首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyenstrand  P.  Burkert  U.  Pettersson  A.  Blomqvist  P. 《Hydrobiologia》2000,435(1-3):91-98
In this study, we evaluated growth responses of the green alga Scenedesmus and the cyanobacterium Synechococcus supplied with inorganic nitrogen in different ways. A competitive situation in which nitrogen was limiting was created in mixed cultures as well as in cultures growing in the same vessel but separated by a permeable dialysis membrane. Supplying inorganic nitrogen in small pulses at a high frequency favoured the cyanobacterium Synechococcus, whereas batch additions favoured the green alga Scenedesmus. When using a large-pulse/low-frequency supply mode, the yield of the green alga was higher when ammonium was added as nitrogen source compared to when nitrate was added. By contrast, the yield of the cyanobacterium was higher in the nitrate regime. However, uptake experiments using unialgal cultures showed that both organisms depleted the medium of ammonium more rapidly than they depleted the medium of nitrate; i.e. the higher yield of the cyanobacterium in the nitrate regime than in the ammonium regime can be attributed to the effects of competition with the green alga. Since nitrate assimilation involves the consumption of reductive power, we suggest that the outcome of competition was governed by the fact that green alga was light limited and therefore better able to compete for ammonium than for nitrate. The results from the laboratory studies are discussed in relation to results from an enclosure experiment performed in Lake Erken, Sweden. In that field experiment, in which additions of both phosphate and ammonium were applied every second day to 350-l enclosures, the green algal biomass increased exponentially during an incubation period of 22 days.  相似文献   

2.
Nitrogen fixation has been demonstrated in a bacteria-free culture of a semithermophilic blue-green alga, Anabaena flos aquae A-37, employing the criterion of an increase in cellular nitrogen as a basis for determining nitrogen fixation. This is apparently the first time that nitrogen fixation has been demonstrated in a pure culture of a blue-green alga which grows at 40 C and which produces abundant quantities of an extracellular heteropolysaccharide.  相似文献   

3.
The red alga Asterocytis ramosa has been cultivated aseptically in artificial seawater ASP6 F. The alga shows optimal growth at 22·5–25° C. Optimal light conditions as well as phosphorus and nitrogen requirements were investigated. Nitrate and ammonium salts as well as organic nitrogen can be used as a nitrogen source. Arginine was an extremely good source of nitrogen, presumably because it splits off urea. Asterocytis is vitamin B12 heterotrophic and growth is obtained with cyanocobalamin, Factor III and Factor Z1. A mixture of other vitamins gives further stimulation. In the newly isolated culture, hexoses and pentoses enhanced growth. Acetate increased growth in an old axenic culture. In darkness no growth was obtained.  相似文献   

4.
Y. B. Ho 《Hydrobiologia》1981,77(1):43-47
The amounts of tissue nitrogen, phosphorus, potassium, sodium, calcium and iron were estimated in the green alga Ulva lactuca L. collected from 9 rural and 14 urban littoral sites in the waters around Hong Kong Island during 1978 and 1979. The mean levels of tissue nitrogen and phosphorus were respectively 65% and 87% more in urban sites than in rural ones. Very significant correlation (r = 0.920) was found between the logarithmic concentration of seawater inorganic nitrogen and that of tissue nitrogen. The same applied to soluble reactive phosphorus in seawater and tissue phosphorus (r = 0.886). The levels of potassium, sodium and calcium in the alga were relatively uniform. However considerable variation in the level of iron was detected. The potential use of Ulva as an indicator species for eutrophication is discussed.  相似文献   

5.
A unique feature, frequent heterocyst germination, has been observed in a nonsporulating mutant clone (of spontaneous origin) of the blue-green alga Gloeotrichia ghosei Singh. The controlling factor seems to be the presence of ammoniacal nitrogen in the medium. In addition, such a medium supports differentiation of successive crops of new heterocysts and their germination in the name medium and in the same algal culture. Contrary to previous observations with oilier blue-green algae, ammoniacal nitrogen does not seem to inhibit heterocyst differentiation in this alga. Both the parent alga and its mutant clone grow poorly in a nitrogen-free medium, which, although they are not completely free from bacteria, may indicate that they tire poor fixers or nonfixers. However, they form a large number of heterocysts under these conditions. The general conclusion is that the heterocysts of blue-green algae show a multiplicity of structure and function. In the present case they have reproductive function leading to direct propagation of the alga. The bearing of these findings on the interrelationships of the genera Gloeotrichia and Rivularia has been discussed. It has been concluded that the distinction between them is purely artificial.  相似文献   

