首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Parkinson's disease (PD) is associated with the deposition of fibrillar aggregates of the protein α-synuclein (αS) in neurons. Intramolecular contacts between the acidic C-terminal tail of αS and its N-terminal region have been proposed to regulate αS aggregation, and two originally described PD mutations, A30P and A53T, reportedly reduce such contacts. We find that the most recently discovered PD-linked αS mutation E46K, which also accelerates the aggregation of the protein, does not interfere with C-terminal-to-N-terminal contacts and instead enhances such contacts. Furthermore, we do not observe a substantial reduction in such contacts in the two previously characterized mutants. Our results suggest that C-terminal-to-N-terminal contacts in αS are not strongly protective against aggregation, and that the dominant mechanism by which PD-linked mutations facilitate αS aggregation may be altering the physicochemical properties of the protein such as net charge (E46K) and secondary structure propensity (A30P and A53T).  相似文献   

2.
Bussell R  Eliezer D 《Biochemistry》2004,43(16):4810-4818
Alpha-synuclein (alphaS) is a lipid-binding synaptic protein of unknown function that is found in an aggregated amyloid fibril form in the intraneuronal Lewy body deposits that are a defining characteristic of Parkinson's disease (PD). Although intrinsically unstructured when free in solution, alphaS adopts a highly helical conformation in association with lipid membranes or membrane mimetic detergent micelles. Two mutations in the alphaS gene have been linked to early onset autosomal dominant hereditary forms of PD, and have been shown to affect the aggregation kinetics of the protein in vitro. We have used high-resolution NMR spectroscopy, circular dichroism, and limited proteolysis to investigate the effects of these PD-linked mutations on the helical structure adopted by alphaS in the lipid or detergent micelle-bound form. We show that neither the A53T nor the A30P mutation has a significant effect on the structure of the folded protein, although the A30P mutation may cause a minor perturbation in the helical structure around the site of the mutation. The A30P, but not the A53T, mutation also appears to decrease the affinity of the protein for lipid surfaces, possibly by perturbing the nascent helical structure of the free protein. The potential implications of these results for the role of alphaS in PD are discussed.  相似文献   

3.
Rochet JC  Conway KA  Lansbury PT 《Biochemistry》2000,39(35):10619-10626
Parkinson's disease (PD) is a neurodegenerative disorder attributed to the loss of dopaminergic neurons from the substantia nigra. Some surviving neurons are characterized by cytoplasmic Lewy bodies, which contain fibrillar alpha-synuclein. Two mutants of human alpha-synuclein (A53T and A30P) have been linked to early-onset, familial PD. Oligomeric forms of these mutants accumulate more rapidly and/or persist for longer periods of time than oligomeric, human wild-type alpha-synuclein (WT), suggesting a link between oligomerization and cell death. The amino acid sequences of the mouse protein and WT differ at seven positions. Mouse alpha-synuclein, like A53T, contains a threonine residue at position 53. We have assessed the conformational properties and fibrillogenicity of the murine protein. Like WT and the two PD mutants, mouse alpha-synuclein adopts a "natively unfolded" or disordered structure. However, at elevated concentrations, the mouse protein forms amyloid fibrils more rapidly than WT, A53T, or A30P. The fibrillization of mouse alpha-synuclein is slowed by WT and A53T. Inhibition of fibrillization leads to the accumulation of nonfibrillar, potentially toxic oligomers. The results are relevant to the interpretation of the phenotypes of transgenic animal models of PD and suggest a novel approach for testing the cause and effect relationship between fibrillization and neurodegeneration.  相似文献   

4.
Hoyer W  Cherny D  Subramaniam V  Jovin TM 《Biochemistry》2004,43(51):16233-16242
The aggregation of alpha-synuclein, involved in the pathogenesis of several neurodegenerative disorders such as Parkinson's disease, is enhanced in vitro by biogenic polyamines binding to the highly charged C-terminal region aa109-140. In this study, we investigated the influence of this region on the aggregation kinetics, monitored by thioflavin T binding and static light scattering, and morphology, assessed by electron microscopy, fluorescence microscopy, and turbidity, by comparing the effect of various solution conditions on the wild-type protein, the disease related mutants A53T and A30P, and two truncated variants, syn(1-108) and syn(1-124), lacking the complete or the C-terminal half of the polyamine binding site. In the presence of the intact C-terminus, aggregation was strongly retarded in physiological buffer. This inhibition of aggregation was overridden by (i) addition of spermine or MgCl(2) or lowering of pH, leading to strong charge shielding in the C-terminus or (ii) by truncation of aa125-140 or aa109-140. Addition of MgCl(2) or spermine or acidification were not effective in promoting aggregation of syn(1-108). The impact of the disease-related mutations on the aggregation kinetics was dependent on the solution conditions, with the aggregation propensity order A53T approximately wt > A30P at low ionic strength, but A53T > wt approximately A30P at high ionic strength, with exceedingly potent promotion of aggregation by the A53T mutation in the presence of spermine. In contrast to full-length alpha-synuclein aggregates, those formed from syn(1-108) did not exhibit a pronounced polymorphism. The effects of the C-terminus on aggregation cannot be rationalized merely by a contribution to the protein net charge, but rather suggest a specific role of aa109-140 in the regulation of aggregation, presumably involving formation of intramolecular contacts.  相似文献   

