首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Embryogenic tissue of Pinus patula Scheide et Deppe was cryopreserved for 8 weeks using sorbitol and dimethylsulfoxide (DMSO) as cryoprotectants. Results indicate that 0.3 M sorbitol and 5% DMSO had the best cryoprotecting effect. The recovered tissue initially underwent a lag phase but then continued to proliferate normally on MSG3 maintenance medium. Recovered tissue was placed onto MSG5 maturation medium, and embryos were isolated and germinated. Plantlet regeneration from the recovered tissue was achieved. Received: 16 April 1999 / Revision received: 26 July 1999 / Accepted: 17 August 1999  相似文献   

2.
Summary The present investigation reports optimized parameters for somatic embryogenesis and cryopreservation of embryogenic cultures using shoot apical domes from mature trees of Pinus roxburghii Sarg. Embryogenic tissue of P. roxburghii Sarg. was cryopreserved for 24 h, 10 d, and 8 wk using sorbitol and dimethylsulfoxide (DMSO) as cryoprotectants. Results indicate that 0.2M sorbitol and 5% DMSO had the best cryoprotecting effect. The recovered tissue showed luxuriant growth on maintenance medium (II). Partial desiccation of thawed embryogenic tissue for 24 h prior to transfer to maturation medium enhanced the maturation of somatic embryos. Maturation frequency increased from 1.3 to 18.3% after 12 h desiccation treatment, and from 18.3 to 61.8% after 24 h of desiccation. However, non-desiccated embryogenic tissue produced the least number of somatic embryos (1.3%) on the maturation medium with the same abscisic acid and Gellan gum concentration. All the three embryogenic lines produced plantlets and had the same appearance and normal growth as compared to unfrozen controls.  相似文献   

3.
Channel catfish leucocytes cryopreserved with glycerol or dimethyl sulphoxide (DMSO) had significantly higher ( P <0.05) viability and recovery rates than did cells cryopreserved with methanol. After 7 days of frozen storage, a 24 to 27% reduction of viability was observed for cells cryopreserved with glycerol; a 25 to 43% reduction for cells frozen with DMSO, and a 67 to 100% reduction for cells frozen with methanol. The concentration of cryoprotectants affected the viability of cryopreserved cells significantly ( p <0.05). The viability reduction was 36% for cells frozen with 5% of cryoprotectants, 30% for cells frozen with 10% of cryoprotectants, and 49% for cells frozen with 15% of cryoprotectants. The viability of cells frozen at the slower rate (-2.7°C min−1) was significantly higher ( p <0.05) than that of cells frozen at the faster rate (-45°C min−1). Best results were obtained for cells cryopreserved with 10% of glycerol or DMSO and frozen at the slower rate. The chromosomes prepared from cells cryopreserved using this procedure were identical to those prepared from fresh cells, and to those reported in the literature for channel Catfish.  相似文献   

4.
In this study we describe acrosome staining and motility characteristics of fresh and cryopreserved sterlet (Acipenser ruthenus L.) spermatozoa using soybean trypsin inhibitor-Alexa conjugate fluorescent staining and computer-aided sperm analysis (CASA), respectively. Methanol or dimethylsulfoxide (DMSO) were used as cryoprotectants. After cryopreservation a decline in sperm motility characteristics occurred, but no differential effect between cryoprotectant was observed. Cryopreservation caused a significant increase in the percentage of spermatozoa with acrosome stained by SBTI-Alexa for samples cryopreserved using DMSO compared to methanol. These data suggest that the low usefulness of DMSO for cryopreservation of sturgeon spermatozoa is related to its harmful specific effect towards the acrosome, probably by causing its precocious triggering, much before any egg contact.  相似文献   

