首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CONSTANS-like gene family has been shown to evolve exceptionally fast in Brassicaceae. In the present study we analyzed sequence polymorphism and divergence of three genes from this family: COL1 (CONSTANS-LIKE 1) and two copies of CO (CONSTANS), COa and COb, in B. nigra. There was a significant fourfold difference in overall nucleotide diversity among the three genes, with BniCOb having twice as much variation as BniCOL1, which in turn was twice as variable as BniCOa. The ratio of nonsynonymous-to-synonymous substitutions (dN/dS) was high for all three genes, confirming previous studies. While we did not detect evidence of selection at BniCOa and BniCOb, there was a significant excess of polymorphic synonymous mutations in a McDonald-Kreitman test comparing COL1 in B. nigra and A. thaliana. This is apparently the result of an increase in selective constraint on COL1 in B. nigra combined with a decrease in A. thaliana. In conclusion, a complex scenario involving both demography and selection seems to have shaped the pattern of polymorphism at the three genes.  相似文献   

2.
Drobyazina PE  Khavkin EE 《Gene》2011,471(1-2):37-44
Day length controls development in many plants. In Arabidopsis thaliana, the CONSTANS (CO) gene has been firmly established as a key component in the photoperiodic pathway of floral transition; less is known about CONSTANS-LIKE1 (COL1) orthologues of this gene in Arabidopsis and several other species. The CONSTANS protein comprises two B-box-type zinc fingers, CCT domain, and a variable middle region (MR) which corresponds to exon 2 in the COL1 genes of Solanum species. Solanum COL1 proteins are over 85% identical within the genus and about 50% similar to Arabidopsis CO. Comparative COL1 analysis in several cultivated and wild Solanum species discerned two gene variants, which differed in the structures of exon 2 and introns 1 and 2. In exon 2, two variants were primarily discerned by the numbers of AAC/AAT and CAA/CAG repeats coding for polyasparagine and polyglutamine tracts in MR; therefore two variants were dubbed short and long COL1 genes (sCOL1 and lCOL1). However, intron 1 in lCOL1 was shorter than in sCOL1 due to three indels, whereas intron 2 in available COL1 sequences was represented by three different variants. The temporal profiles of sCOL1 and lCOL1 expression in tuberosum potato dramatically differed under short and long day, and the level of sCOL1 expression exceeded that of lSOL1 by an order of magnitude. Both sCOL1 and lCOL1 were found in each Solanum genome under study and in each individual plant, and the ratio of their copy numbers was not related to plant ploidy and photoperiodic response. Evidently the evolution of two COL1 genes preceded Solanum speciation, and the day-length response of diverse Solanum genotypes does not stem from the primary COL1 structure.  相似文献   

3.
Surprisingly, few studies have described evolutionary rate variation among plant nuclear genes, with little investigation of the causes of rate variation. Here, we describe evolutionary rates for 11,492 ortholog pairs between Arabidopsis thaliana and A. lyrata and investigate possible contributors to rate variation among these genes. Rates of evolution at synonymous sites vary along chromosomes, suggesting that mutation rates vary on genomic scales, perhaps as a function of recombination rate. Rates of evolution at nonsynonymous sites correlate most strongly with expression patterns, but they also vary as to whether a gene is duplicated and retained after a whole-genome duplication (WGD) event. WGD genes evolve more slowly, on average, than nonduplicated genes and non-WGD duplicates. We hypothesize that levels and patterns of expression are not only the major determinants that explain nonsynonymous rate variation among genes but also a critical determinant of gene retention after duplication.  相似文献   

4.
Molecular Evolution of the Plant R Regulatory Gene Family   总被引:8,自引:2,他引:6  
Anthocyanin pigmentation patterns in different plant species are controlled in part by members of the myc-like R regulatory gene family. We have examined the molecular evolution of this gene family in seven plant species. Three regions of the R protein show sequence conservation between monocot and dicot R genes. These regions encode the basic helix-loop-helix domain, as well as conserved N-terminal and C-terminal domains; mean replacement rates for these conserved regions are 1.02 X 10(-9) nonsynonymous nucleotide substitutions per site per year. More than one-half of the protein, however, is diverging rapidly, with nonsynonymous substitution rates of 4.08 X 10(-9) substitutions per site per year. Detailed analysis of R homologs within the grasses (Poaceae) confirm that these variable regions are indeed evolving faster than the flanking conserved domains. Both nucleotide substitutions and small insertion/deletions contribute to the diversification of the variable regions within these regulatory genes. These results demonstrate that large tracts of sequence in these regulatory loci are evolving at a fairly rapid rate.  相似文献   

