首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In glutamate-mediated excitatory neuronal cell death, immunosuppressants (FK506, Cys-A) are powerful agents that protect neurons from apoptosis. Immunosuppressants inhibit two types of enzyme, calcium/calmodulin-dependent protein phosphatase (calcineurin: CaN), and peptidyl-prolyl cis-trans-isomerase (PPIase) activity such as the FKBP family. In this study, we used a protein transduction approach to determine the functional role of CaN and to produce a potential therapeutic agent for glutamate-mediated neuronal cell death. We created a novel cell-permeable CaN autoinhibitory peptide using the 11 arginine protein transduction domain. This peptide was highly efficient at transducing into primary culture neurons, potently inhibited CaN phosphatase activities, and inhibited glutamate-mediated neuronal cell death. These results showed that CaN plays an important role in excitatory neuronal cell death and cell-permeable CaN autoinhibitory peptide could be a new drug to protect neurons from excitatory neuronal death.  相似文献   

2.
Glutamate is implicated in neuronal cell death. Exogenously applied DOPA by itself releases neuronal glutamate and causes neuronal cell death in in vitro striatal systems. Herein, we attempt to clarify whether endogenous DOPA is released by 10 min transient ischemia due to four-vessel occlusion during rat striatal microdialysis and, further, whether DOPA, when released, functions to cause glutamate release and resultant delayed neuronal cell death. Ischemia increased extracellular DOPA, dopamine, and glutamate, and elicited neuronal cell death 96 h after ischemic insult. Inhibition of striatal L-aromatic amino acid decarboxylase 10 min before ischemia increased markedly basal DOPA, tripled glutamate release with a tendency of decrease in dopamine release by ischemia, and exaggerated neuronal cell death. Intrastriatal perfusion of 10-30 nM DOPA cyclohexyl ester, a competitive DOPA antagonist, 10 min before ischemia, concentration-dependently decreased glutamate release without modification of dopamine release by ischemia. At 100 nM, the antagonist elicited a slight ceiling effect on decreases in glutamate release by ischemia and protected neurons from cell death. Glutamate was released concentration-dependently by intrastriatal perfusion of 0.3-1 mM DOPA and stereoselectively by 0.6 mM DOPA. The antagonist elicited no hypothermia during and after ischemia. Endogenously released DOPA is an upstream causal factor for glutamate release and resultant delayed neuronal cell death by brain ischemia in rat striata. DOPA antagonist has a neuroprotective action.  相似文献   

3.
    
  相似文献   

4.
Neurofilaments subunits (NF-H, NF-M, NF-L) and glial fibrillary acidic protein (GFAP) were investigated in the hippocampus of rats after distinct periods of reperfusion (1 to 15 days) following 20 min of transient global forebrain ischemia in the rat. In vitro [14Ca]leucine incorporation was not altered until 48 h after the ischemic insult, however concentration of intermediate filament subunits significantly decreased in this period. Three days after the insult, leucine incorporation significantly increased while the concentration NF-H, NF-M, and NF-L were still diminished after 15 days of reperfusion. In vitro incorporation of32P into NF-M and NF-L suffered immediately after ischemia, but returned to control values after two days of reperfusion. GFAP levels decreased immediately after ischemia but quickly recovered and significantly peaked from 7 to 10 days after the insult. These results suggest that transient ischemia followed by reperfusion causes proteolysis of intermediate filaments in the hippocampus, and that proteolysis could be facilitated by diminished phosphorylation levels of NF-M and NF-L.  相似文献   

