首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
These experiments were conducted to determine the membrane K+ currents and channels in human urinary bladder (HTB-9) carcinoma cells in vitro. K+ currents and channel activity were assessed by the whole-cell voltage clamp and by either inside-out or outside-out patch clamp recordings. Cell depolarization resulted in activation of a Ca2+-dependent outward K+ current, 0.57 ± 0.13 nS/pF at −70 mV holding potential and 3.10 ± 0.15 nS/pF at 30 mV holding potential. Corresponding patch clamp measurements demonstrated a Ca2+-activated, voltage-dependent K+ channel (KCa) of 214 ± 3.0 pS. Scorpion venom peptides, charybdotoxin (ChTx) and iberiotoxin (IbTx), inhibited both the activated current and the KCa activity. In addition, on-cell patch recordings demonstrated an inwardly rectifying K+ channel, 21 ± 1 pS at positive transmembrane potential (V m ) and 145 ± 13 pS at negative V m . Glibenclamide (50 μm), Ba2+ (1 mm) and quinine (100 μm) each inhibited the corresponding nonactivated, basal whole-cell current. Moreover, glibenclamide inhibited K+ channels in inside/out patches in a dose-dependent manner, and the IC50= 46 μm. The identity of this K+ channel with an ATP-sensitive K+ channel (KATP) was confirmed by its inhibition with ATP (2 mm) and by its activation with diazoxide (100 μm). We conclude that plasma membranes of HTB-9 cells contain the KCa and a lower conductance K+ channel with properties consistent with a sulfonylurea receptor-linked KATP. Received: 12 June 1997/Revised: 21 October 1997  相似文献   

2.
The Ca2+-activated maxi K+ channel was found in the apical membrane of everted rabbit connecting tubule (CNT) with a patch-clamp technique. The mean number of open channels (NP o ) was markedly increased from 0.007 ± 0.004 to 0.189 ± 0.039 (n= 7) by stretching the patch membrane in a cell-attached configuration. This activation was suggested to be coupled with the stretch-activation of Ca2+-permeable cation channels, because the maxi K+ channel was not stretch-activated in both the cell-attached configuration using Ca2+-free pipette and in the inside-out one in the presence of 10 mm EGTA in the cytoplasmic side. The maxi K+ channel was completely blocked by extracellular 1 μm charybdotoxin (CTX), but was not by cytoplasmic 33 μm arachidonic acid (AA). On the other hand, the low-conductance K+ channel, which was also found in the same membrane, was completely inhibited by 11 μm AA, but not by 1 μm CTX. The apical K+ conductance in the CNT was estimated by the deflection of transepithelial voltage (ΔV t ) when luminal K+ concentration was increased from 5 to 15 mEq. When the tubule was perfused with hydraulic pressure of 0.5 KPa, the ΔV t was only −0.7 ± 0.4 mV. However, an increase in luminal fluid flow by increasing perfusion pressure to 1.5 KPa markedly enhanced ΔV t to −9.4 ± 0.9 mV. Luminal application of 1 μm CTX reduced the ΔV t to −1.3 ± 0.6 mV significantly in 6 tubules, whereas no significant change of ΔV t was recorded by applying 33 μm AA into the lumen of 5 tubules (ΔV t =−7.2 ± 0.5 mV in control vs.ΔV t =−6.7 ± 0.6 mV in AA). These results suggest that the Ca2+-activated maxi K+ channel is responsible for flow-dependent K+ secretion by coupling with the stretch-activated Ca2+-permeable cation channel in the rabbit CNT. Received: 21 August 1997/Revised: 20 March 1998  相似文献   

3.
The voltage-gated potassium channel, Kv1.3, which is highly expressed in a number of immune cells, contains concensus sites for phosphorylation by protein kinase C (PKC). In lymphocytes, this channel is involved in proliferation—through effects on membrane potential, Ca2+ signalling, and interleukin-2 secretion—and in cytotoxic killing and volume regulation. Because PKC activation (as well as increased intracellular Ca2+) is required for T-cell proliferation, we have studied the regulation of Kv1.3 current by PKC in normal (nontransformed) human T lymphocytes. Adding intracellular ATP to support phosphorylation, shifted the voltage dependence of activation by +8 mV and inactivation by +17 mV, resulting in a 230% increase in the window current. Inhibiting ATP production and action with ``death brew' (2-deoxyglucose, adenylylimidodiphosphate, carbonyl cyanide-m-chlorophenyl hydrazone) reduced the K+ conductance (G K ) by 41 ± 2%. PKC activation by 4β-phorbol 12,13-dibutyrate, increased G K by 69 ± 6%, and caused a positive shift in activation (+9 mV) and inactivation (+9 mV), which resulted in a 270% increase in window current. Conversely, several PKC inhibitors reduced the current. Diffusion into the cell of inhibitory pseudosubstrate or substrate peptides reduced G K by 43 ± 5% and 38 ± 8%, respectively. The specific PKC inhibitor, calphostin C, potently inhibited Kv1.3 current in a dose- and light-dependent manner (IC50∼ 250 nm). We conclude that phosphorylation by PKC upregulates Kv1.3 channel activity in human lymphocytes and, as a result of shifts in voltage dependence, this enhancement is especially prevalent at physiologically relevant membrane potentials. This increased Kv1.3 current may help maintain a negative membrane potential and a high driving force for Ca2+ entry in the presence of activating stimuli. Received: 12 July 1996/Revised: 21 October 1996  相似文献   