5.
6.
Huang CC  Hung KH  Wang WK  Ho CW  Huang CL  Hsu TW  Osada N  Hwang CC  Chiang TY 《Gene》2012,499(1):194-201
Recovering the genetic divergence between species is one of the major interests in the evolutionary biology. It requires accurate estimation of the neutral substitution rates. Arabidopsis thaliana, the first whole-genome sequenced plant, and its out-crossing relatives provide an ideal model for examining the split between sister species. In the study, rates of molecular evolution at markers frequently used for systematics and population genetics, including 14 nuclear genes spanning most chromosomes, three noncoding regions of chloroplast genome, and one intron of mitochondrial genome, between A. thaliana and four relatives were estimated. No deviation from neutrality was detected in the genes examined. Based on the known divergence between A. thaliana and its sisters about 8.0-17.6 MYA, evolutionary rates of the eighteen genes were estimated. Accordingly, the ratio of rates of synonymous substitutions among mitochondrial, chloroplast and nuclear genes was calculated with an average and 95% confidence interval of 1 (0.25-1.75): 15.77 (7.48-114.09): 74.79 (36.27-534.61). Molecular evolutionary rates of nuclear genes varied, with a range of 0.383-0.856×10(-8) for synonymous substitutions per site per year and 0.036-0.081×10(-9) for nonsynonymous substitutions per site per year. Compared with orthologs in Populus, a long life-span tree, genes in Arabidopsis evolved faster in an order of magnitude at the gene level, agreeing with a generation time hypothesis. The estimated substitution rates of these genes can be used as a reference for molecular dating.  相似文献   

7.
T. Ohta 《Genetics》1993,134(4):1271-1276
The growth hormone-prolactin gene family in mammals is an interesting example of evolution by gene duplication. Divergence among members of duplicated gene families and among species was examined by using reported gene sequences of growth hormone, prolactin and their receptors. Sequence divergence among species was found to show a general tendency in which a generation-time effect is pronounced for synonymous substitutions but not so for nonsynonymous substitutions. Divergence among duplicated genes is characterized by the relatively high rate of nonsynonymous substitutions, i.e., the rate is close to that of synonymous ones. In view of the stage- and tissue-specific expression of duplicated genes, some of the amino acid substitutions among duplicated genes is likely to be caused by positive Darwinian selection.  相似文献   

8.
Summary The hemagglutinin (HA) genes of influenza type A (H1N1) viruses isolated from swine were cloned into plasmid vectors and their nucleotide sequences were determined. A phylogenetic tree for the HA genes of swine and human influenza viruses was constructed by the neighbor-joining method. It showed that the divergence between swine and human HA genes might have occurred around 1905. The estimated rates of synonymous (silent) substitutions for swine and human influenza viruses were almost the same. For both viruses, the rate of synonymous substitution was much higher than that of nonsynonymous (amino acid altering) substitution. It is the case even for only the antigenic sites of the HA. This feature is consistent with the neutral theory of molecular evolution. The rate of nonsynonymous substitution for human influenza viruses was three times the rate for swine influenza viruses. In particular, nonsynonymous substitutions at antigenic sites occurred less frequently in swine than in humans. The difference in the rate of nonsynonymous substitution between swine and human influenza viruses can be explained by the different degrees of functional constraint operating on the amino acid sequence of the HA in both hosts.  相似文献   