6.
The growth response of the marine blue-green alga, Agmenellum quadruplicatum to 60 inorganic and organic nitrogen sources was studied. These compounds were offered as sole nitrogen sources. Most amino acids, most purines, and urea were good nitrogen sources for growth.  相似文献   

7.
Nitrogen is the major growth-limiting nutrient for marine algae. One potential source of nitrogen for marine algae is ammonium released by invertebrates. Many mid-intertidal reefs in northeastern New Zealand are dominated by a close association between the honeycomb barnacle Chamaesipho columna and an encusting brown alga Pseudolithoderma sp. Growth of Pseudolithoderma was enhanced in the presence of live C. columna, which released ammonium at a greater rate than the maximum rate of ammonium uptake by Pseudolithoderma. Algal tissue on barnacle tests had a lower C:N ratio than tissue located more than 2 cm from the nearest barnacle, suggesting the barnacle is an important source of nitrogen for the alga. The role of nutrient exchange in determining ecological patterns of species in marine communities is discussed.  相似文献   

8.
Summary Frequent growth of unicellular blue-green alga Aphanothece sp. was observed in medium free of combined nitrogen. Its generation time was 12 h and more than 2 mg of nitrogen was fixed in 25 days. Its growth and nitrogen fixation were comparable to other heterocystous algae.  相似文献   

9.
The effects of pH, light intensity, temperature, oxygen and dehydration on nitrogenase activity in the free-living and endophytic Nostoc sp. of Blasia are described. The endophyte exhibits greater nitrogenase activity at lower pH's than the free-living alga. Maximal activity in the free-living alga is attained at much lower light intensities than those required by the endophyte. Both algae have low activities below 10°C, the free-living alga showing high activity above 12°C and the endophyte above 17°C. Increasing pO2 levels cause a decrease in activity in both algae. The free-living alga is more tolerant to dehydration than the endophyte, although both algae are protected by mucilage. The results are discussed and possible benefits resulting from the symbiosis, with respect to nitrogen fixation rates, considered.  相似文献   

10.
Blooms ofChrysochromulina breviturrita Nich. (Prymnesiophyceae) have been found to be restricted to lakes above pH 5.5 even though the alga is able to tolerate pH 4.0 in laboratory culture. A possible explanation is the increased transparency in acidifying lakes and a sensitivity ofC. breviturrita to high light intensities. A comparison was made withMougeotia sp., a filamentous green alga which co-occurs in moderately acidic lakes and has a similar pH tolerance range. This alga forms dense, floating mats or amorphous clouds in the upper littoral zone, where it would be exposed to full sunlight irradiances. In cultures ofC. breviturrita, prolonged exposures to 1600 μE · m−2 · s−1 (I0′) resulted in reductions in cell yield which were dependent age at the onset of exposure to high light intensity. Only cultures exposed to high light intensities during late stationary phase were able to recover to control levels and no recovery occurred if these cultures were nitrogen deficient.Mougeotia was more tolerant of both high light intensity and nitrogen limitation during the recovery period. The inability ofC. breviturrita to recover from the effects of high light intensity during nitrogen deprivation may be particularly important in small, stratified lakes which are undergoing acidification. The slow rate of vertical circulation, and increasing transparency, would prolong exposure of the alga to the high irradiance levels of nutrient-deficient epilimnetic waters. This suggests that the geographic distribution ofC. breviturrita may be explained in part by the increasing light intensities in lakes undergoing acidification.  相似文献   

