首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T-cell responses generated during acute infection play a critical role in the initial control of viremia. However, little is known about the viral T-cell epitopes targeted during acute infection or about their hierarchy in appearance and relative immunodominance over time. In this study, HIV-1-specific CD8+ T-cell responses in 18 acutely infected individuals expressing HLA-A3 and/or -B7 were characterized. Detailed analysis of CD8 responses in one such person who underwent treatment of acute infection followed by reexposure to HIV-1 through supervised treatment interruptions (STI) revealed recognition of only two cytotoxic T-lymphocyte (CTL) epitopes during symptomatic acute infection. HIV-1-specific CD8+ T-cell responses broadened significantly during subsequent exposure to the virus, ultimately targeting 27 distinct CTL epitopes, including 15 different CTL epitopes restricted by a single HLA class I allele (HLA-A3). The same few peptides were consistently targeted in an additional 17 persons expressing HLA-A3 and/or -B7 during acute infection. These studies demonstrate a consistent pattern in the development of epitope-specific responses restricted by a single HLA allele during acute HIV-1 infection, as well as persistence of the initial pattern of immunodominance during subsequent STI. In addition, they demonstrate that HIV-1-specific CD8+ T-cell responses can ultimately target a previously unexpected and unprecedented number of epitopes in a single infected individual, even though these are not detectable during the initial exposure to virus. These studies have important implications for vaccine design and evaluation.  相似文献   

2.
Adoptive immunotherapy of virus infection with viral-specific CTL has shown promise in animal models and human virus infections and is being evaluated as a therapy for established HIV-1 infection. Defining the individual obstacles for success is difficult in human trials. We have therefore examined the localization, persistence, and antiviral activity of HIV-1 gag-specific CTL clones in both HIV-1-infected and uninfected haplotype-matched human (hu)-PBL-SCID mice. Injection of gag-specific clones but not control CTL into HIV-1-infected hosts reduced plasma viremia by >10-fold but failed to eliminate the virus infection from most treated animals. The failure to eradicate virus did not reflect selection of escape variants because the gag epitope remained unmutated in virus isolates obtained after CTL therapy. Injection of carboxyfluorescein diacetate succinimide ester-labeled CTL demonstrated markedly different fates for gag-specific CTL in the presence or absence of HIV-1 infection. HIV-1-specific CTL rapidly disappeared in infected recipients, whereas they were maintained at high numbers in uninfected mice. By contrast, control CTL were long lived in both infected and uninfected recipients. Thus, interaction of CTL with virus-infected target cells in vivo leads not only to target destruction but also to the rapid disappearance of the infused CTL, and it limits the capacity of CTL therapy to eliminate HIV-1 infection.  相似文献   

3.
Little is known of the changes in human immunodeficiency virus type 1 (HIV-1)-specific effector cytotoxic T lymphocytes (CTL) after potent antiretroviral therapy. Using HLA/peptide tetrameric complexes, we show that after starting treatment, there are early rapid fluctuations in the HIV-1-specific CTL response which last 1 to 2 weeks. These fluctuations are followed by an exponential decay (median half-life, 45 days) of HIV-1-specific CTL which continues while viremia remains undetectable. These data have implications for the immunological control of drug-resistant virus.  相似文献   