4.
5.
The Arabidopsis thaliana cDNA, KAT1 encodes a hyperpolarization-activated K+ (K+ in ) channel. In the present study, we identify and characterize dominant negative point mutations that suppress K+ in channel function. Effects of two mutations located in the H5 region of KAT1, at positions 256 (T256R) and 262 (G262K), were studied. The co-expression of either T256R or G262K mutants with KAT1 produced an inhibition of K+ currents upon membrane hyperpolarization. The magnitude of this inhibition was dependent upon the molar ratio of cRNA for wild-type to mutant channel subunits injected. Inhibition of KAT1 currents by the co-expression of T256R or G262K did not greatly affect the ion selectivity of residual currents for Rb+, Na+, Li+, or Cs+. When T256R or G262K were co-expressed with a different K+ channel, AKT2, an inhibition of the channel currents was also observed. Voltage-dependent Cs+ block experiments with co-expressed wild type, KAT1 and AKT2, channels further indicated that KAT1 and AKT2 formed heteromultimers. These data show that AKT2 and KAT1 are able to co-assemble and suggest that suppression of channel function can be pursued in vivo by the expression of the dominant negative K + in channel mutants described here. Received: 2 July 1998/Revised: 23 October 1998  相似文献   

6.
Muscarinic receptor-linked G protein, G i , can directely activate the specific K+ channel (I K(ACh)) in the atrium and in pacemaker tissues in the heart. Coupling of G i to the K+ channel in the ventricle has not been well defined. G protein regulation of K+ channels in isolated human ventricular myocytes was examined using the patch-clamp technique. Bath application of 1 μm acetylcholine (ACh) reversibly shortened the action potential duration to 74.4 ± 12.1% of control (at 90% repolarization, mean ±sd, n= 8) and increased the whole-cell membrane current conductance without prior β-adrenergic stimulation in human ventricular myocytes. The ACh effect was reversed by atropine (1 μm). In excised inside-out patch configurations, application of GTPγS (100 μm) to the bath solution (internal surface) caused activation of I K(ACh) and/or the background inwardly-rectifying K+ channel (I K1) in ventricular cell membranes. I K(ACh) exhibited rapid gating behavior with a slope conductance of 44 ± 2 pS (n= 25) and a mean open lifetime of 1.8 ± 0.3 msec (n= 21). Single channel activity of GTPγS-activated I K1 demonstrated long-lasting bursts with a slope conductance of 30 ± 2 pS (n= 16) and a mean open lifetime of 36.4 ± 4.1 msec (n= 12). Unlike I K(ACh), G protein-activated I K1 did not require GTP to maintain channel activity, suggesting that these two channels may be controlled by G proteins with different underlying mechanisms. The concentration of GTP at half-maximal channel activation was 0.22 μm in I K(ACh) and 1.2 μm in I K1. Myocytes pretreated with pertussis toxin (PTX) prevented GTP from activating these channels, indicating that muscarinic receptor-linked PTX-sensitive G protein, G i , is essential for activation of both channels. G protein-activated channel characteristics from patients with terminal heart failure did not differ from those without heart failure or guinea pig. These results suggest that ACh can shorten the action potential by activating I K(ACh) and I K1 via muscarinic receptor-linked G i proteins in human ventricular myocytes. Received: 23 September 1996/Revised: 18 December 1996  相似文献   

