首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli strain CL137, a K-12 derivative made E colicinogenic by contact with Fredericq's strain K317, was unaffected by colicin E2-P9, but K-12 carrying ColE2-P9 was sensitive to the E colicin made by strains CL137 and K317. This colicin we named E7-K317 because by the test of colicinogenic immunity it differed from colicins E1-K30, E2-P9, and E3-CA38 and from recently recognized colicins termed E4Horak, E5, and E6. Strain K317 as conjugational donor transmitted E7 colicinogeny; about half the E7-colicinogenic transconjugants were immune to colicin E2-P9. A spontaneous variant of CL137 retained E7 colicinogeny but was sensitive to E2 colicins. We attribute the E2 immunity of strain CL137 and some E7-coliconogeic transconjugants to a "colicin-immunity plasmid," ColE2imm-K317, from strain K317. Tra+ E7-colicinogenic transconjugants restricted phage BF23 in the same way as strains carrying ColIb-P9. We attribute Tra+ and restricting ability to a plasmid, pRES-K317, acquired from strain K317, and related to the ColI plasmids.  相似文献   

2.
Treatment of Escherichia coli K-12 infected by lambda CIts857 with colicin CA42-E2 resulted in partial inhibition of the infectious process. Uninfected bacteria were killed by colicin with a probability of about five times that with which similarly treated lambda-infected bacteria lose plaque-forming ability. The lambda deoxyribonucleic acid (DNA), when present in a bacterial cell either as the replicating DNA of infectious phage or as the nonreplicating DNA of superinfecting phage, was degraded to acid-soluble material after colicin treatment. Analysis of the intermediates of DNA breakdown has revealed that degradation of the DNA to acid-soluble material is preceded by endonucleolytic fragmentation of the chromosome at a limited number of sites. This is the same mechanism of degradation previously observed for E. coli DNA after colicin treatment.  相似文献   

3.
The surface properties of colicin E1, a 522-amino acid protein, and its interaction with monolayers of Escherichia coli (E. coli) total lipid and 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DOPC) were studied using the Langmuir-Blodgett (LB) technique. Colicin E1 is amphiphilic, forming a protein monolayer at the air/buffer interface. The protein is thought to interact with the E. coli total lipid head groups through electrostatic interactions, followed by its insertion into the lipid monolayers. Supported lipid bilayers (SLBs) of E. coli total lipid and DOPC, deposited onto mica at the cell membrane equivalence pressure for E. coli and incubated with colicin E1, were imaged by contact mode atomic force microscopy (CM-AFM). Colicin E1 formed protein aggregates on DOPC SLBs, while E. coli total lipid SLB was deformed following its incubation with colicin E1. Corresponding lateral force images, along with electrostatic surface potentials for colicin E1 P190, imply a direct interaction of colicin E1 with lipid head groups facilitating their charge neutralization.  相似文献   

4.
The probiotic Escherichia coli strain Nissle 1917 (Mutaflor) of serotype O6:K5:H1 was reported to protect gnotobiotic piglets from infection with Salmonella enterica serovar Typhimurium. An important virulence property of Salmonella is invasion of host epithelial cells. Therefore, we tested for interference of E. coli strain Nissle 1917 with Salmonella invasion of INT407 cells. Simultaneous administration of E. coli strain Nissle 1917 and Salmonella resulted in up to 70% reduction of Salmonella invasion efficiency. Furthermore, invasion of Yersinia enterocolitica, Shigella flexneri, Legionella pneumophila and even of Listeria monocytogenes were inhibited by the probiotic E. coli strain Nissle 1917 without affecting the viability of the invasive bacteria. The observed inhibition of invasion was not due to the production of microcins by the Nissle 1917 strain because its isogenic microcin-negative mutant SK22D was as effective as the parent strain. Reduced invasion rates were also achieved if strain Nissle 1917 was separated from the invasive bacteria as well as from the INT407 monolayer by a membrane non-permeable for bacteria. We conclude E. coli Nissle 1917 to interfere with bacterial invasion of INT407 cells via a secreted component and not relying on direct physical contact with either the invasive bacteria or the epithelial cells.  相似文献   