5.
Emerging evidence supports an important role for caspases in neuronal death following ischemia-reperfusion injury. This study assessed whether cell specific caspases participate in neuronal degeneration and whether caspase inhibition provides neuroprotection following transient retinal ischemia. We utilized a model of transient global retinal ischemia. The spatial and temporal pattern of the active forms of caspase 1, 2 and 3 expression was determined in retinal neurons following ischemic injury. Double-labeling with cell-specific markers identified which cells were expressing different caspases. In separate experiments, animals received various caspase inhibitors before the induction of ischemia. Sixty minutes of ischemia resulted in a delayed, selective neuronal death of the inner retinal layers at 7 days. Expression of caspase 1 was not detected at any time point. Maximal expression of caspase 2 was found at 24 h primarily in the inner nuclear and ganglion cell layers of the retina and localized to ganglion and amacrine neurons. Caspase 3 also peaked at 24 h in both the inner nuclear and outer nuclear layers and was predominantly expressed in photoreceptor cells and to a lesser extent in amacrine neurons. The pan caspase inhibitor, Boc-aspartyl fmk, or an antisense oligonucleotide inhibitor of caspase 2 led to significant histopathologic and functional improvement (electroretinogram) at 7 days. No protection was found with the caspase 1 selective inhibitor, Y-vad fmk. These observations suggest that ischemia-reperfusion injury activates different caspases depending on the neuronal phenotype in the retina and caspase inhibition leads to both histologic preservation and functional improvement. Caspases 2 and 3 may act in parallel in amacrine neurons following ischemia-reperfusion. These results in the retina may shed light on differential caspase specificity in global cerebral ischemia.  相似文献   

6.
Dysregulation of autophagy contributes to neuronal cell death in several neurodegenerative and lysosomal storage diseases. Markers of autophagy are also increased after traumatic brain injury (TBI), but its mechanisms and function are not known. Following controlled cortical impact (CCI) brain injury in GFP-Lc3 (green fluorescent protein-LC3) transgenic mice, we observed accumulation of autophagosomes in ipsilateral cortex and hippocampus between 1 and 7 d. This accumulation was not due to increased initiation of autophagy but rather to a decrease in clearance of autophagosomes, as reflected by accumulation of the autophagic substrate SQSTM1/p62 (sequestosome 1). This was confirmed by ex vivo studies, which demonstrated impaired autophagic flux in brain slices from injured as compared to control animals. Increased SQSTM1 peaked at d 1–3 but resolved by d 7, suggesting that the defect in autophagy flux is temporary. The early impairment of autophagy is at least in part caused by lysosomal dysfunction, as evidenced by lower protein levels and enzymatic activity of CTSD (cathepsin D). Furthermore, immediately after injury both autophagosomes and SQSTM1 accumulated predominantly in neurons. This was accompanied by appearance of SQSTM1 and ubiquitin-positive puncta in the affected cells, suggesting that, similar to the situation observed in neurodegenerative diseases, impaired autophagy may contribute to neuronal injury. Consistently, GFP-LC3 and SQSTM1 colocalized with markers of both caspase-dependent and caspase-independent cell death in neuronal cells proximal to the injury site. Taken together, our data indicated for the first time that autophagic clearance is impaired early after TBI due to lysosomal dysfunction, and correlates with neuronal cell death.  相似文献   

7.
Rats were treated with alpha-methyl-para-tyrosine (AMT, 250 mg/kg, i.p), an hydroxylase inhibitor, in order to decrease brain levels of catecholamines. Six hours later, when cerebral dopamine (DA) and norepinephrine were reduced by about 80%, a transient forebrain ischemia of 30 min duration was induced by four-vessel occlusion technique. Evaluation of brain damage 72 hours after ischemia showed that AMT treatment significantly decreased neuronal necrosis in the striatum but had no cytoprotective effect in the CA1 sector of the hippocampus and in the neocortex. AMT treatment reduced mortality within the ischemic period but did not affect either the mortality within the recirculation period or the postischemic neurologic deficit. These results suggest that the striatal cytoprotective effect of AMT is linked to cerebral DA depletion and that excessive release of DA during ischemia or dopaminergic hyperactivity during recirculation play a detrimental role in the development of ischemic cell damage in the striatum.  相似文献   

8.
Cerebral ischemia-reperfusion injury triggers a deleterious process ending in neuronal death. This process has two components, a glutamate-dependent and a glutamate-independent mechanism. In the glutamate-independent mechanism, neurons undergo a slow depolarization eventually leading to neuronal death. However, little is known about the molecules that take part in this process. Here we show by using mice cortical neurons in culture and ischemia-reperfusion protocols that TRPM4 is fundamental for the glutamate-independent neuronal damage. Thus, by blocking excitotoxicity, we reveal a slow activating, glibenclamide- and 9-phenanthrol-sensitive current, which is activated within 5 min upon ischemia-reperfusion onset. TRPM4 shRNA-based silenced neurons show a reduced ischemia-reperfusion induced current and depolarization. Neurons were protected from neuronal death up to 3 hours after the ischemia-reperfusion challenge. The activation of TRPM4 during ischemia-reperfusion injury involves the increase in both, intracellular calcium and H2O2, which may act together to produce a sustained activation of the channel.  相似文献   

