首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fundamental, long-term genetic trade-offs constrain life-history evolution in wild crucifer populations. I studied patterns of genetic constraint in Brassica rapa by estimating genetic correlations among life-history components by quantitative genetic analyses among ten wild populations, and within four populations. Genetic correlations between age and size at first reproduction were always greater than +0.8 within and among all populations studied. Although quantitative genetics might provide insight about genetic constraints if genetic parameters remain approximately constant, little evidence has been available to determine the constancy of genetic correlations. I found strong and consistent estimates of genetic correlations between life-history components, which were very similar within four natural populations. Population differentiation also showed these same trade-offs, resulting from long-term genetic constraint. For some traits, evolutionary changes among populations were incompatible with a model of genetic drift. Historical patterns of natural selection were inferred from population differentiation, suggesting that correlated response to selection has caused some traits to evolve opposite to the direct forces of natural selection. Comparison with Arabidopsis suggests that these life-history trade-offs are caused by genes that regulate patterns of resource allocation to different components of fitness. Ecological and energetic models may correctly predict these trade-offs because there is little additive genetic variation for rates of resource acquisition, but resource allocation is genetically variable.  相似文献   

2.
The evolutionary trajectories of trade-offs are ultimately governed by the evolution of the underlying physiological processes of the acquisition and subsequent allocation of resources. In this study, we focused directly on acquisition and allocation as traits and estimated their genetic architecture in the trade-off between flight capability and reproduction in the cricket, Gryllus firmus. To determine the evolutionary genetics of acquisition and allocation both within and between resource environments, we performed a large-scale quantitative genetic breeding experiment in which families were split over several resource levels. Our findings were fourfold: (1) there was substantial genetic variance in acquisition and allocation, (2) contrary to the assumption of independence between acquisition and allocation, there was a significant genetic correlation between them, (3) the genetic covariance between acquisition and allocation was significantly different in the different food environments, (4) the trade-off, as measured by the genetic correlation between flight muscle mass and ovary mass, was only significant in the food restriction environments. However, when measured directly as the genetic correlation between reproductive allocation and flight allocation, we found a consistent strong negative genetic correlation, demonstrating that when allocation is measured independently of acquisition we find evidence for the trade-off.  相似文献   

3.
Combining genetic variation and phenotypic plasticity in tradeoff modelling   总被引:4,自引:0,他引:4  
Tradeoffs lead to antagonistic relationships between phenotypic traits and are thought to be determined both genetically and environmentally. We present here an allocation model that distinguishes between the genetic and environmental components of variation in resource allocation. In this model we introduced plasticity of resource allocation which was considered to be an adaptive response to environmental variations. The results show that resource allocation plasticity is a key parameter for the existence of environmental (i.e. inter environments and intra genotype) correlations and is therefore necessary to detect environment-induced tradeoffs. We also investigated the impact of the resource allocation plasticity and other factors on genetic (i.e. inter genotypes) correlations. Our results show that resource allocation plasticity induces a masking effect of tradeoffs when studying genetic correlations and increases the masking effect of resource variation by making apparent correlations positive when negative correlations are expected. In addition, by simulating different sources of resource acquisition variation, we demonstrated that resource variation might have different effects on correlations according to the experimental design and the studied biological material. Further development of this model may be used to investigate the theoretical implications of tradeoffs in evolutionary biology and to improve design and interpretation of experimental studies.  相似文献   

4.
Patterns of genetic variation and covariation can influence the rate and direction of phenotypic evolution. We explored the possibility that the parallel morphological evolution seen in threespine stickleback (Gasterosteus aculeatus) populations colonizing freshwater environments is facilitated by patterns of genetic variation and covariation in the ancestral (marine) population. We estimated the genetic (G) and phenotypic (P) covariance matrices and directions of maximum additive genetic (g(max) ) and phenotypic (p(max) ) covariances of body shape and armour traits. Our results suggest a role for the ancestral G in explaining parallel morphological evolution in freshwater populations. We also found evidence of genetic constraints owing to the lack of variance in the ancestral G. Furthermore, strong genetic covariances and correlations among traits revealed that selective factors responsible for threespine stickleback body shape and armour divergence may be difficult to disentangle. The directions of g(max) and p(max) were correlated, but the correlations were not high enough to imply that phenotypic patterns of trait variation and covariation within populations are very informative of underlying genetic patterns.  相似文献   