5.
Embryogenic tissues of a conifer species Pinus nigra Arn. have been cryopreserved by a slow-freezing method. The effect of cryoprotective compounds such as maltose, sucrose or sorbitol (each 0.5 M) combined with 7.5% (v/v) DMSO has been tested. After thawing, the following parameters have been investigated: tissue regrowth 6 weeks after thawing, and post-thaw growth evaluated as fresh mass accumulation as well as genetic stability in post-thaw period. The parameters mentioned have been compared in both cryopreserved and non-cryopreserved tissues. Out of eight cell lines used in experiments, seven survived cryopreservation (87.5% regrowth), although cell line and treatment effects were observed. In most cell lines, sucrose or maltose pretreatments were superior over sorbitol. In the regrown cell lines, the post-thaw growth as fresh mass accumulation was not negatively influenced by cryopreservation. No genetic variation was observed in cryopreserved tissues using a RAPD approach.  相似文献   

6.
The freezing behavior of dimethylsulfoxide (DMSO) and sorbitol solutions and periwinkle (Catharanthus roseus) cells treated with DMSO and sorbitol alone and in combination was examined by nuclear magnetic resonance and differential thermal analysis. Incorporation of DMSO or sorbitol into the liquid growth medium had a significant effect in the temperature range for initiation to completion of ice crystallization. Compared to the control, less water crystallized at temperatures below −30°C in DMSO-treated cells. Similar results were obtained with sorbitol-treated cells, except sorbitol had less effect on the amount of water crystallized at temperatures below −25°C. There was a close association between the per cent unfrozen water at −40°C and per cent cell survival after freezing for 1 hour in liquid nitrogen. It appears that, in periwinkle suspension cultures, the amount of liquid water at −40°C is critical for a successful cryopreservation. The combination of DMSO and sorbitol was the most effective in preventing water from freezing. The results obtained may explain the cryoprotective properties of DMSO and sorbitol and why DMSO and sorbitol in combination are more effective as cryoprotectants than when used alone.  相似文献   

7.
The aim of this study was to verify the histological and ultrastructural characteristics of sheep preantral follicles after exposure of ovarian tissue to cryopreservation in glycerol (GLY), ethylene glycol (EG), propanediol (PROH) or dimethyl sulfoxide (DMSO) in order to determine the optimum method to store sheep ovarian tissue for later experimental or clinical use. Each ovarian pair from five mixed-breed ewes was divided into 17 fragments. One (control) fragment was immediately fixed for routine histological and ultrastructural studies and the remaining (test) fragments were randomly distributed in cryotubes, equilibrated at 20 degrees C/20 min in 1.8 mL of minimal essential medium (MEM) containing 1.5 or 3 M GLY, EG, PROH or DMSO and then either fixed for morphological studies to determine their possible toxic effect or frozen/thawed and then fixed to test the effect of cryopreservation on preantral follicles. Histological analysis showed that, compared to control fragments, all cryoprotectants at both concentrations significantly reduced the percentage of normal preantral follicles in ovarian fragments prior to or after cryopreservation. PROH 3.0 M appeared to exert a more toxic effect (P<0.05) than the other cryoprotectants in noncryopreserved tissues. After freezing/thawing, the highest (P<0.05) percentages of lightmicroscopical normal preantral follicles were observed in ovarian fragments cryopreserved in EG (1.5 and 3 M) or DMSO (1.5 M). However, transmission electronic microscopical (TEM) examination showed that only the DMSO-cryopreserved preantral follicles had normal ultrastructure. The data suggest that sheep preantral follicles should be cryopreserved with 1.5 M DMSO for later clinical or experimental application.  相似文献   

8.
Anther-derived suspension cultures of Hordeun vulgare L. were cryopreserved by slow cooling and storage in liquid nitrogen for up to 55 days. Cells were pre-cultivated in L3 suspension medium supplemented with sorbitol. For freeze preservation the cells were treated with different combinations of cryoprotectant agents such as DMSO, proline, glycerol and sucrose. After rapid thawing high viabilities of up to 77% could be achieved. Cell growth commenced 2- 3 weeks later. The frequency of plantlet regeneration was 1%.  相似文献   