5.
Dixon C  Mathias N  Zweig RM  Davis DA  Gross DS 《Genetics》2005,170(1):47-59
A pathological feature of Parkinson's disease is the presence of Lewy bodies within selectively vulnerable neurons. These are ubiquitinated cytoplasmic inclusions containing alpha-synuclein, an abundant protein normally associated with presynaptic terminals. Point mutations in the alpha-synuclein gene (A30P and A53T), as well as triplication of the wild-type (WT) locus, have been linked to autosomal dominant Parkinson's. How these alterations might contribute to disease progression is unclear. Using the genetically tractable yeast Saccharomyces cerevisiae as a model system, we find that both the WT and the A53T isoforms of alpha-synuclein initially localize to the plasma membrane, to which they are delivered via the classical secretory pathway. In contrast, the A30P mutant protein disperses within the cytoplasm and does not associate with the plasma membrane, and its intracellular distribution is unaffected by mutations in the secretory pathway. When their expression is elevated, WT and A53T, but not A30P, are toxic to cells. At moderate levels of expression, WT and A53T induce the cellular stress (heat-shock) response and are toxic to cells bearing mutations in the 20S proteasome. Our results reveal a link between plasma membrane targeting of alpha-synuclein and its toxicity in yeast and suggest a role for the quality control (QC) system in the cell's effort to deal with this natively unfolded protein.  相似文献   

6.
7.
alpha-Synuclein (alpha-Syn) is an abundant presynaptic protein of unknown function, which has been implicated in the pathogenesis of Parkinson's disease. Alpha-Syn has been suggested to play a role in lipid transport and synaptogenesis, and growing evidence suggests that alpha-Syn interactions with cellular membranes are physiologically important. In the current study, we demonstrate that the familial Parkinson's disease-linked A30P mutant alpha-Syn is defective in binding to phospholipid vesicles in vitro as determined by vesicle ultracentrifugation, circular dichroism spectroscopy, and low-angle X-ray diffraction. Interestingly, our data also suggest that alpha-Syn may bind to the lipid vesicles as a dimer, which suggest that this species could be a physiologically relevant and functional entity. In contrast, the naturally occurring murine A53T substitution, which is also linked to Parkinson's disease, displayed a normal membrane-binding activity that was comparable to wild-type alpha-Syn. A double mutant A53T/A30P alpha-Syn showed defective membrane binding similar to the A30P protein, indicating that the proline mutation is dominant in terms of impairing the membrane-binding activity. With these observations, we suggest that the A53T and A30P mutants may have different physiological consequences in vivo and could possibly contribute to early onset Parkinson's disease via unique mechanisms.  相似文献   

8.
Understanding α-synuclein in terms of fibrillization, aggregation, solubility and stability is fundamental in Parkinson’s disease (PD). The three familial mutations, namely, A30P, E46K and A53T cause PD because the hydrophobic regions in α-synuclein acquire β-sheet configuration, and have a propensity to fibrillize and form amyloids that cause cytotoxicity and neurodegeneration. On simulating the native form and mutants (A30P, E46K and A53T) of α-synuclein in water solvent, clear deviations are observed in comparison to the all-helical 1XQ8 PDB structure. We have identified two crucial residues, 40Val and 74Val, which play key roles in β-sheet aggregation in the hydrophobic regions 36-41 and 68-78, respectively, leading to fibrillization and amyloidosis in familial (A53T) PD. We have also identified V40D_V74D, a double mutant of A53T (the most amyloidogenic mutant). The simultaneous introduction of these two mutations in A53T nearly ends its aggregation propensity, increases its solubility and positively enhances its thermodynamic stability.  相似文献   