9.
To investigate the effect of E-64d, a selective inhibitor of calpain, on the expression of calpain and calpastatin in rat retina was subjected to ischemia/reperfusion injury (IRI). An animal model of retinal IRI was set up by increasing the intraocular pressure (110 mm Hg) of a rat eye for 1 h. The retinal thickness and morphologic changes were detected by histology. The protein expression of m-calpain (a calpain isoform) in the retina was assessed by immunohistochemistry and Western blot assay. The mRNA of m-calpain, as well as calpastatin (an endogenous protein inhibitor of calpain), in the retina was assessed by RT-PCR, and the ratio of m-calpain/calpastatin was then calculated. To evaluate the effect of E-64d on the expression of calpain, the drug (5 μl of 100 μM) was injected intravitreously immediately after IRI. There were retinal edematous changes, particularly in the inner plexiform layer after IRI. The protein expression of m-calpain in the retina was increased 24 h after IRI, an effect that was inhibited by E-64d (P < 0.05). The mRNA expression of m-calpain and calpastatin was also increased 24 h and 3 h after IRI, respectively. Neither m-calpain nor calpastatin mRNA expression was influenced by E-64d (P > 0.05). The mRNA ratio of m-calpain to calpastatin was increased at the 6 h, 24 h and 72 h after IRI, and only at 24 h the increase of the ratio of m-calpain to calpastatin was inhibited by E-64d (P < 0.05). In the rat retina of IRI, E-64d inhibits the increase of m-calpain protein expression, as well as the mRNA ratio increase of m-calpain to calpastatin. E-64d also inhibited the retinal damage induced by IRI, suggesting a role for E-64d in the protection of the retinal apoptosis induced by IRI. Published in Russian in Molekulyarnaya Biologiya, 2008, Vol. 42, No. 2, pp. 258–264. The text was submitted by the authors in English.  相似文献   

10.
Axonal injury is one of the key features of traumatic brain injury (TBI), yet little is known about the integrity of the myelin sheath. We report that the 21.5 and 18.5-kDa myelin basic protein (MBP) isoforms degrade into N-terminal fragments (of 10 and 8 kDa) in the ipsilateral hippocampus and cortex between 2 h and 3 days after controlled cortical impact (in a rat model of TBI), but exhibit no degradation contralaterally. Using N-terminal microsequencing and mass spectrometry, we identified a novel in vivo MBP cleavage site between Phe114 and Lys115. A MBP C-terminal fragment-specific antibody was then raised and shown to specifically detect MBP fragments in affected brain regions following TBI. In vitro naive brain lysate and purified MBP digestion showed that MBP is sensitive to calpain, producing the characteristic MBP fragments observed in TBI. We hypothesize that TBI-mediated axonal injury causes secondary structural damage to the adjacent myelin membrane, instigating MBP degradation. This could initiate myelin sheath instability and demyelination, which might further promote axonal vulnerability.  相似文献   

11.
Establishment of a Parkinson's disease (PD) neuron model was attempted with mouse embryonic stem (ES) cells. ES cell lines over-expressing mouse nuclear receptor-related 1 (Nurr1), together with human wild-type and alanine 30 --> proline (A30P) and alanine 53 --> threonine (A53T) mutant alpha-synuclein were established and subjected to differentiation into dopaminergic neurons. The ES cell-derived dopaminergic neurons expressing wild-type or mutant alpha-synuclein exhibited the fundamental characteristics consistent with dopaminergic neurons in the substantia nigra. The ES cell-derived PD model neurons exhibited increased susceptibility to oxidative stress, proteasome inhibition, and mitochondrial inhibition. Cell viability of PD model neurons and the control neurons was similar until 28 days after differentiation. Nonetheless, after that time, PD model neurons gradually began to undergo neuronal death over the course of 1 month, showing cytoplasmic aggregate formation and an increase of insoluble alpha-synuclein protein. Such delayed neuronal death was observed in a mutant alpha-synuclein protein level-dependent manner, which was slightly inhibited by a c-jun N-terminal kinase inhibitor and a caspase inhibitor. Such cell death was not observed when the same ES cell lines were differentiated into oligodendrocytes. The ES cell-derived PD model neurons are considered as prospective candidates for a new prototype modelling PD that would allow better investigation of the underlying neurodegenerative pathophysiology.  相似文献   