9.
Summary Embryogenic cell suspension cultures of Pinus caribaea var. hondurensis have been cryopreserved in liquid nitrogen for up to four months, using sucrose and dimethylsulfoxide as cryoprotectants. Post-thaw growth was obtained after a short lag phase. Removal of the remaining liquid around the cells using a filter disc favoured subsequent regrowth of the cells. These reestablished cultures maintained an embryogenic potential similar to non-frozen cultures. The embryos produced were able to regenerate into plants, which are now growing in a greenhouse.Abbreviations BA 6-benzyladenine - DMSO dimethylsulfoxide - FDA fluorescein diacetate - MS Murashige and Skoog - 2,4-D 2,4-dichlorophenoxyacetic acid - PAR photosynthetically active radiation  相似文献   

10.
Cryopreservation of ovarian tissue is a new and promising technique for germ-line storage. The objective of this study was to evaluate the effect of four cryoprotectants (at two concentrations each) on the preservation of zebu bovine preantral follicles after ovarian cryostorage. Strips of ovarian cortex were cryopreserved using glycerol (GLY; 10 or 20%), ethylene glycol (EG), propanediol (PROH) or dimethylsulphoxide (DMSO; 1.5 or 3M). In addition, a toxicity test was performed for each cryoprotectant by exposing the ovarian tissue to them without freezing. Tissues were analyzed by histology and transmission electron microscopy. Ovarian tissue frozen in either concentration of DMSO or PROH or in 10% GLY retained a higher percentage of morphologically normal follicles (73-88%) than tissue frozen in 20% GLY or in either concentration of EG (16-52%). In the toxicity test, exposure of tissues to DMSO, PROH or GLY resulted in higher percentages of normal follicles (80-97%) than exposure to EG (49%). Electron microscopy revealed damage to the ultrastructure of follicles frozen in 10% GLY, while follicles cryopreserved in DMSO and PROH at either concentration exhibited normal ultrastructure. In conclusion, DMSO and PROH were the most effective cryoprotectants for zebu ovarian tissue, preserving the structural integrity of somatic and reproductive cells within the ovary.  相似文献   

11.
Summary The photosynthetic cell suspension culture of soybean [Glycine max (L.) Merr. cv. Corsoy] (SB-M) was successfully cryopreserved in liquid nitrogen using a preculture and controlled freezing to −40° C (two-step) freezing method. The effective method included a preculture treatment with gradually increasing levels of sorbitol added to the 3% sucrose already present in the medium. The cells were then placed in a cryoprotectant solution [10% DMSO (dimethylsulfoxide) and 9.1% sorbitol, or 10% DMSO and 8% sucrose], incubated for 30 min at 0° C, cooled at a rate of 1° C/min to −40° C, held at −40° C for 1 h, and then immersed directly into liquid nitrogen. The cells were thawed at 40° C and then immediately placed in liquid culture medium. The cell viabilities immediately after thawing were 75% or higher in all cases where cell growth resumed. The original growth rate and chlorophyll level of the cells was recovered within 40 to 47 d. If the sorbitol level was not high enough or the preculture period too short, growing cultures could not be recovered. Likewise, survival was not attained with cryoprotectant mixtures consisting of 15% DMSO, 15% glycerol, and 9.1% sucrose or 15% glycerol and 8% sucrose. The successful method was reproducible, thus allowing long-term storage of this and certain other unique photosynthetic suspension cultures in liquid nitrogen.  相似文献   

12.
Wheat (Triticum aestivum L. cv. Norstar) suspension cultures and regenerable calli initiated from immature embryos can be cryopreserved in liquid nitrogen temperature (–196°C) by slow freezing (0.5°C/min) in the presence of a mixture of DMSO and sucrose or sorbitol. Cold hardening or ABA treatment before cryopreservation increased the freezing resistance and improved the survival of wheat suspension culture in liquid nitrogen. Callus culture, established from immature embryos, prefrozen in 5% DMSO and 0.5M sorbitol survived liquid nitrogen storage and resumed plant regeneration after thawing. The results confirm the feasibility of long term preservation of wheat embryo callus by cryopreservation and retention of plant regeneration ability.Abbreviations ABA Abscisic acid - 2,4-D 2,4-Dichlorophenoxyacetic acid - DMSO Dimethylsulfoxide - LN Liquid nitrogen - TTC 2,3,5-triphenyltetrazolium chloride NRCC No. 23850.  相似文献   