5.
A central paradigm of life-history theory is the existence of resource mediated trade-offs among different traits that contribute to fitness, yet observations inconsistent with this tenet are not uncommon. We previously found a clonal population of the aphid Myzus persicae to exhibit positive genetic correlations among major components of fitness, resulting in strong heritable fitness differences on a common host. This raises the question of how this genetic variation is maintained. One hypothesis states that variation for resource acquisition on different hosts may override variation for allocation, predicting strong fitness differences within hosts as a rule, but changes in fitness hierarchies across hosts due to trade-offs. Therefore, we carried out a life-table experiment with 17 clones of M. persicae, reared on three unrelated host plants: radish, common lambsquarters and black nightshade. We estimated the broad-sense heritabilities of six life-history traits on each host, the genetic correlations among traits within hosts, and the genetic correlations among traits on different hosts (cross-environment genetic correlations). The three plants represented radically different environments with strong effects on performance of M. persicae, yet we detected little evidence for trade-offs. Fitness components were positively correlated within hosts but also between the two more benign hosts (radish and lambsquarters), as well as between those and another host tested earlier. The comparison with the most stressful host, nightshade, was hampered by low survival. Survival on nightshade also exhibited genetic variation but was unrelated to fitness on other hosts. Acknowledging that the number of environments was necessarily limited in a quantitative genetic experiment, we suggest that the rather consistent fitness hierarchies across very different plants provided little evidence to support the idea that the clonal variation for life-history traits and their covariance structure are maintained by strong genotypexenvironment interactions with respect to hosts. Alternative explanations are discussed.  相似文献   

6.
Summary Using a two-loci multiplicative model of resource allocation, we show how the existence of several levels of resource allocation may affect the sign of the genetic correlations between traits linked by trade-offs. Positive genetic correlations between components of fitness affected by genetic trade-offs may result from different amounts of genetic variability at the pleiotropic loci determining the allocation of resources. Thus positive genetic correlations may be obtained in the absence both of environmental variation and of differences between individuals in resource acquisition. Nevertheless, positive correlations between all components of fitness at the same time cannot be obtained without variability in the acquisition of resources.  相似文献   

7.
Populations of Allium vineale commonly include individuals with very different allocation patterns to three modes of reproduction: sexual flowers, aerially produced asexual bulbils, and belowground asexual offsets. If selection is currently acting to maintain these different allocation patterns there must be a genetic basis for variation in allocation to these three reproductive modes. In addition, negative genetic correlations between reproductive traits would imply evolutionary trade-offs among reproductive strategies. We evaluated the heritability of these allocation patterns by growing 16 clones from a single population in the greenhouse at two levels of fertilization. Bulb mass and the mass and number of bulbils, offsets, and flowers were used as response variables, in addition to the proportion allocated to each reproductive mode. We found evidence of substantial heritable variation in allocation to sexual reproduction and in allocation within the two modes of asexual reproduction, indicating high sensitivity of these allocation patterns to natural selection. We also found evidence of strong negative genetic correlations between bulbil and flower traits, as well as between bulbil and offset traits, with one group of genotypes allocating greater resources to aerial asexual bulbils and the second group allocating more resources to belowground asexual offsets and aerial flowers. Phenotypic plasticity in allocation to above- vs. belowground asexual reproduction and sexual vs. asexual aerial reproduction was limited, indicating that plants are unlikely to change reproductive mode in response to nutrient availability. Together, then, we have demonstrated strong heritability for, and trade-offs in, the reproductive allocation patterns within this plant population.  相似文献   