9.
10.
Molecular evolution of the avian CHD1 genes on the Z and W sex chromosomes   总被引:5,自引:0,他引:5  
Fridolfsson AK  Ellegren H 《Genetics》2000,155(4):1903-1912
Genes shared between the nonrecombining parts of the two types of sex chromosomes offer a potential means to study the molecular evolution of the same gene exposed to different genomic environments. We have analyzed the molecular evolution of the coding sequence of the first pair of genes found to be shared by the avian Z (present in both sexes) and W (female-specific) sex chromosomes, CHD1Z and CHD1W. We show here that these two genes evolve independently but are highly conserved at nucleotide as well as amino acid levels, thus not indicating a female-specific role of the CHD1W gene. From comparisons of sequence data from three avian lineages, the frequency of nonsynonymous substitutions (K(a)) was found to be higher for CHD1W (1.55 per 100 sites) than for CHD1Z (0.81), while the opposite was found for synonymous substitutions (K(s), 13.5 vs. 22.7). We argue that the lower effective population size and the absence of recombination on the W chromosome will generally imply that nonsynonymous substitutions accumulate faster on this chromosome than on the Z chromosome. The same should be true for the Y chromosome relative to the X chromosome in XY systems. Our data are compatible with a male-biased mutation rate, manifested by the faster rate of neutral evolution (synonymous substitutions) on the Z chromosome than on the female-specific W chromosome.  相似文献   

11.
The plant MADS-box regulatory gene family includes several loci that control different aspects of inflorescence and floral development. Orthologs to the Arabidopsis thaliana MADS-box floral meristem genes APETALA1 and CAULIFLOWER and the floral organ identity genes APETALA3 and PISTILLATA were isolated from the congeneric species Arabidopsis lyrata. Analysis of these loci between these two Arabidopsis species, as well as three other more distantly related taxa, reveal contrasting dynamics of molecular evolution between these paralogous floral regulatory genes. Among the four loci, the CAL locus evolves at a significantly faster rate, which may be associated with the evolution of genetic redundancy between CAL and AP1. Moreover, there are significant differences in the distribution of replacement and synonymous substitutions between the functional gene domains of different floral homeotic loci. These results indicate that divergence in developmental function among paralogous members of regulatory gene families is accompanied by changes in rate and pattern of sequence evolution among loci.  相似文献   

12.
We characterized rates and patterns of synonymous and nonsynonymous substitution in 242 duplicated gene pairs on chromosomes 2 and 4 of Arabidopsis thaliana. Based on their collinear order along the two chromosomes, the gene pairs were likely duplicated contemporaneously, and therefore comparison of genetic distances among gene pairs provides insights into the distribution of nucleotide substitution rates among plant nuclear genes. Rates of synonymous substitution varied 13.8-fold among the duplicated gene pairs, but 90% of gene pairs differed by less than 2.6-fold. Average nonsynonymous rates were approximately fivefold lower than average synonymous rates; this rate difference is lower than that of previously studied nonplant lineages. The coefficient of variation of rates among genes was 0.65 for nonsynonymous rates and 0.44 for synonymous rates, indicating that synonymous and nonsynonymous rates vary among genes to roughly the same extent. The causes underlying rate variation were explored. Our analyses tentatively suggest an effect of physical location on synonymous substitution rates but no similar effect on nonsynonymous rates. Nonsynonymous substitution rates were negatively correlated with GC content at synonymous third codon positions, and synonymous substitution rates were negatively correlated with codon bias, as observed in other systems. Finally, the 242 gene pairs permitted investigation of the processes underlying divergence between paralogs. We found no evidence of positive selection, little evidence that paralogs evolve at different rates, and no evidence of differential codon usage or third position GC content.  相似文献   

13.
Theory predicts that selection should be less effective in the nonrecombining genes of Y-chromosomes, relative to the situation for genes on the other chromosomes, and this should lead to the accumulation of deleterious nonsynonymous substitutions. In addition, synonymous substitution rates may differ between X- and Y-linked genes because of the male-driven evolution effect and also because of actual differences in per-replication mutation rates between the sex chromosomes. Here, we report the first study of synonymous and nonsynonymous substitution rates on plant sex chromosomes. We sequenced two pairs of sex-linked genes, SlX1-SlY1 and SlX4-SlY4, from dioecious Silene latifolia and S. dioica, and their non-sex-linked homologues from nondioecious S. vulgaris and Lychnis flos-jovis, respectively. The rate of nonsynonymous substitutions in the SlY4 gene is significantly higher than that in the SlX4 gene. Silent substitution rates are also significantly higher in both Y-linked genes, compared with their X-linked homologues. The higher nonsynonymous substitution rate in the SlY4 gene is therefore likely to be caused by a mutation rate difference between the sex chromosomes. The difference in silent substitution rates between the SlX4 and SlY4 genes is too great to be explained solely by a higher per-generation mutation rate in males than females. It is thus probably caused by a difference in per-replication mutation rates between the sex chromosomes. This suggests that the local mutation rate can change in a relatively short evolutionary time.  相似文献   