12.
We examined by morphological methodology the effect of (S)-N-ethyl-3-[(1-dimethyl-amino)ethyl]-N-methyl-phenylcarbamate hydrogentartrate (ENA-713), an acetylcholinesterase (AChE) inhibitor, on ischemia-induced neuronal death in the gerbil hippocampus due to a 5-min ligation of bilateral common carotid arteries after light ether anesthesia. Pyramidal cells had been decreased to 27% of sham-operated controls and the number of hypertrophic astrocytes expressing glial fibrillary acidic protein (GFAP) markedly increased in the hippocampal CA1 subfield 14 days after ischemia. However, post-ischemic administration of ENA-713 (three times 0.2 mg/kg, i.p.) significantly ameliorated this ischemia-induced decrease in the number of pyramidal cells by 47% of sham-operated controls, furthermore, it reduced the ischemia-induced accumulation of GFAP-positive astrocyte in the CA1 region. Together with previous results showing that ENA-713 protected against the ischemia-induced cholinergic abnormalities in the gerbil brain and improved cholinergic dysfunctions in the senescent rat brain, our present findings suggest that ENA-713 prove to be useful for treatment with senile dementia such as cerebrovascular dementia.  相似文献   

13.
14.
In the mammalian CNS, excessive release of glutamate and overactivation of glutamate receptors are responsible for the secondary (delayed) neuronal death following neuronal injury, including ischemia, traumatic brain injury (TBI) and epilepsy. The coupling of neurons by gap junctions (electrical synapses) increases during neuronal injury. In a recent study with the use of in vivo and in vitro models of cortical ischemia in mice, we have demonstrated that the ischemic increase in neuronal gap junction coupling is regulated by glutamate via group II metabotropic glutamate receptors (mGluR). Specifically, we found that activation of group II mGluRs increases background levels of neuronal gap junction coupling and expression of connexin 36 (Cx36; neuronal gap junction protein), whereas inactivation of group II mGluRs prevents the ischemia-mediated increases in the coupling and Cx36 expression. Using the analysis of neuronal death, we also established that inactivation of group II mGluRs or genetic elimination of Cx36 both dramatically reduce ischemic neuronal death in vitro and in vivo. Similar results were obtained using in vitro models of TBI and epilepsy. Our study demonstrated that mechanisms for the injury-mediated increase in neuronal gap junction coupling are part of the mechanisms for glutamate-dependent neuronal death.  相似文献   

15.
In the mammalian CNS, excessive release of glutamate and overactivation of glutamate receptors are responsible for the secondary (delayed) neuronal death following neuronal injury, including ischemia, traumatic brain injury (TBI) and epilepsy. The coupling of neurons by gap junctions (electrical synapses) increases during neuronal injury. In a recent study with the use of in vivo and in vitro models of cortical ischemia in mice, we have demonstrated that the ischemic increase in neuronal gap junction coupling is regulated by glutamate via group II metabotropic glutamate receptors (mGluR). Specifically, we found that activation of group II mGluRs increases background levels of neuronal gap junction coupling and expression of connexin 36 (Cx36; neuronal gap junction protein), whereas inactivation of group II mGluRs prevents the ischemia-mediated increases in the coupling and Cx36 expression. Using the analysis of neuronal death, we also established that inactivation of group II mGluRs or genetic elimination of Cx36 both dramatically reduce ischemic neuronal death in vitro and in vivo. Similar results were obtained using in vitro models of TBI and epilepsy. Our study demonstrated that mechanisms for the injury-mediated increase in neuronal gap junction coupling are part of the mechanisms for glutamate-dependent neuronal death.  相似文献   