7.
Adenosine 3′,5′-cyclic monophosphate (cAMP) is known to stimulate exogenous IsK channel current in the Xenopus oocyte expression system. The present study was performed to determine whether elevation of cytosolic cAMP in a native mammalian epithelium known to secrete K+ through endogenously expressed IsK channels would stimulate K+ secretion through these channels. The equivalent short circuit current (I sc ) across vestibular dark cell epithelium in gerbil was measured in a micro-Ussing chamber and the apical membrane current (I IsK ) and conductance (g IsK ) of IsK channels was recorded with both the on-cell macro-patch and nystatin-perforated whole-cell patch-clamp techniques. It has previously been shown that I sc can be accounted for by transepithelial K+ secretion and that the apical IsK channels constitute a significant pathway for K+ secretion. The identification of the voltage-dependent whole-cell currents in vestibular dark cells was strengthened by the finding that a potent blocker of IsK channels, chromanol 293B, strongly reduced I IsK from 646 ± 200 to 154 ± 22 pA (71%) and g IsK from 7.5 ± 2.6 to 2.8 ± 0.4 nS (53%). Cytoplasmic cAMP was elevated by applying dibutyryl cyclic AMP (dbcAMP), or the phosphodiesterase inhibitors 3-isobutyl-1-methylxanthine (IBMX) and Ro-20-1724. dbcAMP (1 mm) increased I sc and I IsK from 410 ± 38 to 534 ± 40 μA/cm2 and from 4.3 ± 0.8 to 11.4 ± 2.2 pA, respectively. IBMX (1 mm) caused transient increases of I sc from 415 ± 30 to 469 ± 38 μA/cm2 and Ro-20-1724 (0.1 mm) from 565 ± 43 to 773 ± 58 μA/cm2. IBMX increased I IsK from 5.5 ± 1.5 to 16.9 ± 5.8 pA in on-cell experiments and from 191 ± 31 to 426 ± 53 pA in whole-cell experiments. The leak conductance due to all non-IsK channel sources did not change during dbcAMP and IBMX while 293B in the presence of dbcAMP reduced I IsK by 84% and g IsK by 62%, similar to unstimulated conditions. These results demonstrate that the cAMP pathway is constitutively active in vestibular dark cells and that the cAMP pathway stimulates transepithelial K+ secretion by increasing IsK channel current rather than by altering another transport pathway. Received: 9 June 1995/Revised: 17 October 1996  相似文献   

8.
cDNA encoding the full-length hKv1.3 lymphocyte channel and a C-terminal truncated (Δ459-523) form that lacks the putative PKA Ser468 phosphorylation site were stably transfected in human embryonic kidney (HEK) 293 cells. Immunostaining of the transfected cells revealed a distribution at the plasma membrane that was uniform in the case of the full-length channel whereas clustering was observed in the case of the truncated channel. Some staining within the cell cytoplasm was found in both instances, suggesting an active process of biosynthesis. Analyses of the K+ current by the patch-clamp technique in the whole cell configuration showed that depolarizing steps to 40 mV from a holding potential (HP) of −80 mV elicited an outward current of 2 to 10 nA. The current threshold was positive to −40 mV and the current amplitude increased in a voltage-dependent manner. The parameters of activation were −5.7 and −9.9 mV (slope factor) and −35 mV (half activation, V 0.5) in the case of the full-length and truncated channels, respectively. The characteristics of the inactivation were 14.2 and 24.6 mV (slope factor) and −17.3 and −39.0 mV (V 0.5) for the full-length and truncated channels, respectively. The activation time constant of the full-length channel for potentials ranging from −30 to 40 mV decreased from 18 to 12 msec whereas the inactivation time constant decreased from 6600 msec at −30 mV to 1800 msec at 40 mV. The unit current amplitude measured in cells bathing in 140 mm KCl was 1.3 ± 0.1 pA at 40 mV, the unit conductance, 34.5 pS and the zero current voltage, 0 mV. Both forms of the channels were inhibited by TEA, 4-AP, Ni2+ and charybdotoxin. In contrast to the native (Jurkat) lymphocyte Kv1.3 channel that is fully inhibited by PKA and PKC, the addition of TPA resulted in 34.6 ± 7.3% and 38.7 ± 9.4% inhibition of the full-length and the truncated channels, respectively. 8-BrcAMP induced a 39.4 ± 5.4% inhibition of the full-length channel but had no effect (8.6 ± 8.3%) on the truncated channel. Cell dialysis with alkaline phosphatase had no effects, suggesting that the decreased sensitivity of the transfected channels to PKA and PKC was not due to an already phosphorylated channel. Patch extract experiments suggested that the hKv1.3 channel was partially sensitive to PKA and PKC. Cotransfecting the Kvβ1.2 subunit resulted in a decrease in the value of the time constant of inactivation of the full-length channel but did not modify its sensitivity to PKA and PKC. The cotransfected Kvβ2 subunit had no effects. Our results indicate that the hKv1.3 lymphocyte channel retains its electrophysiological characteristics when transfected in the Kvβ-negative HEK 293 cell line but its sensitivity to modulation by PKA and PKC is significantly reduced. Received: 18 June 1997/Revised: 7 October 1997  相似文献   