4.
5.
Cytotoxic T lymphocytes (CTL) can control some viral infections and may be important in the control of lentiviruses, including human immunodeficiency virus type 1. Since there is limited evidence for an in vivo role of CTL in control of lentiviruses, dissection of immune mechanisms in animal lentiviral infections may provide needed information. Horses infected with equine infectious anemia virus (EIAV) a lentivirus, have acute plasma viremia which is terminated in immunocompetent horses. Viremic episodes may recur, but most horses ultimately control infection and become asymptomatic carriers. To begin dissection of the immune mechanisms involved in EIAV control, peripheral blood mononuclear cells (PBMC) from infected horses were evaluated for CTL to EIAV-infected cells. By using noninfected and EIAV-infected autologous equine kidney (EK) cells in 51Cr-release assays, EIAV-specific cytotoxic activity was detected in unstimulated PBMC from three infected horses. The EIAV-specific cytotoxic activity was major histocompatibility complex (MHC) restricted, as determined by assaying EIAV-infected heterologous EK targets, and was mediated by CD8+ T lymphocytes, as determined by depleting these cells by a panning procedure with an anti-CD8 monoclonal antibody. MHC-restricted CD8+ CTL in unstimulated PBMC from infected horses caused significant specific lysis of autologous EK cells infected with recombinant vaccinia viruses expressing EIAV genes, either env or gag plus 5' pol. The EIAV-specific MHC-restricted CD8+ CTL were detected in two EIAV-infected horses within a few days after plasma viremia occurred and were present after viremia was terminated. The detection of these immune effector cells in EIAV-infected horses permits further studies to determine their in vivo role.  相似文献   

6.
Nef-mediated down-regulation of MHC class I (MHC-I) molecules on HIV-1-infected cells has been proposed to enhance viral persistence through evasion of host CTLs. This conclusion is based largely on demonstrations that Nef from laboratory HIV-1 strains reduces the susceptibility of infected cells to CTL killing in vitro. However, the function and role of Nef-mediated MHC-I down-regulation in vivo have not been well described. To approach this issue, nef quasispecies from chronically HIV-1-infected individuals were cloned into recombinant reporter viruses and tested for their ability to down-regulate MHC-I molecules from the surface of infected cells. The level of function varied widely between individuals, and although comparison to the immunologic parameters of blood CD4(+) T lymphocyte count and breadth of the HIV-1-specific CTL response showed positive correlations, no significant correlation was found in comparison to plasma viremia. The ability of in vivo-derived Nef to down-regulate MHC-I predicted the resistance of HIV-1 to suppression by CTL. Taken together, these data demonstrate the functionality of Nef to down-regulate MHC-I in vivo during stable chronic infection, and suggest that this function is maintained by the need of HIV-1 to cope with the antiviral CTL response.  相似文献   

7.
Virologic and immunologic studies were performed on five patients presenting with primary human immunodeficiency virus type 1 (HIV-1) infection. CD8+ cytotoxic T lymphocyte (CTL) precursors specific for cells expressing antigens of HIV-1 Gag, Pol, and Env were detected at or within 3 weeks of presentation in four of the five patients and were detected in all five patients by 3 to 6 months after presentation. The one patient with an absent initial CTL response had prolonged symptoms, persistent viremia, and low CD4+ T-cell count. Neutralizing antibody activity was absent at the time of presentation in all five patients. These findings suggest that cellular immunity is involved in the initial control of virus replication in primary HIV-1 infection and indicate a role for CTL in protective immunity to HIV-1 in vivo.  相似文献   

8.
Vaccination for human immunodeficiency virus type 1 (HIV-1) remains an elusive goal. Whether an unsuccessful vaccine might not only fail to provoke detectable immune responses but also could actually interfere with subsequent natural immunity upon HIV-1 infection is unknown. We performed detailed assessment of an HIV-1 gag DNA vaccine recipient (subject 00015) who was previously uninfected but sustained HIV-1 infection before completing a vaccination trial and another contemporaneously acutely infected individual (subject 00016) with the same strain of HIV-1. Subject 00015 received the vaccine at weeks 0, 4, and 8 and was found to have been acutely HIV-1 infected around the time of the third vaccination. Subject 00016 was a previously HIV-1-seronegative sexual contact who had symptoms of acute HIV-1 infection approximately 2 weeks earlier than subject 00015 and demonstrated subsequent seroconversion. Both individuals reached an unusually low level of chronic viremia (<1,000 copies/ml) without treatment. Subject 00015 had no detectable HIV-1-specific cytotoxic T-lymphocyte (CTL) responses until a borderline response was noted at the time of the third vaccination. The magnitude and breadth of Gag-specific CTL responses in subject 00015 were similar to those of subject 00016 during early chronic infection. Viral sequences from gag, pol, and nef confirmed the common source of HIV-1 between these individuals. The diversity and divergence of sequences in subjects 00015 and 00016 were similar, indicating similar immune pressure on these proteins (including Gag). As a whole, the data suggested that while the gag DNA vaccine did not prime detectable early CTL responses in subject 00015, vaccination did not appreciably impair his ability to contain viremia at levels similar to those in subject 00016.  相似文献   