13.
Glycerol and dimethyl sulfoxide (DMSO) are widely used as penetrating cryoprotectants in the freezing of sperm, and various concentrations are applied in different species and laboratories. The present study aimed to examine the effect of these two cryoprotectants at different concentrations (2%, 5%, 10%, and 15% glycerol or DMSO) on rhesus monkey sperm cryopreservation. The results showed that the highest recovery of post-thaw sperm motility, and plasma membrane and acrosome integrity was achieved when the sperm was frozen with 5% glycerol. Spermatozoa cryopreserved with 15% DMSO showed the lowest post-thaw sperm motility, and spermatozoa cryopreserved with 15% glycerol and 15% DMSO showed the lowest plasma membrane integrity among the eight groups. The results achieved with 5% glycerol were significantly better for all parameters than those obtained with 5% DMSO. The functional cryosurvival of sperm frozen with 5% glycerol was further assessed by in vitro fertilization (IVF). Overall, 85.7% of the oocytes were successfully fertilized, and 51.4% and 5.7% of the resulting zygotes developed into morulae and blastocysts, respectively. The results indicate that the type and concentration of the penetrating cryoprotectant used can greatly affect the survival of rhesus monkey sperm after it is frozen and thawed. The suitable glycerol level for rhesus monkey sperm freezing is 5%, and DMSO is not suitable for rhesus monkey sperm cryopreservation.  相似文献   

14.
Knowledge of tolerance to cryoprotectants is important in determining viability after biological freezing of algae. Six taxonomically diverse marine microalgae were evaluated for their tolerance to the widely used cryoprotectants dimethyl sulfoxide (DMSO) and methanol. Tetraselmis chuii Butcher survived exposure to 30% (v/v) DMSO and 25% methanol for periods of up to 4 h. All other species were more sensitive to high concentrations of these cryoprotectants. DMSO was lethal at 25% after a 15-min exposure of Rhodomonas baltica Karsten, Isochrysis off. galbana (strain T-ISO) Parke, and Nannochloropsis gaditana Lubian. Nannochloris atomus Butcher could tolerate only a 1-min exposure at this concentration; Chaetoceros gracilis Schutt completely lost viability when exposed to 20% for 60 min. Safe concentrations for DMSO incubations were similar (about 5% lower) to lethal thresholds. Methanol incubations did not significantly decrease cell viability at concentrations of 5% (1 min) for R. baltica, 25% (up to 60 min) for T. chuii, 15% (up to 120 min) for I. galbana, 5% (up to 60 min) for N. gaditana, 15% (up to 240 min) for Ch. gracilis, and 15% (up to 120 min) for N. atomus. Nannochloris atomus has the potential to be cryopreserved without the need for any cryoprotectant. The other five species were clearly dependent on a 15% DMSO preincubation to achieve a growth response after thawing from ?196° C. Only N. atomus and N. gaditana could be grown after being cryopreserved in the presence of 5% methanol.  相似文献   

15.
The caprine ovary is a rich source of potentially viable immature oocytes enclosed in preantral follicles (PF). Previous experiments showed that these oocytes can be successfully cryopreserved in ovarian tissue of several species. However, until now, no information about the caprine PF cryopreservation is available in the literature. The aim of the present research was to evaluate the structural and ultrastructural characteristics of caprine PF after treatment and cryopreservation of ovarian tissue with 1.5 and 3 M dimethylsulphoxide (DMSO) and propanediol (PROH). One fragment of ovarian tissue was immediately fixed for histological examination and ultrastructural analysis, after slaughter (control). Four fragments were equilibrated at 20 degrees C/20 min in 1.8 ml of minimum essential medium (MEM) containing 1.5 or 3 M DMSO or PROH for the toxicity test, and the other four fragments were slowly frozen in each cryoprotectant at the concentrations previously described. After toxicity test and freezing/thawing procedures, the ovarian fragments were fixed for histological examination. The results showed that after toxicity test and cryopreservation of ovarian tissue using both cryoprotectants, the percentage of normal PF was less (P < 0.05) as compared with the control group. The present study revealed that the percentage of normal PF after toxicity test and cryopreservation in 1.5 M DSMO was significantly greater (P < 0.05) as compared with results obtained with 3 M DMSO or 1.5 and 3 M PROH. This result was confirmed by transmission electron microscopy, which showed that the PF were preserved in a higher quality state with 1.5 M DMSO. In conclusion, the present study demonstrated that caprine PF can be cryopreserved in ovarian tissue using 1.5 M DMSO.  相似文献   