9.
10.
Alpha-synuclein (a-syn) aggregation in brain is implicated in several synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Until date, at least six disease-associated mutations in a-syn (namely A30P, E46K, H50Q, G51D, A53T, and A53E) are known to cause dominantly inherited familial forms of synucleinopathies. Previous studies using recombinant proteins have reported that a subset of disease-associated mutants show higher aggregation propensities and form spectroscopically distinguishable aggregates compared to wild-type (WT). However, morphological and biochemical comparison of the aggregates for all disease-associated a-syn mutants have not yet been performed. In this study, we performed electron microscopic examination, guanidinium hydrochloride (GdnHCl) denaturation, and protease digestion to classify the aggregates from their respective point mutations. Using electron microscopy we observed variations of amyloid fibrillar morphologies among the aggregates of a-syn mutants, mainly categorized into two groups: twisted fibrils observed for both WT and E46K while straight fibrils for the other mutants. GdnHCl denaturation experiments revealed the a-syn mutants except for E46K were more resistant than WT against the denaturation. Mass spectrometry analysis of protease-treated aggregates showed a variety of protease-resistant cores, which may correspond to their morphological properties. The difference of their properties could be implicated in the clinicopathological difference of synucleinopathies with those mutations.  相似文献   

11.
Although α-synuclein (α-syn) phosphorylation has been considered as a hallmark of sporadic and familial Parkinson disease (PD), little is known about the effect of PD-linked mutations on α-syn phosphorylation. In this study, we investigated the effects of the A30P, E46K, and A53T PD-linked mutations on α-syn phosphorylation at residues Ser-87 and Ser-129. Although the A30P and A53T mutants slightly affected Ser(P)-129 levels compared with WT α-syn, the E46K mutation significantly enhanced Ser-129 phosphorylation in yeast and mammalian cell lines. This effect was not due to the E46K mutant being a better kinase substrate nor due to alterations in endogenous kinase levels, but was mostly linked with enhanced nuclear and endoplasmic reticulum accumulation. Importantly, lentivirus-mediated overexpression in mice also showed enhanced Ser-129 phosphorylation of the E46K mutant compared to WT α-syn, thus providing in vivo validation of our findings. Altogether, our findings suggest that the different PD-linked mutations may contribute to PD pathogenesis via different mechanisms.  相似文献   

12.
Wan OW  Chung KK 《PloS one》2012,7(6):e38545
α-Synuclein (α-syn) is a synaptic protein in which four mutations (A53T, A30P, E46K and gene triplication) have been found to cause an autosomal dominant form of Parkinson's disease (PD). It is also the major component of intraneuronal protein aggregates, designated as Lewy bodies (LBs), a prominent pathological hallmark of PD. How α-syn contributes to LB formation and PD is still not well-understood. It has been proposed that aggregation of α-syn contributes to the formation of LBs, which then leads to neurodegeneration in PD. However, studies have also suggested that aggregates formation is a protective mechanism against more toxic α-syn oligomers. In this study, we have generated α-syn mutants that have increased propensity to form aggregates by attaching a CL1 peptide to the C-terminal of α-syn. Data from our cellular study suggest an inverse correlation between cell viability and the amount of α-syn aggregates formed in the cells. In addition, our animal model of PD indicates that attachment of CL1 to α-syn enhanced its toxicity to dopaminergic neurons in an age-dependent manner and induced the formation of Lewy body-like α-syn aggregates in the substantia nigra. These results provide new insights into how α-syn-induced toxicity is related to its aggregation.  相似文献   

13.
Li J  Uversky VN  Fink AL 《Biochemistry》2001,40(38):11604-11613
Parkinson's disease involves the loss of dopaminergic neurons in the substantia nigra, leading to movement disorders. The pathological hallmark of Parkinson's disease is the presence of Lewy bodies and Lewy neurites, which are intracellular inclusions consisting primarily of alpha-synuclein. Although essentially all cases of sporadic and early-onset Parkinson's disease are of unknown etiology, two point mutations (A53T and A30P) in the alpha-synuclein gene have been identified in familial early-onset Parkinson's disease. Previous reports have shown that mutant alpha-synuclein may form fibrils more rapidly than wild-type protein. To determine the underlying molecular basis for the enhanced fibrillation of the mutants, the structural properties, responses to changes in the environment, and propensity to aggregate of wild-type, A30P, and A53T alpha-synucleins were systematically investigated. A variety of biophysical methods, including far-UV circular dichroism, FTIR, small-angle X-ray scattering, and light scattering, were employed. Neither the natively unfolded nor the partially folded intermediate conformations are affected by the familial Parkinson's disease point mutations. However, both mutants underwent self-association more readily than the wild type (i.e., at much lower protein concentration and more rapidly). We attribute this effect to the increased propensity of their partially folded intermediates to aggregate, rather than to any changes in the monomeric natively unfolded species. This increased propensity of these mutants to aggregate, relative to wild-type alpha-synuclein, would account for the correlation of these mutations with Parkinson's disease.  相似文献   