11.
We measured maximum ammonium uptake rates of the green alga Scenedesmus quadricauda (Turpin) Brébisson and the blue-green alga Microcystis novacekii (Kom.) Comp. grown in nitrogen (ammonium)–limited chemostats. Maximum uptake rates per cellular carbon were larger in S. quadricauda than in M. novacekii. These rates increased with increased specific growth rates. Maximum uptake rates per cellular nitrogen were also larger in S. quadricauda than in M. novacekii. The maximum uptake rates per cellular nitrogen were nearly constant against increased cellular N:C ratios under nitrogen-limited conditions. The higher maximum uptake rates indicate that S. quadricauda had higher uptake abilities for ammonium than M. novacekii when grown under nitrogen limitation. We examined the competition between both species under two distinct nutrient supply modes, using measured maximum uptake values and computer simulations. Microcystis novacekii prevailed in the small-pulse, high-frequency nutrient supply mode, whereas S. quadricauda became competitively superior in the large-pulse, low-frequency nutrient supply mode. These results indicate that we could control nuisance blooms of blue-green algae in lakes and reservoirs by changing the nutrient supply modes.  相似文献   

12.
From a bloom forming blue-green alga, Anabaenopsis raciborskii, spontaneous mutants, which had lost the ability to form gas vacuoles have been isolated; the mutant frequency was 4.8×10-3. The filaments of gas vacuole-less mutants settled at the bottom of flasks in liquid culture media unlike the parent alga. The growth and nitrogen fixation were comparatively poor in the mutants.  相似文献   

13.
The nitrogen–fixing blue–green alga Anabaena ambigua was grown in a medium which contained either ammonium chloride as nitrogen source or molecular nitrogen. In the latter case the alga produced heterocysts. The material was analysed for ascorbic acid, dehydro-ascorbic acid and diketogulonic acid. The amount of a,scorbic acid was found always to he higher in the alga grown with molecular nitrogen. When the alga grown with combined nitrogen was transferred to the medium lacking it, there was an increase in the ascorbic acid content. Conversely, when material cultured on the nitrogen–free medium was suspended in the medium containing ammonium chloride, there was a decrease in the cellular ascorbic acid. Esogenously added ascorbic acid, up to 0.5 mg per ml, increased the heterocyst frequency to nearly three times that of the control. D–isoascorbic acid, an analogue of ascorbic acid, also showed an enhancement of heterocyst production. Algal extracts were fractionated by poiyacrylamide electro–phoresis, and the presence of ascorbic acid oxidase was detected on the gels. Two bands, with Rf values 0.34 and 1.0, were found to give positive test: for the enzyme. The total enzyme activity was 16.7 % higher in cells grown with molecular nitrogen than in those grown with combined nitrogen. The exact location of the enzyme in the alga ist not known although the heterocysts were earlier shown to contain ascorbic acid. Cytochemical tests, however, indicated strong per–oxidase activity in the heterocysts.  相似文献   

14.
Summary The ability to synthesize carotenoids during normal or strongly reduced nitrogen supply was tested in a higher plant (Hordeum vulgare L.) and in a green alga (Scenedesmus obliquus). Though carotenoids are nitrogenfree, their synthesis is strongly inhibited during nitrogen deficiency. The formation of secondary carotenoids, which apparently proceeds at the expense of the primary carotenoid components, occurs in Scenedesmus but not in Hordeum plants. It is concluded that the dimerisation of geranly-geranyl-pyrophosphate is the limiting step in the carotenoid synthesis during nitrogen deficiency. The synthesis of prenyl chains is less affected by nitrogen deficiency.  相似文献   