16.
Cumulus cell-enclosed bovine oocytes in germinal vesicle (GV) and in metaphase II (MII) stages were cryopreserved. Different concentrations (1 M; 1.5 M) of various cryoprotectants (glycerol, PROH, DMSO) were tested. After thawing, the oocytes were exposed to various carbohydrates (sucrose, lactose, trehalose) at a concentration of 0.1 M and 0.25 M for cryoprotectant removal. Developmental capacity of the frozen-thawed oocytes was studied by in vitro maturation, fertilization and culture. We found no difference in subsequent development using glycerol or PROH for GV and MII oocytes. The DMSO treatment led to significantly better cleavage and development up to 4-cell stage in MII oocytes. Development beyond the 8-cell stage was obtained only when unmatured oocytes were frozen. No difference in the efficiency of the 3 cryoprotectants was detected in MII oocytes. However, in GV oocytes, glycerol and PROH yielded significantly better cleavage and 4-cell rate compared to DMSO (P<0.001). Influence of the concentration of a cryoprotectant on development was not observed in GV or MII oocytes. Among the 3 cryoprotectants, DMSO was less suitable, at both concentrations, than PROH and glycerol for the development of 6- to 8-cell stage embryos in the GV group. In the MII group, 1.5 M DMSO was as efficient as PROH and as glycerol at a 1.5-M concentration, and it was more efficient than 1 M glycerol. The use of carbohydrates during rehydration did not render a beneficial effect at either of the 2 concentrations, and when no carbohydrates were used in the MII group the oocytes cleaved better than GV oocytes.  相似文献   

17.
Cryopreservation of primordial germ cells (PGCs) is a better alternative for the conservation of the diploid genome in fish until embryo cryopreservation is achieved. A good cryopreservation protocol must guarantee high survival rates but also absence of genetic damage. In this study, a cell toxicity test using several internal and external cryoprotectants was carried out. The best combination of cryoprotectants (DMSO 5 mol/L, ethylene glicol (EG) 1 mol/L, polyvinyl pyrrolidone (PVP) 4%) was used with and without antifreeze proteins (AFPs) at two different concentrations (10 mg/mL and 20 mg/mL) for cryopreservation trials. Different cryopreservation methods were used with single PGCs, genital ridges, and whole zebrafish embryos using cryovials, 0.5 mL straws, microcapsules, and microdrops. All embryos were obtained from the vasa EGFP zf45 transgenic line and viability was evaluated using trypan blue. High cell viability rates after cryopreservation in 0.5 mL straws were obtained (around 90%) and a decrease in viability was only observed when cells were cryopreserved in microcapsules and when AFP at 20 mg/mL was added to the freezing media. Genetic damage was determined by comet assay and was compared in cells cryopreserved in 0.5 mL straws and microcapsules (lowest viability rate). There were significantly more DNA strand breaks after cryopreservation in the cells cryopreserved without cryoprotectants and in those cryopreserved in microcapsules. Genetic damage in the cells cryopreserved with cryoprotectants in 0.5 mL straws was similar to fresh control samples, regardless of the concentration of AFP used. The decrease in PGC viability with the addition of AFP 20 mg/mL did not correlate with an increase in DNA damage. This study reported a successful method for zebrafish PGC cryopreservation that not only guarantees high cell survival but also the absence of DNA damage.  相似文献   