14.
Two mutations in the alpha-synuclein gene (A30P and A53T) have been linked to autosomal dominant early-onset Parkinson's disease (PD). Both mutations promote the formation of transient protofibrils (prefibrillar oligomers), suggesting that protofibrils are linked to cytotoxicity. In this work, the effect of these mutations on the structure of alpha-synuclein oligomers was investigated using electron microscopy and digital image processing. The PD-linked mutations (A30P and A53T) were observed to affect both the morphology and the size distribution of alpha-synuclein protofibrils (measured by analytical ultracentrifugation and scanning transmission electron microscopy). The A30P variant was observed to promote the formation of annular, pore-like protofibrils, whereas A53T promotes formation of annular and tubular protofibrillar structures. Wild-type alpha-synuclein also formed annular protofibrils, but only after extended incubation. The formation of pore-like oligomeric structures may explain the membrane permeabilization activity of alpha-synuclein protofibrils. These structures may contribute to the pathogenesis of PD.  相似文献   

15.
The identification of genetic mutations responsible for rare familial forms of Parkinson's disease (PD) have provided tremendous insight into the molecular pathogenesis of this disorder. Mutations in the DJ-1 gene cause autosomal recessive early onset PD in two European families. A Dutch kindred displays a large homozygous genomic deletion encompassing exons 1-5 of the DJ-1 gene, whereas an Italian kindred harbors a single homozygous L166P missense mutation. A homozygous M26I missense mutation was also recently reported in an Ashkenazi Jewish patient with early onset PD. Mutations in DJ-1 are predicted to be loss of function. The recent determination of the crystal structure of human DJ-1 demonstrates that it exists in a homo-dimeric form in vitro, whereas the L166P mutant exists only as a monomer. Here, we examine the in vivo effects of the pathogenic L166P and M26I mutations on the properties of DJ-1 in cell culture. We report that the L166P mutation confers markedly reduced protein stability to DJ-1, which results from enhanced degradation by the 20S/26S proteasome but not from a loss of mRNA expression. Furthermore, the L166P mutant protein exhibits an impaired ability to self-interact to form homo-oligomers. In contrast, the M26I mutation does not appear to adversely affect either protein stability, turnover by the proteasome, or the capacity of DJ-1 to form homo-oligomers. These properties of the L166P mutation may contribute to the loss of normal DJ-1 function and are likely to be the underlying cause of early onset PD in affected members of the Italian kindred.  相似文献   

16.
Alpha-突触核蛋白(α-synuclein, α-syn)聚集是引起帕金森病(Parkinson’s disease, PD)发生发展主要原因。本文用蛋白质/多肽片段互补分析法(protein-fragment complementation assays, PCAs)检测α-syn在细胞内的聚集。分别构建融合α-syn与人工改造的荧光素酶human Gaussiaprinceps luciferase(hGLuc)蛋白N端或C端蛋白的质粒,共转入人神经母细胞瘤SK-N-SH细胞,通过检测酶活性来确定野生型(wild type,WT)及A53T突变体α-syn在细胞中的聚集情况。结果表明WT和A53T突变α-syn都能使荧光素酶活性增强,而且与野生型α-syn相比,突变体A53T的荧光素酶活性更强,说明二者都能聚集,而且A53T聚集程度高于WT。PCAs法具有高灵敏度,不仅能检测α-syn在细胞内的聚集,而且能反映其聚集的程度,为研究帕金森病提供了研究思路和相应药物筛选的有效工具。  相似文献   

17.
Aggregation of alpha-synuclein (ASYN) in Lewy bodies and Lewy neurites is the typical pathological hallmark of Parkinson''s disease (PD) and other synucleinopathies. Furthermore, mutations in the gene encoding for ASYN are associated with familial and sporadic forms of PD, suggesting this protein plays a central role in the disease. However, the precise contribution of ASYN to neuronal dysfunction and death is unclear. There is intense debate about the nature of the toxic species of ASYN and little is known about the molecular determinants of oligomerization and aggregation of ASYN in the cell. In order to clarify the effects of different mutations on the propensity of ASYN to oligomerize and aggregate, we assembled a panel of 19 ASYN variants and compared their behaviour. We found that familial mutants linked to PD (A30P, E46K, H50Q, G51D and A53T) exhibited identical propensities to oligomerize in living cells, but had distinct abilities to form inclusions. While the A30P mutant reduced the percentage of cells with inclusions, the E46K mutant had the opposite effect. Interestingly, artificial proline mutants designed to interfere with the helical structure of the N-terminal domain, showed increased propensity to form oligomeric species rather than inclusions. Moreover, lysine substitution mutants increased oligomerization and altered the pattern of aggregation. Altogether, our data shed light into the molecular effects of ASYN mutations in a cellular context, and established a common ground for the study of genetic and pharmacological modulators of the aggregation process, opening new perspectives for therapeutic intervention in PD and other synucleinopathies.  相似文献   