8.
Seasonal time constraints are usually stronger at higher than lower latitudes and can exert strong selection on life‐history traits and the correlations among these traits. To predict the response of life‐history traits to environmental change along a latitudinal gradient, information must be obtained about genetic variance in traits and also genetic correlation between traits, that is the genetic variance‐covariance matrix, G . Here, we estimated G for key life‐history traits in an obligate univoltine damselfly that faces seasonal time constraints. We exposed populations to simulated native temperatures and photoperiods and common garden environmental conditions in a laboratory set‐up. Despite differences in genetic variance in these traits between populations (lower variance at northern latitudes), there was no evidence for latitude‐specific covariance of the life‐history traits. At simulated native conditions, all populations showed strong genetic and phenotypic correlations between traits that shaped growth and development. The variance–covariance matrix changed considerably when populations were exposed to common garden conditions compared with the simulated natural conditions, showing the importance of environmentally induced changes in multivariate genetic structure. Our results highlight the importance of estimating variance–covariance matrixes in environments that mimic selection pressures and not only trait variances or mean trait values in common garden conditions for understanding the trait evolution across populations and environments.  相似文献   

9.
Ecological conditions such as nutrition can change genetic covariances between traits and accelerate or slow down trait evolution. As adaptive trait correlations can become maladaptive following rapid environmental change, poor or stressful environments are expected to weaken genetic covariances, thereby increasing the opportunity for independent evolution of traits. Here, we demonstrate the differences in genetic covariance among multiple behavioral and morphological traits (exploration, aggression, and body weight) between southern field crickets (Gryllus bimaculatus) raised in favorable (free‐choice) versus stressful (protein‐deprived) nutritional environments. We also quantify the extent to which differences in genetic covariance structures contribute to the potential for the independent evolution of these traits. We demonstrate that protein‐deprived environments tend to increase the potential for traits to evolve independently, which is caused by genetic covariances that are significantly weaker for crickets raised on protein‐deprived versus free‐choice diets. The weakening effects of stressful environments on genetic covariances tended to be stronger in males than in females. The weakening of the genetic covariance between traits under stressful nutritional environments was expected to facilitate the opportunity for adaptive evolution across generations. Therefore, the multivariate gene‐by‐environment interactions revealed here may facilitate behavioral and morphological adaptations to rapid environmental change.  相似文献   

10.
Environmental stress can alter genetic variation and covariation underlying functional traits, and thus affect adaptive evolution in response to natural selection. However, the genetic basis of functional traits is rarely examined in contrasting resource environments, and consequently, there is no consensus regarding whether environmental stress constrains or facilitates adaptive evolution. We tested whether resource availability affects genetic variation for and covariation among seven physiological traits and seven morphological/performance traits by growing the annual grass Avena barbata in dry and well-watered treatments. We found that differences in the overall genetic variance–covariance ( G ) matrix between environments were driven by physiological traits rather than morphology and performance traits. More physiological traits were heritable in the dry treatment than the well-watered treatment and many of the genetic correlations among physiological traits were environment dependent. In contrast, genetic variation and covariation among the morphological and performance traits did not differ across treatments. Furthermore, genetic correlations between physiology and performance were stronger in the dry treatment, which contributed to differences in the overall G -matrix. Our results therefore suggest that physiological adaptation would be constrained by low heritable variation in resource-rich environments, but facilitated by higher heritable variation and stronger genetic correlations with performance traits in resource-poor environments.  相似文献   

11.
Fitness depends on both the resources that individuals acquire and the allocation of those resources to traits that influence survival and reproduction. Optimal resource allocation differs between females and males as a consequence of their fundamentally different reproductive strategies. However, because most traits have a common genetic basis between the sexes, conflicting selection between the sexes over resource allocation can constrain the evolution of optimal allocation within each sex, and generate trade‐offs for fitness between them (i.e. ‘sexual antagonism’ or ‘intralocus sexual conflict’). The theory of resource acquisition and allocation provides an influential framework for linking genetic variation in acquisition and allocation to empirical evidence of trade‐offs between distinct life‐history traits. However, these models have not considered the emergence of trade‐offs within the context of sexual dimorphism, where they are expected to be particularly common. Here, we extend acquisition–allocation theory and develop a quantitative genetic framework for predicting genetically based trade‐offs between life‐history traits within sexes and between female and male fitness. Our models demonstrate that empirically measurable evidence of sexually antagonistic fitness variation should depend upon three interacting factors that may vary between populations: (1) the genetic variances and between‐sex covariances for resource acquisition and allocation traits, (2) condition‐dependent expression of resource allocation traits and (3) sex differences in selection on the allocation of resource to different fitness components.  相似文献   