18.
Experiments were conducted to study the effect of cryoprotectants, dimethyl sulfoxide (DMSO), ethylene glycol (EG), 1,2-propanediol (PROH), and glycerol at different concentrations (3.5, 4, 5, 6, and 7 M each with 0.5 M sucrose and 0.4% BSA in DPBS) on survival, in vitro maturation, in vitro fertilization, and post-fertilization development of vitrified-thawed immature buffalo oocytes. The COCs were harvested from the ovaries by aspirating the visible follicles. The recovery of post-thaw morphologically normal oocytes was lower in 3.5 and 4 M DMSO, EG, and PROH compared to 5, 6, and 7 M. In all the concentrations of glycerol, an overall lower numbers of oocytes recovered were normal compared to other cryoprotectants. Less number of oocytes reached metaphase-II (M-II) stage from the oocytes cryopreserved in any of the concentrations of DMSO, EG, PROH, and glycerol compared to fresh oocytes. Among the vitrified groups, highest maturation was obtained in 7 M solutions of all the cryoprotectants. The cleavage rates of oocytes vitrified in different concentrations of DMSO, EG, PROH, and glycerol were lower than that of the fresh oocytes. The cleavage rates were higher in oocytes cryopreserved in 6 and 7 M DMSO, EG, PROH, and glycerol compared with oocytes cryopreserved in other concentrations. However, the percentage of morula and blastocyst formation from the cleaved embryos did not vary in fresh oocytes and vitrified oocytes. In conclusion, this report describes the first successful production of buffalo blastocysts from immature oocytes cryopreserved by vitrification.  相似文献   

19.
Two strains ofFlammulina velutipes were cultured on PDA plates, and mycelial disks punched out using a cork borer were used for preservation. Five disks of a strain were put into a vial containing one of three cryoprotectants, 10% glycerol, 5% DMSO or 10% polyethylene glycol. Vials were then stored for 7 yr at −20°C, −85°C or liquid nitrogen temperature. The mycelial growth on PDA plates of the cryopreserved mycelial disks, as well as the usual subcultures, were tested two times. After the second test, spawns were prepared for fruit-body production tests by bottle cultivation from selected plates of the second growth tests. The yields of fruit-bodies varied among the cultures derived from the mycelial disks of the same strain preserved under different conditions. Variation in yields was observed even among the mycelial disks preserved at liquid nitrogen temperature, although the range of yield variation was narrower. The yield variation was obvious for the cultures which showed large retardation in the growth test. Four mycelial disks out of the six preserved at −20°C showed higher yields than those preserved at other temperatures. Among the cultures derived from strain FMC224, the control cultures preserved by subculture showed the lowest yield.  相似文献   

20.
The present study aimed to test different cryoprotectants on cryopreservation of pig ovarian tissue. Pig ovaries (n = 3) were collected at a local slaughterhouse. From each ovary, ten cortex samples were taken. One was immediately fixed (control) and another placed in short-term tissue incubation (STTI control). The other 8 samples were cryopreserved, in pairs, using 4 different cryoprotectants: dimethyl sulphoxide (Me2SO – 1.5 M), ethylene glycol (EG – 1.5 M), propanediol (PROH – 1.5 M) and glycerol (GLY – 10%), all with 0.4% sucrose. Samples were slow cooled and stored in liquid nitrogen for 7 days. After thawing and cryoprotectant removal, one sample from each treatment was immediately fixed and the other was placed in short-term tissue incubation (STTI) for 2 h and then fixed. Samples were processed for histology and transmission electron microscopy. The percentages of morphologically normal follicles (MNF) in cryopreserved tissue using Me2SO (67.0 ± 4.9), EG (81.8 ± 1.4) and PROH (55.9 ± 9.9) were significantly lower (P < 0.05) than observed in fresh control tissue (97.7 ± 1.2). When ovarian tissue was cryopreserved with GLY, no morphologically normal follicles could be found (0%). After STTI, PROH showed a significantly lower percentage of MNF when compared with all other treatments and the control. After ultrastructural analysis, follicles cryopreserved with Me2SO and EG showed some small alterations, but no signs of advanced degeneration. Overall, these were similar to follicles from the control group. In conclusion, it is possible to cryopreserve preantral follicles from pig ovarian tissue using Me2SO or EG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号