18.
Human alpha1-antitrypsin-deficient variants may aggregate in the liver, with subsequent deficiency in the plasma, which can lead to emphysema. The structural and functional characteristics of 10 dysfunctional alpha1-antitrypsin variants (R39C, S53F, V55P, I92N, G115S, N158K, E264V, A336T, P369S, and P369L) were analyzed in detail. Most of them were unstable, as compared to the wild-type molecule, and many of the variants folded into an intermediate form. When five thermostable mutations (T68A, A70G, M374I, S381A, and K387R) were introduced into dysfunctional alpha1-antitrypsin variants, the stabilities and inhibitory activities of most of the variants were restored to levels comparable to those of the wild-type molecule. However, the extremely unstable S53F variant was not stabilized sufficiently by these mutations so as to exhibit function. N158K variant, which carries a mutation in the region critical for the reactive site loop insertion into beta-sheet A, exhibited a reduced level of inhibitory activity, despite conformational stabilization. These results show that aberrant folding caused by conformational destabilization due to mutations can be compensated for by increasing the overall stability of the alpha1-antitrypsin molecule, with exception of a mutation in the highly localized region critical for functional execution.  相似文献   

19.
We identified three S. cerevisiae lipid elongase null mutants (elo1Δ, elo2Δ, and elo3Δ) that enhance the toxicity of alpha-synuclein (α-syn). These elongases function in the endoplasmic reticulum (ER) to catalyze the elongation of medium chain fatty acids to very long chain fatty acids, which is a component of sphingolipids. Without α-syn expression, the various elo mutants showed no growth defects, no reactive oxygen species (ROS) accumulation, and a modest decrease in survival of aged cells compared to wild-type cells. With (WT, A53T or E46K) α-syn expression, the various elo mutants exhibited severe growth defects (although A30P had a negligible effect on growth), ROS accumulation, aberrant protein trafficking, and a dramatic decrease in survival of aged cells compared to wild-type cells. Inhibitors of ceramide synthesis, myriocin and FB1, were extremely toxic to wild-type yeast cells expressing (WT, A53T, or E46K) α-syn but much less toxic to cells expressing A30P. The elongase mutants and ceramide synthesis inhibitors enhance the toxicity of WT α-syn, A53T and E46K, which transit through the ER, but have a negligible effect on A30P, which does not transit through the ER. Disruption of ceramide-sphingolipid homeostasis in the ER dramatically enhances the toxicity of α-syn (WT, A53T, and E46K).  相似文献   

20.
alpha-Synuclein exists in two different compartments in vivo-- correspondingly existing as two different forms: a membrane-bound form that is predominantly alpha-helical and a cytosolic form that is randomly structured. It has been suggested that these environmental and structural differences may play a role in aggregation propensity and development of pathological lesions observed in Parkinson's disease (PD). Such effects may be accentuated by mutations observed in familial PD kindreds. In order to test this hypothesis, wild-type and A53T mutant alpha-synuclein interactions with rat brain synaptosomal membranes were examined. Previous data has demonstrated that the A30P mutant has defective lipid binding and therefore was not examined in this study. Electron microscopy demonstrated that wild-type alpha-synuclein fibrillogenesis is accelerated in the presence of synaptosomal membranes whereas the A53T alpha-synuclein fibrillogenesis is inhibited under the same conditions. These results suggested that subtle sequence changes in alpha-synuclein could significantly alter interaction with membrane bilayers. Fluorescence and absorption spectroscopy using environment sensitive probes demonstrated variations in the inherent lipid properties in the presence and absence of alpha-synuclein. Addition of wild-type alpha-synuclein to synaptosomes did not significantly alter the membrane fluidity at either the fatty acyl chains or headgroup space, suggesting that synaptosomes have a high capacity for alpha-synuclein binding. In contrast, synaptosomal membrane fluidity was decreased by A53T alpha-synuclein binding with concomitant packing of the lipid headgroups. These results suggest that alterations in alpha-synuclein-lipid interactions may contribute to physiological changes detected in early onset PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号