15.
Aureoumbra lagunensis is the causative organism of the Texas brown tide and is notable because it dominated the Laguna Madre ecosystem from 1990 to 1997. This species is unusual because it has the highest known critical nitrogen to phosphorus ratio (N:P) for any microalgae ranging from 115 to 260, far higher than the 16N:1P Redfield ratio. Because of its high N:P ratio, Aureoumbra should be expected to respond to N additions that would not stimulate the growth of competitors having the Redfield ratio. To evaluate this prediction, a mesocosm experiment was performed in the Laguna Madre, a South Texas coastal lagoon, in which a mixed AureoumbraSynechococcus (a cyanobacterium) community was enclosed in 12 mesocosms and subjected to nitrogen addition (6 controls, 6 added ammonium) for 16 days. After day 4, added nitrogen did not significantly increase Aureoumbra specific growth rate but the alga retained dominance throughout the experiment (64–75% of total cell biovolume). In control mesocosms, Aureoumbra became less abundant during the first 4 days of the experiment but rebounded by the end of the experiment and was dominant over Synechococcus. Despite the lack of a strong positive growth response, Aureoumbra did respond physiologically to N addition. By the end of the experiment, the average N:P ratio of the Aureoumbra-dominated community was 86 in the N+ treatment and 41 in the control, indicating that the alga became less N-limited in the N+ treatment. The average C:N ratio was 6.6 in the N+ treatment (8.6 in the control) and suggests that the alga was not N-limited, however, C:N ratio may not be a good indicator of nitrogen limitation since this alga can produce significant quantities of carbon-containing extracellular polysaccharides, depending on growth conditions. Both Aureoumbra cellular chlorophyll fluorescence and cell size increased in response to added N, indicating a reduction in N limitation. It appeared that the N additions were not large and/or frequent enough to stimulate Aureoumbra growth. The main competitor, the unicellular cyanobacterium Synechococcus, responded positively to the nitrogen addition by increased specific growth rate. Unlike Aureoumbra, no significant effect on Synechococcus cellular pigment fluorescence or cell size was noted. Literature data suggest that Synechococcus, like Aureoumbra, may have a critical N:P ratio much higher than 16:1, which could explain its response.  相似文献   

16.
Experiments were conducted on growing mixed cultures of green Ankistrodesmus arcuatus Korsch and diatom Diatoma elongatum (Lyngb.) algae with and without ciliates Cyclidium glaucoma Ehrenberg and Paramecium caudatum Ehrenberg in accumulative and perfusion cultures. Both alga species successfully developed in the presence of ciliates despite their grazing on both alga species; however, in their absence, Ankistrodesmus arcuatus were suppressed and did not develop. It is supposed that ciliates contribute to the stabilization of the community not only as predators but also by excreting dissolved reduced nitrogen into the environment as a result of their vital functions.  相似文献   

17.
The yellow-green alga Trachydiscus minutus (class Xanthophyta) was cultivated in a standard medium and in media without sulfur and nitrogen. Its yield after a 16-d cultivation reached 13 g dry mass per 1 L medium. The content of oligoenoic (‘polyenoic’) fatty acid (PUFA), i.e. eicosapentaenoic (EPA), was in excess of 35 % of total fatty acids; the productivity was thus 88 mg/L per d. This result makes the alga a very prospective organism that may serve as a new biotechnological source of single cell oil.  相似文献   

18.
Summary Grazing rates of a freshwater copepod (Diaptomus kenai) and a freshwater cladoceran (Daphnia rosea) on the green alga Selenastrum minutum were determined to be dependent on the nutritional status of individual cells. Cells that were less nitrogen limited were ingested at a greater rate than cells reared under more nitrogen limited conditions. Diaptomus displayed active discrimination, possibly via chemodetection, while Daphnia expressed passive selection, probably via differential retention on filters. These results suggest that the impact of grazing zooplankton varies with the physiological state of components of the phytoplankton community.  相似文献   

19.
The Texas brown tide alga (strain TBA-2) is described as Aureoumbra lagunensis Stockwell, DeYoe, Hargraves, et Johnson, gen. et sp. nov. Pigment composition, chloroplast structure, and 18s ribosomal RNA gene sequence data indicate that A. lagunensis and the east coast brown tide alga Aureococcus anophagefferens (originally placed in the Chrysophyceae) belong in the class Pelagophyceae. The new genus Aureoumbra with A. lagunensis as the type species differs from Aureococcus in 18s ribosomal RNA gene sequence, pyrenoid form, nitrogen physiology, and possession of basal bodies. The genus Aureococcus is placed in the order Pelagomonadates and family Pelagomonadaceae while ordinal placement of Aureoumbra is deferred.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号