12.
Windig JJ  Veerkamp RF  Nylin S 《Heredity》2004,93(5):450-454
Evidence of changes in levels of genetic variation in the field is scarce. Theoretically, selection and a bottleneck may lead to the depletion of additive genetic variance (V(A)) but not of nonadditive, dominance variance (V(D)), although a bottleneck may converse V(D) to V(A). Here we analyse quantitative genetic variation for the Speckled Wood butterfly Pararge aegeria on the island of Madeira about 120 generations after first colonisation. Colonisation of the island involved both a bottleneck and strong natural selection, changing the average value of traits. Several life history and morphological traits with varying levels of change since colonisation were analysed. In accordance with expectations, all traits except one showed relatively low levels of V(A), with an average heritability (h(2)) of 0.078. Levels of V(D) for these traits were relatively high, 20-94% of total variance and on average 80% of V(G). The exception was a morphological trait that probably had not experienced strong natural selection after colonisation, for which a h(2) of 0.27 was found. Another interesting observation is that the population seems resistant to inbreeding effects, which may be the result of purging of deleterious alleles.  相似文献   

13.
14.
Adaptive responses are probably the most effective long‐term responses of populations to climate change, but they require sufficient evolutionary potential upon which selection can act. This requires high genetic variance for the traits under selection and low antagonizing genetic covariances between the different traits. Evolutionary potential estimates are still scarce for long‐lived, clonal plants, although these species are predicted to dominate the landscape with climate change. We studied the evolutionary potential of a perennial grass, Festuca rubra, in western Norway, in two controlled environments corresponding to extreme environments in natural populations: cold–dry and warm–wet, the latter being consistent with the climatic predictions for the country. We estimated genetic variances, covariances, selection gradients and response to selection for a wide range of growth, resource acquisition and physiological traits, and compared their estimates between the environments. We showed that the evolutionary potential of F. rubra is high in both environments, and genetic covariances define one main direction along which selection can act with relatively few constraints to selection. The observed response to selection at present is not sufficient to produce genotypes adapted to the predicted climate change under a simple, space for time substitution model. However, the current populations contain genotypes which are pre‐adapted to the new climate, especially for growth and resource acquisition traits. Overall, these results suggest that the present populations of the long‐lived clonal plant may have sufficient evolutionary potential to withstand long‐term climate changes through adaptive responses.  相似文献   

15.
When variation in life-history characters is caused by many genes of small effect, then quantitative-genetic parameters may quantify constraints on rate and direction of microevolutionary change. I estimated heritabilities and genetic correlations for 16 life-history and morphological characters in two populations of Impatiens capensis, a partially self-pollinating herbaceous annual. The Madison population had little or no additive genetic variance for any of these characters, while the Milwaukee population had significant narrowsense heritabilities and genetic correlations for several traits, including adult size, which is highly correlated with fitness. All genetic correlations among fitness components were positive, hence there is no evidence for antagonistic pleiotropy among these traits. Dissimilarity of heritabilities in the two populations supports theoretical predictions that long-term changes in genetic variance-covariance patterns may occur when population sizes are small and selection is strong, as may occur in many plant species.  相似文献   