9.
We have investigated the interaction of two peptides (ShB — net charge +3 and ShB:E12KD13K — net charge +7) derived from the NH2-terminal domain of the Shaker K+ channel with purified, ryanodine-modified, cardiac Ca2+-release channels (RyR). Both peptides produced well resolved blocking events from the cytosolic face of the channel. At a holding potential of +60 mV the relationship between the probability of block and peptide concentration was described by a single-site binding scheme with 50% saturation occurring at 5.92 ± 1.06 μm for ShB and 0.59 ± 0.14 nm for ShB:E12KD13K. The association rates of both peptides varied with concentration (4.0 ± 0.4 sec−1μm −1 for ShB and 2000 ± 200 sec−1μm −1 for ShB:E12KD13K); dissociation rates were independent of concentration. The interaction of both peptides was influenced by applied potential with the bulk of the voltage-dependence residing in Koff. The effectiveness of the inactivation peptides as blockers of RyR is enhanced by an increase in net positive charge. As is the case with inactivation and block of K+ channels, this is mediated by a large increase in Kon. These observations are consistent with the proposal that the conduction pathway of RyR contains negatively charged sites which will contribute to the ion handling properties of this channel. Received: 15 December 1997/Revised: 13 March 1998  相似文献   

10.
The current through TOK1 (YKC1), the outward-rectifying K+ channel in Saccharomyces cerevisiae, was amplified by expressing TOK1 from a plasmid driven by a strong constitutive promoter. TOK1 so hyper-expressed could overcome the K+ auxotrophy of a mutant missing the two K+ transporters, TRK1 and TRK2. This trk1Δtrk2Δ double mutant hyperexpressing the TOK1 transgene had a higher internal K+ content than one expressing the empty plasmid. We examined protoplasts of these TOK1-hyperexpressing cells under a patch clamp. Besides the expected K+ outward current activating at membrane potential (V m ) above the K+ equilibrium potential (E K+ ), a small inward current was consistently observed when the V m was slightly below E K+ . The inward and the outward currents are similar in their activation rates, deactivation rates, ion specificities and Ba2+ inhibition, indicating that they flow through the same channel. Thus, the yeast outwardly rectifying K+ channel can take up K+ into yeast cells, at least under certain conditions. Received: 1 October 1998/Revised: 9 December 1998  相似文献   

11.
The giant marine alga Valonia utricularis is a classical model system for studying the electrophysiology and water relations of plant cells by using microelectrode and pressure probe techniques. The recent finding that protoplasts can be prepared from the giant ``mother cells' (Wang, J., Sukhorukov, V.L., Djuzenova, C.S., Zimmermann, U., Müller, T., Fuhr, G., 1997, Protoplasma 196:123–134) allowed the use of the patch-clamp technique to examine ion channel activity in the plasmalemma of this species. Outside-out and cell-attached experiments displayed three different types of voltage-gated Cl channels (VAC1, VAC2, VAC3, Valonia Anion Channel 1,2,3), one voltage-gated K+ channel (VKC1, Valonia K + Channel 1) as well as stretch-activated channels. In symmetrical 150 mm Cl media, VAC1 was most frequently observed and had a single channel conductance of 36 ± 7 pS (n= 4) in the outside-out and 33 ± 5 pS (n= 10) in the cell-attached configuration. The reversal potential of the corresponding current-voltage curves was within 0 ± 4 mV (n= 4, outside-out) and 9 ± 7 mV (n= 10, cell-attached) close to the Nernst potential of Cl and shifted towards more negative values when cell-attached experiments were performed in asymmetrical 50:150 mm Cl media (bath/pipette; E Cl− −20 ± 7 mV (n= 4); Nernst potential −28 mV). Consistent with a selectivity for Cl, VAC1 was inhibited by 100 μM DIDS (4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid). VAC1 was activated by a hyperpolarization of the patch. Boltzmann fits of the channel activity under symmetrical 150 mm Cl conditions yielded a midpoint potential of −12 ± 5 mV (n= 4, outside-out) and −3 ± 6 mV (n= 9, cell-attached) and corresponding apparent minimum gating charges of 15 ± 3 (n= 4) and 18 ± 5 (n= 9). The midpoint potential shifted to more negative values in the presence of a Cl gradient. VAC2 was activated by voltages more negative than E Cl− and was always observed together with VAC1, but less frequently. It showed a ``flickering' gating. The single channel conductance was 99 ± 10 pS (n= 6). VAC3 was activated by membrane depolarization and frequently exhibited several subconductance states. The single channel conductance of the main conductance state was 36 ± 5 pS (n= 5). VKC1 was also activated by positive clamped voltages. Up to three conductance states occurred whereby the main conductance state had a single channel conductance of 124 ± 27 pS (n= 6). In the light of the above results it seems to be likely that VAC1 contributes mainly to the Cl conductance of the plasmalemma of the turgescent ``mother cells' and that this channel (as well as VAC2) can operate in the physiological membrane potential range. The physiological significance of VAC3 and VKC1 is unknown, but may be related (as the stretch-activated channels) to processes involved in turgor regulation. Received: 24 June 1999/Revised: 2 September 1999  相似文献   

