rat coronary ligation model to establish a PKC-epsilon cytochrome oxidase subunit IV (COIV) coimmunoprecipitation in myocardium exposed to ischemic preconditioning (PC). Ischemia-reperfusion (I/R) damage and PC protection were confirmed using tetrazolium-based staining methods and serum levels of cardiac troponin I. Homogenates prepared from the regions at risk (RAR) and not at risk (RNAR) for I/R injury were fractionated into cell-soluble (S), 600 g low-speed centrifugation (L), Percoll/Optiprep density gradient-purified mitochondrial (M), and 100,000 g particulate (P) fractions. COIV immunoreactivity and cytochrome-c oxidase activity measurements estimated the percentages of cellular mitochondria in S, L, M, and P fractions to be 0, 55, 29, and 16%, respectively. We observed 18, 3, and 3% of PKC-delta, -epsilon, and -zeta isozymes in the M fraction under basal conditions. Following PC, we observed a 61% increase in PKC-epsilon levels in the RAR M fraction compared with the RNAR M fraction. In RAR mitochondria, we also observed a 2.8-fold increase in PKC-epsilon serine 729 phosphoimmunoreactivity (autophosphorylation), indicating the presence of activated PKC-epsilon in mitochondria following PC. PC administered before prolonged I/R induced a 1.9-fold increase in the coimmunoprecipitation of COIV, with anti-PKC-epsilon antisera and a twofold enhancement of cytochrome-c oxidase activity. Our results suggest that PKC-epsilon may interact with COIV as a component of the cardioprotection in PC. Induction of this interaction may provide a novel therapeutic target for protecting the heart from I/R damage.  相似文献   

12.
An investigation was conducted into the isolation of plasma membrane vesicles from primary roots of corn (Zea mays L., WF9 × M14) by sucrose density gradient centrifugation. Identification of plasma membranes in cell fractions was by specific staining with the periodic-chromic-phosphotungstic acid procedure. Plasma membrane vesicles were rich in K+-stimulated ATPase activity at pH 6.5, and equilibrated in linear gradients of sucrose at a peak density of about 1.165 g/cc. It was necessary to remove mitochondria (equilibrium density of 1.18 g/cc) from the homogenate before density gradient centrifugation to minimize mitochondrial contamination of the plasma membrane fraction. Endoplasmic reticulum (NADH-cytochrome c reductase) and Golgi apparatus (latent IDPase) had equilibrium densities in sucrose of about 1.10 g/cc and 1.12 to 1.15 g/cc, respectively. A correlation (r = 0.975) was observed between K+-stimulated ATPase activity at pH 6.5 and the content of plasma membranes in various cell fractions. ATPase activity at pH 9 and cytochrome c oxidase activity were also correlated.  相似文献   

13.
Male C57BL/6 mice were exposed to 1% (w/w) (+)- or (?)-2-ethylhexanoic acid or an equimolar mixture of these enantiomers in their diet for 4 or 10 days. A significant increase in liver weight and a 2- to 3-fold increase in the protein content of the mitochondrial fraction were seen in all cases. Peroxisomal palmitoyl-CoA oxidation was increased 2- to 3.5-fold after 4 days of treatment and 4- to 5-fold after 10 days, while the corresponding increases in peroxisomal lauroyl-CoA oxidase activity were 2- to 3-fold and 9- to 12-fold, respectively. Peroxisomal catalase activity was unchanged, whereas the microsomal and cytosolic activities were increased 2- to 3-fold and 6- to 16-fold, respectively. These treatments also induced microsomal ω-hydroxylation of lauric acid 7-fold and soluble epoxide hydrolase activity in the mitochondrial and cytosolic fractions, as well as microsomal epoxide hydrolase activity about 50–100%. The only significant differences observed between the effects of (+)-2-ethylhexanoic acid and its (?)-enantiomer were on peroxisomal palmitoyl-CoA oxidation and lauroyl-CoA oxidase activity after 4 days of treatment. In both these cases the (+)-enantiomer resulted in increases which were 50–75% greater than those seen with the (?)-form. © 1994 Wiley-Liss, Inc.  相似文献   