5.
Escherichia coli strains B and K12 W 1655 F+ are able to bind more lethal units of colicins E2, E3, G, H, Ia, and K+ X per one stable L-form cell (of the protoplast type) than per one rod cell; colicin D is bound in a higher amount on E. coli B rods. This pattern remains unchanged, if the same colicins are attached on chloroform-killed cells of both forms. Rods of both E. coli strains are more sensitive to colicins D, E2, E3, K + X (as--in the strain B--to colicin Ia) than cells of the respective L-forms. In the strain W 1655 F+ both cell forms are equally highly sensitive to colicin Ia. The stable L-forms of both strains are much more sensitive to colicins G and H than the rods. Thus the Gram-negative cell wall decreases the probability of a colicin molecule to get attached to its receptor in the cytoplasmic membrane. On the other hand, in E. coli cells the attachment of most colicin molecules to the wall receptors increases the probability of their biological effect. There is no such effect of the wall-attachment on the action of colicins G or H. The strain B is tolerant to colicin E2, while being resistant to E3; thus the cytoplasmic membrane receptor sites for them are not identical.  相似文献   

6.
Two new E colicins, E8 and E9, produced by a strain of Escherichia coli   总被引:6,自引:0,他引:6  
We have isolated a strain of Escherichia coli from chicken caeca which produces two E colicins and colicin M. This strain has seven plasmids, five of which have been transferred to E. coli K12. Two E. coli K12 derivatives which produce the two E colicins separately have been tested against seven standard E colicin producing strains which define seven different immunity groups. Our results indicate that these new E colicins define two further immunity groups, E8 and E9.  相似文献   

7.
Hirao I  Harada Y  Nojima T  Osawa Y  Masaki H  Yokoyama S 《Biochemistry》2004,43(11):3214-3221
Colicin E3 is a ribonuclease that specifically cleaves at the site after A1493 of 16S rRNA in Escherichia coli ribosomes, thus inactivating translation. To analyze the interaction between colicin E3 and 16S rRNA, we used in vitro selection to isolate RNA ligands (aptamers) that bind to the C-terminal ribonuclease domain of colicin E3, from a degenerate RNA pool. Although the aptamers were not digested by colicin E3, they specifically bound to the protein (K(d) = 2-14 nM) and prevented the 16S rRNA cleavage by the C-terminal ribonuclease domain. Among these aptamers, aptamer F2-1 has a sequence similar to that of the region around the cleavage site from residue 1484 to 1506, including the decoding site, of E. coli 16S rRNA. The secondary structure of aptamer F2-1 was determined by the base pair covariation among the variants obtained by a second in vitro selection, using a doped RNA pool based on the aptamer F2-1 sequence. The sequence and structural similarities between the aptamers and 16S rRNA provide insights into the recognition of colicin E3 by this specific 16S rRNA region.  相似文献   

8.
Previous work has shown that Escherichia coli K12 ColE2+ cells undergo a form of partial lysis and exhibit increases in lysophosphatidylethanolamine (lysoPE) and free fatty acid content due to activation of phospholipase A when induced to produce and release colicin E2. The increase in lysoPE content was assumed to be essential for efficient colicin release. These same characteristics are also presented by some natural ColE2+ isolates, and by other representatives of the Enterobacteriaceae after transformation with derivatives of a ColE2 plasmid. However, Salmonella typhimurium strains carrying ColE2 plasmids released colicin without partial lysis and without increasing their lysoPE content. A previously undetected minor phospholipid, which appeared in these and other strains only when they were induced to produce colicin, may be an important factor in colicin release. In ColE2+ E. coli K12, production of this new lipid was dependent on phospholipase A activation following expression of the ColE2 lysis gene. Some other ColE2+ strains did not respond to induction of colicin production in the same way as ColE2+ E. coli K12. These strains were less sensitive to inducer (mitomycin C) or unable to produce increased amounts of colicin in response to induction, or unable to degrade colicin once it was released. In general, the results suggest that colicin release occurs by the same or similar processes in the various strains tested, and support the continued use of E. coli K12 as the model strain for studying the mechanisms of colicin release.  相似文献   