12.
The change of intracellular pH of erythrocytes under different experimental conditions was investigated using the pH-sensitive fluorescent dye BCECF and correlated with (ouabain + bumetanide + EGTA)-insensitive K+ efflux and Cl loss. When human erythrocytes were suspended in a physiological NaCl solution (pH o = 7.4), the measured pH i was 7.19 ± 0.04 and remained constant for 30 min. When erythrocytes were transferred into a low ionic strength (LIS) solution, an immediate alkalinization increased the pH i to 7.70 ± 0.15, which was followed by a slower cell acidification. The alkalinization of cells in LIS media was ascribed to a band 3 mediated effect since a rapid loss of approximately 80% of intracellular Cl content was observed, which was sensitive to known anion transport inhibitors. In the case of cellular acidification, a comparison of the calculated H+ influx with the measured unidirectional K+ efflux at different extracellular ionic strengths showed a correlation with a nearly 1:1 stoichiometry. Both fluxes were enhanced by decreasing the ionic strength of the solution resulting in a H+ influx and a K+ efflux in LIS solution of 108.2 ± 20.4 mmol (l cells hr)−1 and 98.7 ± 19.3 mmol (l cells hr)−1, respectively. For bovine and porcine erythrocytes, in LIS media, H+ influx and K+ efflux were of comparable magnitude, but only about 10% of the fluxes observed in human erythrocytes under LIS conditions. Quinacrine, a known inhibitor of the mitochondrial K+(Na+)/H+ exchanger, inhibited the K+ efflux in LIS solution by about 80%. Our results provide evidence for the existence of a K+(Na+)/H+ exchanger in the human erythrocyte membrane. Received: 22 December 1999/Revised: 10 April 2000  相似文献   

13.
Inward-rectifying potassium channels in plant cells provide important mechanisms for low-affinity K+ uptake and membrane potential control in specific cell types, including guard cells, pulvinus cells, aleurone cells and root hair cells. K+ channel blockers are potent tools for studying the physiological functions and structural properties of K+ channels. In the present study the structural and biophysical mechanisms of Cs+ and TEA+ block of a cloned Arabidopsis inward-rectifying K+ channel (KAT1) were analyzed. Effects of the channel blockers Cs+ and TEA+ were characterized both extracellularly and intracellularly. Both external Cs+ and TEA+ block KAT1 currents. A mutant of KAT1 (``m2KAT1'; H267T, E269V) was produced by site-directed mutagenesis of two amino acid residues in the C-terminal portion of the putative pore (P) domain. This mutant channel was blocked less by external Cs+ and TEA+ than the wild-type K+ channel. Internal TEA+ and Cs+ did not significantly block either m2KAT1 or KAT1 channels. Other properties, such as cation selectivity, voltage-dependence and proton activation did not show large changes between m2KAT1 and KAT1, demonstrating the specificity of the introduced mutations. These data suggest that the amino acid positions mutated in the inward-rectifying K+ channel, KAT1, are accessible to external blockers and may be located on the external side of the membrane, as has been suggested for outward-rectifying K+ channels. Received: 31 July 1995/Revised: 5 January 1996  相似文献   