9.
A window of opportunity for immune responses to extinguish human immunodeficiency virus type 1 (HIV-1) exists from the moment of transmission through establishment of the latent pool of HIV-1-infected cells. A critical time to study the initial immune responses to the transmitted/founder virus is the eclipse phase of HIV-1 infection (time from transmission to the first appearance of plasma virus), but, to date, this period has been logistically difficult to analyze. To probe B-cell responses immediately following HIV-1 transmission, we have determined envelope-specific antibody responses to autologous and consensus Envs in plasma donors from the United States for whom frequent plasma samples were available at time points immediately before, during, and after HIV-1 plasma viral load (VL) ramp-up in acute infection, and we have modeled the antibody effect on the kinetics of plasma viremia. The first detectable B-cell response was in the form of immune complexes 8 days after plasma virus detection, whereas the first free plasma anti-HIV-1 antibody was to gp41 and appeared 13 days after the appearance of plasma virus. In contrast, envelope gp120-specific antibodies were delayed an additional 14 days. Mathematical modeling of the earliest viral dynamics was performed to determine the impact of antibody on HIV replication in vivo as assessed by plasma VL. Including the initial anti-gp41 immunoglobulin G (IgG), IgM, or both responses in the model did not significantly impact the early dynamics of plasma VL. These results demonstrate that the first IgM and IgG antibodies induced by transmitted HIV-1 are capable of binding virions but have little impact on acute-phase viremia at the timing and magnitude that they occur in natural infection.  相似文献   

10.
We established four new mouse strains with defective T and B cells as well as defects in innate immunological reactions using an NK cell depletion antibody and showed that all mutant mouse strains efficiently received human peripheral blood leukocyte (PBL) engraftment (hu-PBL-scid mice). Higher levels of human immunodeficiency virus type 1 (HIV-1) replication were observed in these new hu-PBL-scid mice than in conventional hu-PBL-C.B-17-scid mice. In one particular strain, hu-PBL-NOD-scid mice, high levels of HIV-1 viremia (more than 10(6) 50% infectious doses per ml) were detected after infection with HIV-1. The plasma viral load was about 100 to 1,000 times higher than that observed in other hu-PBL-scid mice infected with HIV-1. Although high-level viremia did not correlate with the total amount of HIV-1 RNA in cells from infected mice, high levels of free virions were detected only in hu-PBL-NOD-scid mice. HIV-1 viremia induced systemic HIV-1 infection involving the liver, lungs, and brain. PCR in situ hybridization confirmed that HIV-1-infected cells invaded the brain tissue of the hu-PBL-NOD-scid mice. Our results suggest that the genetic background, including innate immunity, is critical in the development of primary HIV-1 viremia and subsequent central nervous system invasion with HIV-1. The hu-PBL-NOD-scid mouse represents a useful model for the study of the pathogenesis of HIV-1 in vivo, especially brain involvement, and therapy of primary HIV-1 viremia.  相似文献   