9.
Abortive infection of certain strains of Escherichia coli or Shigella dysenteriae with phages of the T-even group or with phage T5 resembles the action of colicin E1 or K on sensitive bacteria, especially in the effects on biosynthetic processes. Tests on transport systems and on adenosine triphosphate levels suggest, however, that different mechanisms are involved in the two cases. Abortive infection appears to cause damage to the permeability barrier of the cell, whereas the colicins interfere more directly with the energy metabolism of the bacteria.  相似文献   

10.
Purification and molecular properties of a new colicin.   总被引:6,自引:0,他引:6  
The process of isolation and purification of a new colicin isolated from a Citrobacter strain is described. Escherichia coli sensitive cells are protected by vitamin B12 from the action of this bacteriocin; this suggests that it belongs to the E group of colicins. Therefore, we have called it colicin E4. It has a molecular weight of 56 000 and two molecular forms of isoelectric points 9.4 and 8.2 are separated in electrofocusing on polyacrylamide gels. It has a sedimentation coefficient of 3.4 S and the absorption coefficient A1(280%) nm is 6.23 cm(-1). Using an antibody raised against pure colicin E4, no cross-reaction was detected against colicins A, E1 or K. The physiological effect of colicin E4 on sensitive cells is very similar to that of colicins E1, K or I which disrupt the energized membrane state.  相似文献   

11.
A cosmid library of DNA from colicin Js-sensitive enteroinvasive Escherichia coli (EIEC) strain O164 was made in colicin Js-resistant strain E. coli VCS257, and colicin Js-sensitive clones were identified. Sensitivity to colicin Js was associated with the carriage of a three-gene operon upstream of and partially overlapping senB. The open reading frames were designated cjrABC (for colicin Js receptor), coding for proteins of 291, 258, and 753 amino acids, respectively. Tn7 insertions in any of them led to complete resistance to colicin Js. A near-consensus Fur box was found upstream of cjrA, suggesting regulation of the cjr operon by iron levels. CjrA protein was homologous to iron-regulated Pseudomonas aeruginosa protein PhuW, whose function is unknown; CjrB was homologous to the TonB protein from Pseudomonas putida; and CjrC was homologous to a putative outer membrane siderophore receptor from Campylobacter jejuni. Cloning experiments showed that the cjrB and cjrC genes are sufficient for colicin Js sensitivity. Uptake of colicin Js into sensitive bacteria was dependent on the ExbB protein but not on the E. coli K-12 TonB and TolA, -B, and -Q proteins. Sensitivity to colicin Js is positively regulated by temperature via the VirB protein and negatively controlled by the iron source through the Fur protein. Among EIEC strains, two types of colicin Js-sensitive phenotypes were identified that differed in sensitivity to colicin Js by 1 order of magnitude. The difference in sensitivity to colicin Js is not due to differences between the sequences of the CjrB and CjrC proteins.  相似文献   

12.
DNase colicins E2 and E7, both of which appropriate the BtuB/Tol translocation machinery to cross the outer membrane, undergo a processing step as they enter the cytoplasm. This endoproteolytic cleavage is essential for their killing action. A processed form of the same size, 18.5 kDa, which corresponds to the C-terminal catalytic domain, was detected in the cytoplasm of bacteria treated with either of the two DNase colicins. The inner-membrane protease FtsH is necessary for the processing that allows the translocation of the colicin DNase domain into the cytoplasm. The processing occurs near residue D420, at the same position as the FtsH-dependent cleavage in RNase colicins E3 and D. The cleavage site is located 30 amino acids upstream of the DNase domain. In contrast, the previously reported periplasm-dependent colicin cleavage, located at R452 in colicin E2, was shown to be generated by the outer-membrane protease OmpT and we show that this cleavage is not physiologically relevant for colicin import. Residue R452, whose mutated derivatives led to toxicity defect, was shown to have no role in colicin processing and translocation, but it plays a key role in the catalytic activity, as previously reported for other DNase colicins. Membrane associated forms of colicins E2 and E7 were detected on target cells as proteinase K resistant peptides, which include both the receptor-binding and DNase domains. A similar, but much less proteinase K-resistant form was also detected with RNase colicin E3. These colicin forms are not relevant for colicin import, but their detection on the cell surface indicates that whole nuclease-colicin molecules are found in a stable association with the outer-membrane receptor BtuB of the target cells.  相似文献   