14.
Plasma membranes were isolated from lactating bovine mammary gland. Two crude membrane fractions; medium/d 1.033 (light membrane) and 1.033/1.053 interfaces (heavy membrane), were obtained by Ficoll density gradient centrifugation of osmotically washed microsomal fraction. Two crude membranes were further purified separately by sucrose density gradient centrifugation. Both light and heavy membranes banded at a sucrose density of 1.14. The purified membranes appeared as heterogeneous smooth membrane vesicles on electron microscopy. The contaminating suborganelles were not detected. The yield of the purified membranes relative to the homogenate was 1.2%. The degree of purity of the membranes was shown by a great increase in the specific activity of 5′-nucleotidase over the homogenate of 20-fold for light membrane and of 16-fold for heavy membrane. The relative activities of Mg2+-ATPase, (Na+ + K+)-ATPase, γ-glutamyl transpeptidase, phosphodiesterase I, akaline phosphatase and xanthine oxidase were also high (12–18-times) and nearly 20% of these enzymes was recovered. The activity of marker enzyme for mitochondria, endoplasmic reticulum and Golgi apparatus was very low, while that of acid phosphatase for lysosome was relatively high (5-times). DNA and RNA contents were very low. The major polypeptides rich in other suborganelles were not detected profoundly in the membrane fraction and the polypeptide compositions in both light and heavy membranes were similar upon SDS-polyacrylamide gel electrophoresis.  相似文献   

15.
3 beta-Hydroxysteroid dehydrogenase (HSD) is located in the endoplasmic reticulum and mitochondria. To determine whether the separate enzymes play different roles in steroidogenesis, the specific activity (SA) of both were measured at four different stages of the mouse estrous cycle. Microsomal HSD activity changed little throughout, averaging 8.7 +/- 0.7 nmol progesterone/min/mg protein. In contrast, mitochondrial HSD activity changed dramatically at diestrus, increasing to 14.4 nmol progesterone/min/mg protein. When measured at proestrus, estrus, and metestrus, mitochondrial HSD activity was 5.5, 7.4, and 4.5 nmol progesterone/min/mg protein, respectively. To ascertain whether the increase in mitochondrial HSD activity at diestrus could be due to a preferential induction of enzyme, its SA and the SA of a mitochondrial inner membrane enzyme, cytochrome C oxidase, were compared to the SA of a mitochondrial outer membrane enzyme, rotenone-insensitive NADH cytochrome C reductase. The SA of all three enzymes changed proportionally at diestrus, suggesting that the increase in mitochondrial HSD activity was not due to its preferential induction. Rather, we believe that the HSD activity in the mitochondrial fraction, as measured at the four stages of the estrous cycle, is a reflection of the combined contributions from an ever changing population of ovarian cells. Mitochondria from luteal cells have the highest HSD activity, and are very likely responsible for the major synthesis of progesterone during the luteal phase.  相似文献   

16.
The oxidation of the side chain of 3 alpha, 7 alpha-dihydroxy-5 beta-cholestanoic acid (DHCA) into chenodeoxycholic acid has been studied in subcellular fractions of rat liver. The product was separated from the substrate by high pressure liquid chromatography and identified by gas-liquid chromatography-mass spectrometry. The highest specific rate of conversion was found in the heavy (M) and the light (L) mitochondrial fractions with the highest enrichment in the L fraction. Washing the M fraction reduced the side chain cleavage activity by 90%. The peroxisomal marker enzyme urate oxidase was reduced to the same extent. The activity found in the M fraction may thus be due to peroxisomal contamination. After centrifugation of the L fraction on a Nycodenz density gradient, the highest specific activity for side chain cleavage of DHCA (31 nmol X mg-1 X h-1) was found in the fraction with the highest peroxisomal marker enzyme activity. This fraction also catalyzed conversion of 3 alpha,7 alpha,12 alpha-5 beta-cholestanoic acid (THCA) into cholic acid at the highest rate (32 nmol X mg-1 X h-1). The peroxisomal oxidation of DHCA into chenodeoxycholic acid required the presence of ATP, CoA, Mg2+, and NAD in the incubation medium. The reaction was not inhibited by KCN. It is concluded that rat liver peroxisomes contain enzymes able to catalyze the cleavage of the side chain of both DHCA and THCA. The enzymes involved are similar to, but not necessarily identical to, those involved in the peroxisomal beta-oxidation of fatty acids.  相似文献   