11.
Interleukin-18 (IL-18), originally called interferon-gamma (IFN-gamma)-inducing factor is a novel cytokine which exhibits pleiotropic immunomodulatory activities such as the activation of natural killer (NK) cells and cytotoxic T lymphocytes (CTL). In this study, the efficacy of IL-18 on viral infection in mice was investigated. IL-18 treatment significantly suppressed pock formation on the tails of BALB/c mice inoculated intravenously with vaccinia virus when the cytokine was administered intraperitoneally on days 0, 2 and 4 after infection. Sequentially, NK and CTL activity of the infected mice were significantly augmented by IL-18 injection. The in vivo anti-vaccinia virus activity of IL-18 was only partially inhibited by treating the infected mice with anti-asialo GM1 antibody. When infected mice were injected with anti-IFN-gamma antibody only, severe deterioration of health and significant body weight loss were observed, suggesting that IFN-gamma is very important in protecting mice against vaccinia virus infection. Interestingly, IL-18 injection visibly improved the severe vaccinia virus-induced symptoms in mice treated with anti-IFN-gamma antibody, even though a pivotal involvement of IFN-gamma in IL-18-mediated anti-vaccinia virus effect is not yet determined. Taken together, these results indicate that the IL-18-elicited anti-vaccinia virus effect in the acute phase of infection would be raised by the sum of various host defence mechanisms including NK cells and CTL, and not from a specific immunocompetent cell population or effector molecule.  相似文献   

12.
The determinants of CD8(+) cytotoxic T-lymphocyte (CTL) antiviral activity against human immunodeficiency virus type 1 (HIV-1) remain poorly defined. Although recent technological advances have markedly enhanced the ability to detect HIV-1-specific T cells, commonly used assays do not reveal their direct interaction with virus. We investigated two determinants of CTL antiviral efficiency by manipulating HIV-1 and measuring the effects on CTL suppression of viral replication in acutely infected cells. Translocation of a Gag epitope into the early protein Nef markedly increased the activity of CTL recognizing that epitope, in comparison to HIV-1 expressing the epitope normally in the late protein Gag. Because this epitope translocation resulted not only in earlier expression but also in loss of major histocompatibility complex class I downregulation by Nef, the activities of CTL against a panel of viral constructs differing in kinetics of epitope expression and class I downmodulation were compared. The results indicated that both the timing of epitope expression and the reduction of class I have profound effects on the ability of CTL to suppress HIV-1 replication in acutely infected cells. The epitope targeting of CTL and viral control of class I therefore likely play important roles in the ability of CTL to exert pressure on HIV-1.  相似文献   

13.
Natural killer (NK) cells are important effectors in resistance to viral infections. The role of NK cells in the acute response to human immunodeficiency virus 1 (HIV-1) infected cells was investigated in a mouse model based on a HIV-1/murine leukemia virus (MuLV) pseudovirus. Splenocytes infected with HIV-1/MuLV were injected intraperitoneally and local immunologic responses and persistence of infected cells were investigated. In vivo depletion with an anti-NK1.1 antibody showed that NK cells are important in resistance to virus infected cells. Moreover, NK cell frequency in the peritoneal cavity increased in response to infected cells and these NK cells had a more mature phenotype, as determined by CD27 and Mac-1 expression. Interestingly, after injection of HIV-1/MuLV infected cells, but not MuLV infected cells, peritoneal NK cells had an increased cytotoxic activity. In conclusion, NK cells play a role in the early control of HIV-1/MuLV infected cells in vivo.  相似文献   