14.
Adaptive evolution of G-protein coupled receptor genes   总被引:2,自引:0,他引:2  
The phylogeny and patterns of nucleotide substitutions in the visual pigment genes, adrenergic receptor genes, muscarinic receptor genes, and in the human mas oncogene were studied by comparing their DNA sequences. The evolutionary tree obtained shows that the visual pigment genes and mas oncogene form one cluster and that the receptor genes form another. In the evolution of rhodopsin genes, synonymous substitutions outnumber nonsynonymous substitutions. This is consistent with the neutral theory of molecular evolution. However, the early evolutionary stages of alpha- and beta-adrenergic and muscarinic receptors are notable for significantly more nonsynonymous substitutions than synonymous substitutions, suggesting the acquisition of novel functional adaptations. Variable rates of nonsynonymous changes in different domains of these proteins reveal DNA segments that might have been important in their functional adaptations.   相似文献   

15.
Molecular evolution of the COX7A gene family in primates.   总被引:2,自引:0,他引:2  
COX VIIa is one of 10 nuclear-encoded subunits of the COX holoenzyme, and one of three that have isoforms with tissue-specific differences in expression. Analysis of nucleotide substitution rates revealed an accelerated rate of nonsynonymous substitutions relative to that of synonymous substitutions for the heart isoform gene (COX7AH) in six primate lineages. Rate accelerations have been noted for four other COX-related genes in this time period, suggesting that the COX holoenzyme has experienced an episode of adaptive evolution. A third member of the gene family, COX7AR, has recently been described. Although its function is currently unknown, low nonsynonymous substitution/synonymous substitution (N/S) ratios in mammalian evolution suggest that COX7AR is of functional importance. When the COX7A isoforms were divided into domains, examination of nucleotide substitution rates suggested that mitochondrial targeting residues experienced an accelerated nonsynonymous substitution rate in the period following gene duplication. In contrast, paralogous comparisons of the targeting residues of each isoform show they have been relatively conserved in mammalian evolution. This pattern is consistent with the evolution of tissue-specific function.  相似文献   

16.
Phadwal K 《Gene》2005,345(1):35-43
Phylogenetic analysis of carotenoid biosynthetic pathway genes and their evolutionary rate variations were studied among eubacterial taxa. The gene sequences for the enzymes involved in this pathway were obtained for major phylogenetic groups of eubacteria (green sulfur bacteria, green nonsulphur bacteria, Gram-positive bacteria, proteobacteria, flavobacteria, cyanobacteria) and archeabacteria. These gene datasets were distributed under five major steps of carotenoid biosynthesis in eubacteria; isoprenoid precursor biosynthesis, phytoene synthesis, dehydrogenation of phytoene, lycopene cyclization, formation of acyclic xanthophylls, formation of cyclic xanthophylls and carotenoid biosynthesis regulation. The NJ algorithm was used on protein coding DNA sequences to deduce the evolutionary relationship for the respective crt genes among different eubacterial lineages. The rate of nonsynonymous nucleotide substitutions per nonsynonymous site (d(N)) and synonymous nucleotide substitutions per synonymous site (d(S)) were calculated for different clades of the respective phylogenetic tree for specific crt genes. The phylogenetic analysis suggests that evolutionary pattern of crt genes in eubacteria is characterized by lateral gene transfer and gene duplication events. The d(N) values indicate that carotenoid biosynthetic genes are more conserved in proteobacteria than in any other eubacterial phyla. Furthermore, of the genes involved in carotenoid biosynthesis pathway, structural genes evolve slowly than the regulatory genes in eubacteria.  相似文献   