16.
Proportionality of phenotypic and genetic distance is of crucial importance to adequately focus on population history and structure, and it depends on the proportionality of genetic and phenotypic covariance. Constancy of phenotypic covariances is unlikely without constancy of genetic covariation if the latter is a substantial component of the former. If phenotypic patterns are found to be relatively stable, the most probable explanation is that genetic covariance matrices are also stable. Factors like morphological integration account for such stability. Morphological integration can be studied by analyzing the relationships among morphological traits. We present here a comparison of phenotypic correlation and covariance structure among worldwide human populations. Correlation and covariance matrices between 47 cranial traits were obtained for 28 populations, and compared with design matrices representing functional and developmental constraints. Among-population differences in patterns of correlation and covariation were tested for association with matrices of genetic distances (obtained after an examination of 10 Alu-insertions) and with Mahalanobis distances (computed after craniometrical traits). All matrix correlations were estimated by means of Mantel tests. Results indicate that correlation and covariance structure in our species is stable, and that among-group correlation/covariance similarity is not related to genetic or phenotypic distance. Conversely, genetic and morphological distance matrices were highly correlated. Correlation and covariation patterns were largely associated with functional and developmental factors, which probably account for the stability of covariance patterns.  相似文献   

17.
Life-history theory is based on the assumption that evolution is constrained by trade-offs among different traits that contribute to fitness. Such trade-offs should be evident from negative genetic correlations among major life-history traits. However, this expectation is not always met. Here I report the results of a life-table experiment designed to measure the broad-sense heritabilities of life-history traits and their genetic correlations in 19 different clones of the aphid Myzus persicae from Victoria, Australia. Most individual traits, as well as fitness calculated as the finite rate of increase from the life table, exhibited highly significant heritabilities. The pattern of genetic correlations revealed absolutely no evidence for life-history trade-offs. Rather, life histories were arranged along an axis from better to worse. Clones with shorter development times tended to have larger body sizes, higher fecundities, and larger offspring. The fitness of clones estimated from the life table in the laboratory tended to be positively associated with their abundance in the field. Fitness also increased significantly with heterozygosity at the seven microsatellite loci that were used to distinguish clones and estimate their frequencies in the field. I discuss these findings in light of a recent proposition that positive genetic correlations among life-history traits for which trade-offs are expected can be explained by genetic variation for resource acquisition ability that is maintained in populations by a cost of acquisition, and I propose ways to test for such a cost in M. persicae.  相似文献   

18.
Additive genetic variances and covariances were estimated for life history and morphological traits in two adjacent populations of the grass, Holcus lanatus L. Significant phenotypic differentiation was found between the two populations for four of the 15 morphological attributes measured. Significant differences in genetic architecture were found between the two populations for 11 of the 13 traits for which genetic variance components could be calculated. Estimates of genetic correlations also showed considerable divergence between the populations. The genetic divergence was much larger than would have been anticipated from simple measures of phenotypic differentiation. These results show that, even in plant species with relatively large population sizes, differences in genetic variance-covariance patterns can occur between adjacent populations.  相似文献   

19.
Classical life-history theory predicts ‘trade-offs’ between reproductive and somatic investments. However, empirical studies have shown that intraspecific phenotypic correlations between these two resource investments are often positive or nonsignificant, rather than negative as predicted. The model of Van Noordwijk and De Jong (1986) was proposed to explain these unexpected results. According to their model, positive correlations between reproductive and somatic investments will result if individual variation in resource acquisition exceeds that of resource allocation, whereas negative correlations will result if individual variation in resource allocation exceeds that of resource acquisition. To test this model, I used body storage/condition as an index of somatic investment because it is usually strongly related to level of resource acquisition. I predicted that laboratory studies should more often show negative correlations between reproductive and somatic investments than field studies, because individual variation in resource acquisition is expected to be lower in controlled laboratory environments than in variable natural environments. A literature review revealed that correlations between somatic (storage) investment and reproductive investment (estimated as clutch/litter mass, number of offspring per clutch/litter, or number of clutches/litters) among conspecific breeding female animals are more often positive (15 species) or nonsignificant (17 species) than negative (6 species). Moreover, as expected, five of six negative correlations were observed in laboratory studies, whereas 13 of 15 positive correlations were observed in field studies. It is concluded that future empirical and theoretical work on life histories should consider individual variation in both resource acquisition and allocation and the interaction between the two. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号