14.
Acute human immunodeficiency virus (HIV) infection is associated with the rapid development of neutralization escape mutations. The degree to which viral evolution persists in chronic infection has not been well characterized, nor is it clear if all patients develop high-level neutralization antibody escape. We therefore measured neutralizing antibody responses against autologous and heterologous viruses in a cohort of acutely and chronically infected subjects (n = 65). Neutralizing antibody responses against both autologous virus and heterologous viruses were lower among individuals with acute infection than among those with chronic infection. Among chronically infected individuals, there was a negative correlation between the level of neutralizing antibodies against autologous virus and the level of viremia. In contrast, there was a positive correlation between the level of neutralizing antibodies against a panel of heterologous viruses and the level of viremia. Viral evolution, as defined by the presence of higher neutralizing titers directed against earlier viruses than against contemporaneous viruses, was evident for subjects with recent infection but absent for those with chronic infection. In summary, neutralizing antibody responses against contemporaneous autologous viruses are absent in early HIV infection but can be detected at low levels in chronic infection, particularly among those controlling HIV in the absence of therapy. HIV replication either directly or indirectly drives the production of increasing levels of antibodies that cross-neutralize heterologous primary isolates. Collectively, these observations indicate that although HIV continuously drives the production of neutralizing antibodies, there may be limits to the capacity of the virus to evolve continuously in response to these antibodies. These observations also suggest that the neutralizing antibody response may contribute to the long-term control of HIV in some patients while protecting against HIV superinfection in most patients.  相似文献   

15.
Host immunologic factors, including human immunodeficiency virus (HIV)-specific cytotoxic T lymphocytes (CTL), are thought to contribute to the control of HIV type 1 (HIV-1) replication and thus delay disease progression in infected individuals. Host immunologic factors are also likely to influence perinatal transmission of HIV-1 from infected mother to infant. In this study, the potential role of CTL in modulating HIV-1 transmission from mother to infant was examined in 11 HIV-1-infected mothers, 3 of whom transmitted virus to their offspring. Frequencies of HIV-1-specific human leukocyte antigen class I-restricted CTL responses and viral epitope amino acid sequence variation were determined in the mothers and their infected infants. Maternal HIV-1-specific CTL clones were derived from each of the HIV-1-infected pregnant women. Amino acid substitutions within the targeted CTL epitopes were more frequently identified in transmitting mothers than in nontransmitting mothers, and immune escape from CTL recognition was detected in all three transmitting mothers but in only one of eight nontransmitting mothers. The majority of viral sequences obtained from the HIV-1-infected infant blood samples were susceptible to maternal CTL. These findings demonstrate that epitope amino acid sequence variation and escape from CTL recognition occur more frequently in mothers that transmit HIV-1 to their infants than in those who do not. However, the transmitted virus can be a CTL susceptible form, suggesting inadequate in vivo immune control.  相似文献   

16.
17.

Background

Early treatment of acute HIV infection with highly active antiretroviral therapy, followed by supervised treatment interruption (STI), has been associated with at least transient control of viremia. However, the durability of such control remains unclear. Here we present longitudinal follow-up of a single-arm, open-label study assessing the impact of STI in the setting of acute HIV-1 infection.

Methods and Findings

Fourteen patients were treated during acute HIV-1 infection and subsequently subjected to an STI protocol that required retreatment if viral load exceeded 50,000 RNA copies/ml plasma or remained above 5,000 copies/ml for more than three consecutive weeks. Eleven of 14 (79%) patients were able to achieve viral loads of less than 5,000 RNA copies/ml for at least 90 d following one, two, or three interruptions of treatment. However, a gradual increase in viremia and decline in CD4+ T cell counts was observed in most individuals. By an intention-to-treat analysis, eight (57%), six (43%), and three (21%) of 14 patients achieved a maximal period of control of 180, 360, and 720 d, respectively, despite augmentation of HIV-specific CD4+ and CD8+ T cell responses. The magnitude of HIV-1-specific cellular immune responses before treatment interruption did not predict duration of viremia control. The small sample size and lack of concurrent untreated controls preclude assessment of possible clinical benefit despite failure to control viremia by study criteria.