14.
Co-expression of clones encoding Kir6.2, a K+ inward rectifier, and SUR1, a sulfonylurea receptor, reconstitutes elementary features of ATP-sensitive K+ (KATP) channels. However, the precise kinetic properties of Kir6.2/SUR1 clones remain unknown. Herein, intraburst kinetics of Kir6.2/SUR1 channel activity, heterologously co-expressed in COS cells, displayed mean closed times from 0.7 ± 0.1 to 0.4 ± 0.03 msec, and from 0.4 ± 0.1 to 2.0 ± 0.2 msec, and mean open times from 1.9 ± 0.4 to 4.5 ± 0.8 msec, and from 12.1 ± 2.4 to 5.0 ± 0.2 msec between −100 and −20 mV, and +20 to +80 mV, respectively. Burst duration for Kir6.2/SUR1 activity was 17.9 ± 1.8 msec with 5.6 ± 1.5 closings per burst. Burst kinetics of the Kir6.2/SUR1 activity could be fitted by a four-state kinetic model defining transitions between one open and three closed states with forward and backward rate constants of 1905 ± 77 and 322 ± 27 sec−1 for intraburst, 61.8 ± 6.6 and 23.9 ± 5.8 sec−1 for interburst, 12.4 ± 6.0 and 13.6 ± 2.9 sec−1 for intercluster events, respectively. Intraburst kinetic properties of Kir6.2/SUR1 clones were essentially indistinguishable from pancreatic or cardiac KATP channel phenotypes, indicating that intraburst kinetics per se were insufficient to classify recombinant Kir6.2/SUR1 amongst native KATP channels. Yet, burst kinetic behavior of Kir6.2/SUR1 although similar to pancreatic, was different from that of cardiac KATP channels. Thus, expression of Kir6.2/SUR1 proteins away from the pancreatic micro-environment, confers the burst kinetic identity of pancreatic, but not cardiac KATP channels. This study reports the kinetic properties of Kir6.2/SUR1 clones which could serve in the further characterization of novel KATP channel clones. Received: 12 March 1997/Revised: 5 May 1997  相似文献   

15.
The outer sulcus epithelium was recently shown to absorb cations from the lumen of the gerbil cochlea. Patch clamp recordings of excised apical membrane were made to investigate ion channels that participate in this reabsorptive flux. Three types of channel were observed: (i) a nonselective cation (NSC) channel, (ii) a BK (large conductance, maxi K or K Ca ) channel and (iii) a small K+ channel which could not be fully characterized. The NSC channel found in excised insideout patch recordings displayed a linear current-voltage (I-V) relationship (27 pS) and was equally conductive for Na+ and K+, but not permeable to Cl or N-methyl-d-glucamine. Channel activity required the presence of Ca2+ at the cytosolic face, but was detected at Ca2+ concentrations as low as 10−7 m (open probability (P o ) = 0.11 ± 0.03, n= 8). Gadolinium decreased P o of the NSC channel from both the external and cytosolic side (IC50∼ 0.6 μm). NSC currents were decreased by amiloride (10 μm− 1 mm) and flufenamic acid (0.1 mm). The BK channel was also frequently (38%) observed in excised patches. In symmetrical 150 mm KCl conditions, the I-V relationship was linear with a conductance of 268 pS. The Goldman-Hodgkin-Katz equation for current carried solely by K+ could be fitted to the I-V relationship in asymmetrical K+ and Na+ solutions. The channel was impermeable to Cl and N-methyl-d-glucamine. P o of the BK channel increased with depolarization of the membrane potential and with increasing cytosolic Ca2+. TEA (20 mm), charybdotoxin (100 nm) and Ba2+ (1 mm) but not amiloride (1 mm) reduced P o from the extracellular side. In contrast, external flufenamic acid (100 μm) increased P o and this effect was inhibited by charybdotoxin (100 nm). Flufenamic acid inhibited the inward short-circuit current measured by the vibrating probe and caused a transient outward current. We conclude that the NSC channel is Ca2+ activated, voltage-insensitive and involved in both constitutive K+ and Na+ reabsorption from endolymph while the BK channel might participate in the K+ pathway under stimulated conditions that produce an elevated intracellular Ca2+ or depolarized membrane potential. Received: 14 October 1999/Revised: 10 December 1999  相似文献   