16.
The actions of tumor necrosis factor-alpha (TNF-alpha) produced by resident brain cells and bone marrow-derived cells in brain following a transient global ischemia were evaluated. In wild-type mice (C57Bl/6J) following 20 min ischemia with bilateral common carotid artery occlusion (BCCAo), TNF-alpha mRNA expression levels in the hippocampus were significantly increased at 3 h and 36 h and exhibited a biphasic expression pattern. There were no hippocampal TNF-alpha mRNA expression levels at early time points in either wild-type mice bone marrow transplanted (BMT)-chimeric-TNF-alpha gene-deficient (T/W) or TNF-alpha gene-deficient mice BMT-TNF-alpha gene-deficient mice (T/T), although TNF-alpha mRNA levels were detectable in T/W BMT mice at 36 h. Histopathological findings showed no intergroup differences between wild-type and TNF-alpha gene-deficient mice at 4 and 7 days after transient ischemia. In addition, nuclear factor-kappaB (NF-kappaB) was activated within 12 h after global cerebral ischemia, but electrophoretic mobility shift assays (EMSA) showed no intergroup differences between wild type and TNF-alpha gene-deficient mice. In summary, early hippocampal TNF-alpha mRNA expression may not be related to bone marrow-derived cells, and secondary TNF-alpha expression as early as 36 h after ischemia probably resulted mainly from endogenous brain cells and possibly a few bone marrow-derived cells. Although we cannot exclude the possibility of the TNF-alpha contribution to the physiologic changes of hippocampus after transient global ischemia, these results indicate that TNF-alpha does not influence the morphological changes of the hippocampal neurons under our study condition.  相似文献   

17.
18.
Transient global ischemia (which closely resembles clinical situations such as cardiac arrest, near drowning or severe systemic hypotension during surgical procedures), often induces delayed neuronal death in the brain, especially in the hippocampal CA1 region. The mechanism of ischemia/reperfusion (I/R) injury is not fully understood. In this study, we have shown that the P2X7 receptor antagonist, BBG, reduced delayed neuronal death in the hippocampal CA1 region after I/R injury; P2X7 receptor expression levels increased before delayed neuronal death after I/R injury; inhibition of the P2X7 receptor reduced I/R-induced microglial microvesicle-like components, IL-1β expression, P38 phosphorylation, and glial activation in hippocampal CA1 region after I/R injury. These results indicate that antagonism of the P2X7 receptor and signaling pathways of microglial MV shedding, such as src-protein tyrosine kinase, P38 MAP kinase and A-SMase, might be a promising therapeutic strategy for clinical treatment of transient global cerebral I/R injury.  相似文献   

19.
20.
PKN is a fatty acid- and Rho-activated serine/threonine kinase, which has a catalytic domain highly homologous to that of protein kinase C (PKC). Recent studies have demonstrated that PKN is proteolytically cleaved after apoptotic stimulation and then a constitutively active 55-kDa fragment is generated. However, the role of the 55-kDa fragment are poorly understood. Adult Sprague-Dawley (SD) rats underwent middle cerebral artery occlusion (MCAO), and the temporal and spatial changes in the fragmentation of PKN and of PKC delta were examined by immunoblotting. No proteolytic fragment of PKC delta (about 40 kDa) was detected. The 55-kDa fragment of PKN appeared transiently from 3 days after MCAO at the ipsilateral normal cortex. At the boundary zone of infarction, the 55-kDa fragment was markedly induced from day 5 then peaked on day 21 and persisted until day 28. Analysis of anti-phosphoserine immunoprecipitates with an anti-PKN antibody revealed phosphorylation of the 55-kDa band. Double staining for PKN and Ox42 was used to examine the source of the 55-kDa fragment. PKN immunoreactivity was significantly increased in Ox42-positive cells (microglia/hematogenous macrophages). No DNA laddering and only a few terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells were observed on day 14 in despite of the high level appearance of the 55-kDa band. These results suggest that the constitutively active 55-kDa fragment of PKN does not contribute to apoptosis, but may contribute to a function of microglia/macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号