13.
A new temperature-sensitive mutant of E. coli, defective in cell division, was isolated after selection for tolerance to colicin E2. The mutant strain, ASHI24, growing in either minimal or complex medium, commences filament formation immediately upon shift to high temperature. High densities of bacteria or the presence of 0-44 M-sucrose prevents filament formation at 42 degrees C and division continues. Filament formation in the mutant is reversible and upon return to 29 degrees C the multinucleate filaments divide up into normal-sized bacteria by a series of rapid but sequential divisions. In the presence of chloramphenicol at 29 degrees C, 25% of these division sites are still expressed. A genetic locus designated ftsH, apparently controlling both temperature sensitivity and filament formation, was provisionally mapped at minute 80 on the E. coli K12 map.  相似文献   

14.
The question of a common receptor for colicins E1, E2 and E3 was studied by comparing the kinetics of their action in different colicin mixtures with that of each colicin alone.The rate of specific adsorption of colicins was studied in two ways: by assaying the decreasing amount of free colicin in the solution (direct) and by determining the numbers of surviving colony-forming bacteria (indirect). At the same multiplicity, the rate of adsorption and inhibitory effect varied for each colicin tested (E1, E2, E3 and K).These differences were the basis of our study on the inhibitory effects of mixtures of two colicins added either simultaneously or successively.The results were conclusive: E1 and K bind to receptor sites different from a common receptor site for colicins E2 and E3. Thus colicin E1 should be excluded from the E group. It is suggested to sign it J as previously.The authors wish to thank Dr. B. marda for his mathematical advice.  相似文献   

15.
Pure cultures of Escherichia coli, Bacillus subtilis, Proteus vulgaris, Staphylococcus aureus, and Pseudomonas fluorescens were used in this investigation. The bactericidal concentrations of vitamin K(5) required for E. coli, B. subtilis, P. vulgaris, S. aureus, and P. fluorescens; the effect of an absence of oxygen; the effect of contact time with E. coli and S. aureus; and the effect of initial counts per milliliter of E. coli were studied. The bactericidal concentrations ranged from 60 ppm of K(5) for S. aureus to 220 ppm for E. coli, with an initial count of 160,000 to 200,000 cells per milliliter and a contact time of 12 hr in nutrient broth. The gram-positive bacteria tested were more susceptible to the antimicrobial activity of vitamin K(5) than the gram-negative bacteria. In the studies conducted under nitrogen atmosphere, the per cent inhibition showed an inverse relationship to the bactericidal concentrations required for complete inhibition in studies conducted under air atmosphere. This finding suggested that there might be different factors responsible for inhibition depending on the species of bacteria being tested, and it also might help explain the difference in concentrations necessary for inhibition. Cells of E. coli and S. aureus were not inhibited immediately on coming into contact with vitamin K(5); 50% inhibition occurred after 25 and 32 min, respectively. A rapid inhibition rate was maintained until approximately 90% inhibition occurred, after whch a rapid decrease in the rate was noted.  相似文献   

16.
The first step in the transport of cyanocobalamin (CN-B(12)) by cells of Escherichia coli was shown previously to consist of binding of the B(12) to specific receptor sites located on the outer membrane of the cell envelope. In this paper, evidence is presented that these B(12) receptor sites also function as the receptors for the E colicins, and that there is competition between B(12) and the E colicins for occupancy of these sites. The cell strains used were E. coli KBT001, a methionine/B(12) auxotroph, and B(12) transport mutants derived from strain KBT001. Colicins E1 and E3 inhibited binding of B(12) to the outer membrane B(12) receptor sites, and CN-B(12) protected cells against these colicins. Half-maximal protection was given by CN-B(12) concentrations in the range of 1 to 6 nM, depending upon the colicin concentration used. Colicin E1 competitively inhibited the binding of (57)Co-labeled CN-B(12) to isolated outer membrane particles. Functional colicin E receptor sites were found in cell envelopes from cells of only those strains that possessed intact B(12) receptors. Colicin K did not inhibit the binding of B(12) to the outer membrane receptor sites, and no evidence was found for any identity between the B(12) and colicin K receptors. However, both colicin K and colicin E1 inhibited the secondary phase of B(12) transport, which is believed to consist of the energy-coupled movement of B(12) across the inner membrane.  相似文献   