17.
The activity of cytochrome oxidase (an inner mitochondrial membrane marker) in mouse mammary gland homogenates was found to increase five- to sixfold from late pregnancy to day 8 of lactation, while that of monoamine oxidase (an outer membrane marker) increased only about 25%. The specific activity of cytochrome oxidase in the isolated mitochondria decreased slightly over the same period while the specific activity of monoamine oxidase decreased fivefold. This reflects the fact that both cytochrome oxidase and mitochondrial protein are increasing at a much greater rate than is monoamine oxidase activity. Mixing experiments preclude the possibility that the release or removal of an inhibitor or stimulator produces the changes in enzymatic activity. The cytochrome oxidase to monoamine oxidase ratio was followed throughout the pregnancy-lactation cycle in total mammary homogenates, isolated mammary parenchymal cells, and isolated mammary mitochondria. In each preparation the pattern was the same with little change in the ratio until late pregnancy; and then a three- to fourfold increase occurred and the values reached a maximum by day 8 of lactation. These experiments were interpreted as demonstrating that the observed enzymatic changes are reflective of alterations in the mitochondria of the mammary parenchymal cell population. Electron micrographs of mid-pregnant and mid-lactating mammary parenchymal cells in situ were prepared, and distinct changes in the mitochondrial morphology noted. The most significant and obvious change is the large increase in the number of inner membrane cristae and an increase in matrix density in the lactating gland cell. Therefore, both enzymatic and morphological studies support the concept of an expansion of the mitochondrial inner membrane during presecretory differentiation in the mouse mammary parenchymal cell.  相似文献   

18.
1. The effects of the non-ionic detergent Triton X-100 on the heterogeneity of monoamine oxidase activities were studied and compared in synaptic (fractions SM and SM2) and non-synaptic (fraction M) brain mitochondria and liver mitochondria. 2. Triton X-100 inhibited type A and type B monoamine oxidase activities in all four mitochondrial fractions in a concentration-dependent manner. Liver mitochondrial enzymatic activities were much more sensitive to this inhibition than those of brain mitochondria. The activities in the SM fraction of synaptic brain mitochondria were the least susceptible. 3. In all four mitochondrial fractions, type A activities were more sensitive to inhibition than type B activities. 4. These results suggest that the membrane micro-environment around the enzyme molecules in situ may be important in the functional expression of the activity of the enzyme.  相似文献   

19.
In Cuscuta reflexa 16% of the hexokinase activity was associated with the particulate fraction and the rest in the 105 000 g, 1 hr supernatant. In a sucrose gradient, hexokinase activity banded with an organelle at a mean density of 1.20 g cm?3, coinciding with the mitochondrial marker, cytochrome c oxidase. Fractionation of isolated mitochondria by digitonin showed the presence of the enzyme in the outer membrane along with its marker rotenone-insensitive NADH cytochrome c reductase. No latent form of hexokinase was detected.  相似文献   

20.
A membrane fraction of intermediate density between inner and outer membrane was isolated by density gradient centrifugation from osmotically disrupted mitochondria of rat liver, brain, and kidney. The fraction was hexokinase rich and could therefore be further purified using specific antibodies against hexokinase and immunogold labelling techniques. In agreement with recent findings the gradient fraction which cosedimented with hexokinase contained the boundary membrane contact sites because it was composed of outer and inner membrane components and beside hexokinase, was enriched also by activity of creatine kinase and nucleoside diphosphate kinase. In contrast the activity of adenylate kinase appeared to be concentrated beyond the contact sites in the outer membrane fraction. By employing surface proteolysis analysis and specific blockers of the outer membrane pore we observed that the location of the kinases relative to the membrane components in the contact fraction resembled that of intact mitochondria. This specific organization of some peripheral kinases in the contact sites suggested an important role of the voltage dependence of the outer membrane pore, in that the pore may become limiting in anion exchange because of influence of the inner membrane potential on the closely attached outer membrane. Such control of anion exchange would lead to a dynamic compartmentation at the mitochondrial surface by the formation of contact sites, which may explain the preferential utilization of cytosolic creatine by the mitochondrial creatine kinase, as postulated in the phosphocreatine shuttle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号