17.
18.
A new method is proposed for estimating the number of synonymous and nonsynonymous nucleotide substitutions between homologous genes. In this method, a nucleotide site is classified as nondegenerate, twofold degenerate, or fourfold degenerate, depending on how often nucleotide substitutions will result in amino acid replacement; nucleotide changes are classified as either transitional or transversional, and changes between codons are assumed to occur with different probabilities, which are determined by their relative frequencies among more than 3,000 changes in mammalian genes. The method is applied to a large number of mammalian genes. The rate of nonsynonymous substitution is extremely variable among genes; it ranges from 0.004 X 10(-9) (histone H4) to 2.80 X 10(-9) (interferon gamma), with a mean of 0.88 X 10(-9) substitutions per nonsynonymous site per year. The rate of synonymous substitution is also variable among genes; the highest rate is three to four times higher than the lowest one, with a mean of 4.7 X 10(-9) substitutions per synonymous site per year. The rate of nucleotide substitution is lowest at nondegenerate sites (the average being 0.94 X 10(-9), intermediate at twofold degenerate sites (2.26 X 10(-9)). and highest at fourfold degenerate sites (4.2 X 10(-9)). The implication of our results for the mechanisms of DNA evolution and that of the relative likelihood of codon interchanges in parsimonious phylogenetic reconstruction are discussed.  相似文献   

19.
As a model system, Arabidopsis thaliana and its wild relatives have played an important role in the study of genomics and evolution in plants. In this study, we examined the genetic diversity of the chalcone synthase (Chs) gene, which encodes a key enzyme of the flavonoid pathway and is located on chromosome five, as well as two Chs-like genes on the first and fourth chromosomes of Arabidopsis. The objectives of the study are to determine if natural selection operates differentially on the paralogs of the Chs gene family in A. thaliana and Arabidopsis halleri ssp. gemmifera. The mode of selection was inferred from Tajima's D values from noncoding and coding regions, as well as from the ratio of nonsynonymous to synonymous substitutions. Both McDonald-Kreitman and HKA tests revealed the effects of selection on the allelic distribution, except for the chromosome 1 paralog in ssp. gemmifera. The Chs gene on chromosome 5 was under purifying selection in both species. Significant, negative Tajima's D values at synonymous sites and positive Fay and Wu's H values within coding region, plus reduced genetic variability in introns, indicated effects of background selection in shaping the evolution of this gene region in A. thaliana. The Chs paralog on chromosome 1 was under positive selection in A. thaliana, while interspecific introgression and balancing selection determined the fates of the paralog and resulted in high heterogeneity in ssp. gemmifera. Local adaptation differentiated populations of Japan and China at the locus. In contrast, the other Chs-paralog of chromosome 4 was shaped by purifying selection in A. thaliana, while under positive selection in ssp. gemmifera, as indicated by dn/ds>1. Moreover, these contrasting patterns of selection have likely resulted in functional divergence in Arabidopsis, as indicated by radical amino acid substitutions at the chalcone synthase/stilbene synthase motif of the Chs genes. Unlike previous studies of the evolutionary history of A. thaliana, the high levels of genetic diversity in most gene regions of Chs paralogs and nonsignificant Tajima's D in the intron sequences of the Chs gene family in A. thaliana did not reflect the effects of a recent demographic expansion.  相似文献   

20.
Mitochondrial genomes encode fundamental subunits of the basic energy producing machinery of eukaryotic cells that are under strong functional constraint. Paradoxically, these genes evolve rapidly in general, and there is substantial variation in evolutionary rates among genes within genomes. In order to investigate spatial variation in selection intensity, we conducted tests of neutrality using ratios of synonymous to nonsynonymous substitutions (dN/dS = omega) on numerous protein gene segments from fishes and mammals. Values of omega were very low for nearly all genomic regions. However, values of both omega and dN varied in a clinal pattern with increasing distance from the light-strand origin of replication. Spatial heterogeneity of nonsynonymous substitution rates exhibits a significantly positive correlation with variation in mutation rates that are related to the mode of mitochondrial DNA replication. The finding that nonsynonymous substitution rates are proportional to mutation rates is expected if a majority of substitutions are selectively neutral or slightly deleterious. Spatial patterns of among-gene variation in nonsynonymous rates were highly similar between fishes and mammals, suggesting that forces governing mitochondrial gene evolution have remained relatively constant over 450 Myr of vertebrate evolution. Conservation of substitution patterns despite major shifts in thermal habit and metabolic demands among taxa implicates a conserved replication mechanism controlling relative mutation rates as a major determinant of mitochondrial protein evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号