17.
Plasmids were isolated from E colicinogenic strains and transformed into prototrophic Escherichia coli K 12 strain DB364. Screening of E colicinogenic transformants for growth on defined medium revealed an apparent amino acid auxotrophy mediated by E4 and, to a lesser extent, E7 colicin plasmids. The auxotrophy was further investigated in E4 colicinogenic strains. From such auxotrophic transformants, denoted Pmi+ (plasmid-mediated inhibition of growth), Pmi- variants were obtained at a frequency of 3 X 10(-4) per bacterium. Plasmid loss was not detected among Pmi- clones. Isolation of E4 colicin plasmids from Pmi- clones and retransformation of strain DB364 with these plasmids showed that 40% of the plasmids were unable to inhibit growth of DB364 and were inferred to have alterations in an E4 colicin plasmid gene termed pmi. All such plasmids were indistinguishable from native E4 colicin plasmids, with respect to colicin immunity, colicin production and excretion, and sensitivity to lysis by mitomycin C. Experiments examining the nutritional basis of the plasmid-mediated auxotrophy indicated that at least seven amino acids, isoleucine, leucine, valine, arginine, methionine, serine and glycine, were involved in the auxotrophy. However, supplementation with only these seven amino acids did not completely restore growth. Assays of the activities of enzymes involved in amino acid biosynthesis in colicinogenic and non-colicinogenic strains under repressing and derepressing growth conditions suggested that E4 colicin plasmids did not repress synthesis of the implicated amino acids.  相似文献   

18.
2H and 31P NMR techniques were used to study the effects on acyl chain order and lipid organization of the well-characterized pore-forming domain of colicin A (20-kDa thermolytic fragment of colicin A) upon insertion in model membrane systems derived from the Escherichia coli fatty acid auxotrophic strain K 1059, which was grown in the presence of [11,11-2H2]-labeled oleic acid. Addition of the protein to dispersions of the E. coli total lipid extract, in a 1/70 molar ratio of peptide to lipids, resulted in a large pH-dependent decrease in quadrupolar splitting of the 2H NMR spectra. The decrease of the quadrupolar splitting obtained at the various pH values was correlated with the pH dependence of the insertion of the protein in monolayer films using the same E. coli lipid extracts. The pK governing the perturbing effects on the order of the fatty acyl chains was around 5, in agreement with the values of the pH-dependent conformational changes of the pore-forming domain of colicin A required for membrane insertion as reported by van der Goot et al. [(1991) Nature 354, 408-410]. 31P NMR measurements show that the bilayer organization remains intact upon addition of the protein to dispersions of lipid extract. Surprisingly, 31P NMR measurements as a function of temperature indicate that the pore-forming domain of colicin A even stabilizes bilayer lipid structure at pH 4. Both the large effect of the protein on acyl chain order and its bilayer-stabilizing activity are indicative of a surface localization of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Treatment of Escherichia coli K12 C600 with colicin K or E1, but not E3, caused changes in the protein composition of the bacterial cytoplasmic membrane and an impairment of the membrane-associated ATP-linked transhydrogenase activity. The major compositional changes were loss and/or reduction in the levels of protein bands 4, 8, 9, 10, 13, and 18 with approximate molecular weights of 122,000, 81,000, 75,000, 73,000, 62,000, and 44,000, respectively. Colicin K or E1 treatment had no significant effect on the protein composition or the ATP-linked transhydrogenase activity of the cytoplasmic membranes of the isogenic tolerant strain E. coli K12 C600 TolII (A592). The cytoplasmic membranes of the untreated tolerant mutant were characteristically devoid of protein bands 4 and 13. It is proposed that protein bands 4 and/or 13 participate in colicin action by acting as receptors for colicins at the cytoplasmic membrane level. Some observations on the structural and functional heterogeneity of the cytoplasmic membrane preparations were made.  相似文献   

20.
The ColV, I-K94 plasmid markedly increased the heat sensitivity of Escherichia coli K12 but had no sensitizing effect on a wild E. coli isolate. The plasmid effect on strain K12 appeared to result from ColV-encoded transfer and colicin components possibly due to their effects on membrane properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号