16.
Ion channel expression was studied in THP-1 human monocytic leukemia cells induced to differentiate into macrophage-like cells by exposure to the phorbol ester, phorbol 12-myristate 13-acetate (PMA). Inactivating delayed rectifier K+ currents, I DR, present in almost all undifferentiated THP-1 monocytes, were absent from PMA-differentiated macrophages. Two K+ channels were observed in THP-1 cells only after differentiation into macrophages, an inwardly rectifying K+ channel (I IR) and a Ca2+-activated maxi-K channel (I BK). I IR was a classical inward rectifier, conducting large inward currents negative to E K and very small outward currents. I IR was blocked in a voltage-dependent manner by Cs+, Na+, and Ba2+, block increasing with hyperpolarization. Block by Na+ and Ba2+ was time-dependent, whereas Cs+ block was too fast to resolve. Rb+ was sparingly permeant. In cell-attached patches with high [K+] in the pipette, the single I IR channel conductance was ∼30 pS and no outward current could be detected. I BK channels were observed in cell-attached or inside-out patches and in whole-cell configuration. In cell-attached patches the conductance was ∼200–250 pS and at potentials positive to ∼100 mV a negative slope conductance of the unitary current was observed, suggesting block by intracellular Na+. I BK was activated at large positive potentials in cell-attached patches; in inside-out patches the voltage-activation relationship was shifted to more negative potentials by increased [Ca2+]. Macroscopic I BK was blocked by external TEA+ with half block at 0.35 mm. THP-1 cells were found to contain mRNA for Kv1.3 and IRK1. Levels of mRNA coding for these K+ channels were studied by competitive PCR (polymerase chain reaction), and were found to change upon differentiation in the same direction as did channel expression: IRK1 mRNA increased at least 5-fold, and Kv1.3 mRNA decreased on average 7-fold. Possible functional correlates of the changes in ion channel expression during differentiation of THP-1 cells are discussed. Received: 19 September 1995/Revised: 14 March 1996  相似文献   

17.
Collapsed proximal convoluted tubules (PCT) shrink to reach a volume 20% lower than control and do not exhibit regulatory volume increase when submitted to abrupt 150 mOsm/kg hypertonic shock. The shrinking is accompanied by a rapid depolarization of the basolateral membrane potential (V BL) of 8.4 ± 0.5 mV, with respect to a control value of −54.5 ± 1.9 mV (n= 15). After a small and transient hyperpolarization, V BL further depolarizes to reach a steady depolarization of 19.5 ± 1.5 mV (n= 15) with respect to control. In the post-control period, V BL returns to −55.8 ± 1.5 mV. The basolateral partial conductance to K+ (t K ) which is 0.17 ± 0.01 (n= 5) in control condition, decreases rapidly to nonmeasurable values during the hypertonic shock and returns to 0.23 ± 0.03 in the post-control period. The basolateral partial conductance to Cl (t Cl), which is 0.05 ± 0.02 (n= 5) in control, also decreases in hypertonicity to a nonmeasurable value and returns to 0.03 ± 0.01 in post control. The partial conductance mediated by the Na-HCO3 cotransporter (t NaHCO3), which is 0.48 ± 0.06 (n= 5) in control condition, remains the same at 0.44 ± 0.05 (n= 5) during the hypertonic period. Similarly, the membrane absolute conductance mediated by the Na-HCO3 cotransporter (G Na-HCO3) does not vary appreciably. Concomitant with cell shrinkage, intracellular pH (pH i ) decreases from a control value of 7.26 ± 0.01 to 7.13 ± 0.02 (n= 12) and then remains constant. Return to control solution brings back pH i to 7.28 ± 0.03. From these results, we conclude that in collapsed PCT, a sustained decrease in cellular volume leads to cell acidification and to inhibition of K+ and Cl conductances. Received: 6 February 1996/Revised: 10 October 1996  相似文献   

18.
A voltage-activated Ca++ channel has been identified in the apical membranes of cultured rabbit proximal tubule cells using the patch-clamp technique. With 105 mm CaCl2 solution in the pipette and 180 NaAsp in the bath, the channel had a conductance of 10.4 ± 1.0 pS (n= 8) in on-cell patches, and 9.8 ± 1.1 pS (n= 8) in inside-out patches. In both on-cell and inside-out patches, the channel is active by membrane depolarization. For this channel, the permeation to Ba++ and Ca++ is highly selective over Na+ and K+ (PCa(Ba):PNa(K) >200:1). The sensitivity to dihydropyridines is similar to that for L-type channels where the channel was blocked by nifedipine (10 μm), and activated by Bay K 8644 (5 μm). When activated by Bay K 8644, the channel showed subconductance levels. Treatment with forskolin (12.5 μm), phorbol ester (1 μm), or stretching (40 cm water) did not activate this channel. These results indicate that this Ca++ channel is mostly regulated by membrane voltage, and appears to be an epithelial class of L-type Ca++ channel. As such, it may participate in calcium reabsorption during periods of enhanced sodium reabsorption, or calcium signaling in volume regulation, where membrane depolarization occurs for prolonged periods. Received: 1 April 1996/Revised: 5 August 1996  相似文献   