Conclusions

These data indicate that despite initial control of viremia, durable viral control to less than 5,000 RNA copies/ml plasma in patients following treated acute HIV-1 infection occurs infrequently. Determination of whether early treatment leads to overall clinical benefit will require a larger and randomized clinical trial. These data may be relevant to current efforts to develop an HIV-1 vaccine designed to retard disease progression rather than prevent infection since they indicate that durable maintenance of low-level viremia may be difficult to achieve.  相似文献   

18.
CD8(+) T cells are believed to play an important role in the control of human immunodeficiency virus type 1 (HIV-1) infection. However, despite intensive efforts, it has not been possible to consistently link the overall magnitude of the CD8(+) T-cell response with control of HIV-1. Here, we have investigated the association of different CD8(+) memory T-cell subsets responding to HIV-1 in early infection with future control of HIV-1 viremia. Our results demonstrate that both a larger proportion and an absolute number of HIV-1-specific CD8(+) CCR7(-) CD45RA(+) effector memory T cells (T(EMRA) cells) were associated with a lower future viral load set point. In contrast, a larger absolute number of HIV-1-specific CD8(+) CCR7(-) CD45RA(-) effector memory T cells (T(EM)) was not related to the viral load set point. Overall, the findings suggest that CD8(+) T(EMRA) cells have superior antiviral activity and indicate that both qualitative and quantitative aspects of the CD8(+) T-cell response need to be considered when defining the characteristics of protective immunity to HIV-1.  相似文献   

19.
Immune escape from cytotoxic T-lymphocyte (CTL) responses has been shown to occur not only by changes within the targeted epitope but also by changes in the flanking sequences which interfere with the processing of the immunogenic peptide. However, the frequency of such an escape mechanism has not been determined. To investigate whether naturally occurring variations in the flanking sequences of an immunodominant human immunodeficiency virus type 1 (HIV-1) Gag CTL epitope prevent antigen processing, cells infected with HIV-1 or vaccinia virus constructs encoding different patient-derived Gag sequences were tested for recognition by HLA-A*0201-restricted, p17-specific CTL. We found that the immunodominant p17 epitope (SL9) and its variants were efficiently processed from minigene expressing vectors and from six HIV-1 Gag variants expressed by recombinant vaccinia virus constructs. Furthermore, SL9-specific CTL clones derived from multiple donors efficiently inhibited virus replication when added to HLA-A*0201-bearing cells infected with primary or laboratory-adapted strains of virus, despite the variability in the SL9 flanking sequences. These data suggest that escape from this immunodominant CTL response is not frequently accomplished by changes in the epitope flanking sequences.  相似文献   

20.
Since cytotoxic T lymphocytes (CTLs) are critical for controlling human immunodeficiency virus type 1 (HIV-1) replication in infected individuals, candidate HIV-1 vaccines should elicit virus-specific CTL responses. In this report, we study the immune responses elicited in rhesus monkeys by a recombinant poxvirus vaccine and the degree of protection afforded against a pathogenic simian-human immunodeficiency virus SHIV-89.6P challenge. Immunization with recombinant modified vaccinia virus Ankara (MVA) vectors expressing SIVmac239 gag-pol and HIV-1 89.6 env elicited potent Gag-specific CTL responses but no detectable SHIV-specific neutralizing antibody (NAb) responses. Following intravenous SHIV-89.6P challenge, sham-vaccinated monkeys developed low-frequency CTL responses, low-titer NAb responses, rapid loss of CD4+ T lymphocytes, high-setpoint viral RNA levels, and significant clinical disease progression and death in half of the animals by day 168 postchallenge. In contrast, the recombinant MVA-vaccinated monkeys demonstrated high-frequency secondary CTL responses, high-titer secondary SHIV-89.6-specific NAb responses, rapid emergence of SHIV-89.6P-specific NAb responses, partial preservation of CD4+ T lymphocytes, reduced setpoint viral RNA levels, and no evidence of clinical disease or mortality by day 168 postchallenge. There was a statistically significant correlation between levels of vaccine-elicited CTL responses prior to challenge and the control of viremia following challenge. These results demonstrate that immune responses elicited by live recombinant vectors, although unable to provide sterilizing immunity, can control viremia and prevent disease progression following a highly pathogenic AIDS virus challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号