19.
The lipid bilayer technique is used to examine the biophysical properties of anion and cation channels frequently formed by platypus (Ornithorhynchus anatinus) venom (OaV). The OaV-formed anion channel in 250/50 mm KCl cis/trans has a maximum conductance of 857 ± 23 pS (n= 5) in 250/50 mm KCl cis/trans. The current-voltage relationship of this channel shows strong inward rectification. The channel activity undergoes time-dependent inactivation that can be removed by depolarizing voltage steps more positive than the reversal potential for chloride, E Cl , (+40 mV). The reversal potential of the OaV-formed slow current activity in 250/50 mm KCl cis/trans is close to the potassium equilibrium potential (E K ) of −40 mV. The conductance values for the slow channel are 22.5 ± 2.6 pS and 41.38 ± 4.2 pS in 250/50 and 750/50 mm cis/trans, respectively. The gating kinetics of the slow ion channels are voltage-dependent. The channel open probability (P o ) is between 0.1 and 0.8 at potentials between 0 and +140 mV. The channel frequency (F o ) increases with depolarizing voltages between 0 and +140 mV, whereas mean open time (T o ) and mean closed time (T c ) decrease. Ion substitution experiments of the cis solution show that the channel has conductance values of 21.47 ± 2.3 and 0.53 ± 0.1 pS in 250 mm KCl and choline Cl, respectively. The amplitude of the single channel current is dependent on [K+] cis and the current reversal potential (E rev ) responds to increases in [K+] cis by shifting to more negative voltages. The increase in current amplitude as a function of increasing [K+] cis can be best described by a third order polynomial fit. At +140 mV, the values of the maximal single channel conductance (γ max ) and the concentration for half maximal γ (K s ) are 38.6 pS and 380 mm and decline to 15.76 pS and 250 mm at 0 mV, respectively. The ion selectivity of the channel to K+, Na+, Cs+ and choline+ was determined in ion substitution experiments. The permeability values for P K+ :P Na+ :P Cs+ :P choline+ were 1:1:0.63:0.089, respectively. On the other hand, the activity of the slow channel was eliminated (Fig. 7B). The slow channel was reversibly inhibited by [TEA+] trans and the half-maximal inhibitory concentration (K i ) was ∼48 mm. Received: 26 April 1999/Revised: 19 July 1999  相似文献   

20.
In frog red blood cells, K-Cl cotransport (i.e., the difference between ouabain-resistant K fluxes in Cl and NO3) has been shown to mediate a large fraction of the total K+ transport. In the present study, Cl-dependent and Cl-independent K+ fluxes via frog erythrocyte membranes were investigated as a function of external and internal K+ ([K+] e and [K+] i ) concentration. The dependence of ouabain-resistant Cl-dependent K+ (86Rb) influx on [K+] e over the range 0–20 mm fitted the Michaelis-Menten equation, with an apparent affinity (K m ) of 8.2 ± 1.3 mm and maximal velocity (V max ) of 10.4 ± 1.6 mmol/l cells/hr under isotonic conditions. Hypotonic stimulation of the Cl-dependent K+ influx increased both K m (12.8 ± 1.7 mm, P < 0.05) and V max (20.2 ± 2.9 mmol/l/hr, P < 0.001). Raising [K+] e above 20 mm in isotonic media significantly reduced the Cl-dependent K+ influx due to a reciprocal decrease of the external Na+ ([Na+] e ) concentration below 50 mm. Replacing [Na+] e by NMDG+ markedly decreased V max (3.2 ± 0.7 mmol/l/hr, P < 0.001) and increased K m (15.7 ± 2.1 mm, P < 0.03) of Cl-dependent K+ influx. Moreover, NMDG+ Cl substitution for NaCl in isotonic and hypotonic media containing 10 mm RbCl significantly reduced both Rb+ uptake and K+ loss from red cells. Cell swelling did not affect the Na+-dependent changes in Rb+ uptake and K+ loss. In a nominally K+(Rb+)-free medium, net K+ loss was reduced after lowering [Na+] e below 50 mm. These results indicate that over 50 mm [Na+] e is required for complete activation of the K-Cl cotransporter. In nystatin-pretreated cells with various intracellular K+, Cl-dependent K+ loss in K+-free media was a linear function of [K+] i , with a rate constant of 0.11 ± 0.01 and 0.18 ± 0.008 hr−1 (P < 0.001) in isotonic and hypotonic media, respectively. Thus K-Cl cotransport in frog erythrocytes exhibits a strong asymmetry with respect to transported K+ ions. The residual, ouabain-resistant K+ fluxes in NO3 were only 5–10% of the total and were well fitted to linear regressions. The rate constants for the residual influxes were not different from those for K+ effluxes in isotonic (∼0.014 hr−1) and hypotonic (∼0.022 hr−1) media, but cell swelling resulted in a significant increase in the rate constants. Received: 19 November 1998/Revised: 23 August 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号