首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Estrogen receptor (ER) ligands modulate hemopoiesis and immunity in the normal state, during autoimmunity, and after infection or trauma. Dendritic cells (DC) are critical for initiation of innate and adaptive immune responses. We demonstrate, using cytokine-driven culture models of DC differentiation, that 17-beta-estradiol exerts opposing effects on differentiation mediated by GM-CSF and Flt3 ligand, the two cytokines that regulate DC differentiation in vivo. We also show that estradiol acts on the same highly purified Flt3+ myeloid progenitors (MP) to differentially regulate the DC differentiation in each model. In GM-CSF-supplemented cultures initiated from MP, physiological amounts of estradiol promoted differentiation of Langerhans-like DC. Conversely, in Flt3 ligand-supplemented cultures initiated from the same MP, estradiol inhibited cell survival in a dose-dependent manner, thereby decreasing the yield of plasmacytoid and conventional myeloid and lymphoid DC. Experiments with bone marrow cells from ER-deficient mice and the ER antagonist ICI182,780 showed that estradiol acted primarily via ERalpha to regulate DC differentiation. Thus, depending on the cytokine environment, pathways of ER signaling and cytokine receptor signaling can differentially interact in the same Flt3+ MP to regulate DC development. Because the Flt3 ligand-mediated differentiation pathway is important during homeostasis, and GM-CSF-mediated pathways are increased by inflammation, our data suggest that endogenous or pharmacological ER ligands may differentially affect DC development during homeostasis and disease, with consequent effects on DC-mediated immunity.  相似文献   

2.
3.
Dendritic cells (DCs) have the potential to activate or tolerize T cells in an Ag-specific manner. Although the precise mechanism that determines whether DCs exhibit tolerogenic or immunogenic functions has not been precisely elucidated, growing evidence suggests that DC function is largely dependent on differentiation status, which can be manipulated using various growth factors. In this study, we investigated the effects of mobilization of specific DC subsets-using GM-CSF and fms-like tyrosine kinase receptor 3-ligand (Flt3-L)-on the susceptibility to induction of experimental autoimmune myasthenia gravis (EAMG). We administered GM-CSF or Flt3-L to C57BL/6 mice before immunization with acetylcholine receptor (AChR) and observed the effect on the frequency and severity of EAMG development. Compared with AChR-immunized controls, mice treated with Flt3-L before immunization developed EAMG at an accelerated pace initially, but disease frequency and severity was comparable at the end of the observation period. In contrast, GM-CSF administered before immunization exerted a sustained suppressive effect against the induction of EAMG. This suppression was associated with lowered serum autoantibody levels, reduced T cell proliferative responses to AChR, and an expansion in the population of FoxP3+ regulatory T cells. These results highlight the potential of manipulating DCs to expand regulatory T cells for the control of autoimmune diseases such as MG.  相似文献   

4.
5.
6.
Corticosteroids (CS) have been shown to exert strong inhibitory effects on dendritic cell (DC) differentiation and function. Those studies were mostly performed with monocyte-derived DC, which represents only one subpopulation from the wide variety of DC types. In the present study the effects of the CS dexamethasone and prednisolone were investigated on the differentiation of CD34(+) hemopoietic progenitor cells into 1) Langerhans cells (LC), which differentiate directly into CD1a(+) DC; and 2) dermal/interstitial DC, which differentiate via a CD14(+)CD1a(-) phenotype into CD14(-)CD1a(+) DC. CS present during the entire 11-day culture period, resulting in fully differentiated CD1a(+) DC, increased the percentage of langerin(+) DC within the CD1a(+) population. In line with these data, CS treatment during the first 6 days of differentiation reduced the development of CD14(+) dermal DC precursors and thereby seemed to support the generation of CD1a(+) LC precursors. Addition of CS from day 6 onward specifically blocked the development of CD1a(+) dermal DC by both inhibition of spontaneous and IL-4-induced differentiation of CD14(+) DC precursors into CD1a(+) DC as well as induction of apoptosis in CD14(+) DC precursors. Apoptosis was not found in CD14(+) macrophage precursors derived from the same CD34(+) progenitors. The development and function of LC were not affected by CS, as demonstrated by a normal T cell stimulatory capacity and IL-12 production. These data demonstrate that CS interfere with the normal development of DC from CD34(+) progenitors by specific induction of apoptosis in precursors of dermal/interstitial DC. In view of the different functional capacities of dermal/interstitial DC and Langerhans cells, this might affect the overall cellular immune response.  相似文献   

7.
The evidence that dendritic cell (DC) subsets produce differential cytokines in response to specific TLR stimulation is robust. However, the role of TLR stimulation in Ag presentation and phenotypic maturation among DC subsets is not clear. Through the adjuvanticity of a novel mannosylated Ag, mannosylated dendrimer OVA (MDO), as a pathogen-associated molecular pattern Ag, we characterized the functionality of GM-CSF/IL-4-cultured bone marrow DC and Flt3 ligand (Flt3-L) DC subsets by Ag presentation and maturation assays. It was demonstrated that both bone marrow DCs and Flt3-L DCs bound, processed, and presented MDO effectively. However, while Flt3-L CD24(high) (conventional CD8(+) equivalent) and CD11b(high) (CD8(-) equivalent) DCs were adept at MDO processing by MHC class I and II pathways, respectively, CD45RA(+) plasmacytoid DCs presented MDO poorly to T cells. Successful MDO presentation was largely dependent on competent TLR4 for Ag localization and morphological/phenotypic maturation of DC subsets, despite the indirect interaction of MDO with TLR4. Furthermore, Toll/IL-1 receptor-domain-containing adaptor-inducing IFN-beta, but not MyD88, as a TLR4 signaling modulator was indispensable for MDO-induced DC maturation and Ag presentation. Taken together, our findings suggest that DC subsets differentially respond to a pathogen-associated molecular pattern-associated Ag depending on the intrinsic programming and TLRs expressed. Optimal functionality of DC subsets in Ag presentation necessitates concomitant TLR signaling critical for efficient Ag localization and processing.  相似文献   

8.
Cytokines in the generation and maturation of dendritic cells: recent advances   总被引:14,自引:0,他引:14  
Dendritic cells (DCs) are extremely efficient antigen presenting cells (APCs) that are potent stimulators of both T and B cell-mediated immune responses. Although DCs are normally present in very small numbers in the peripheral blood (PB), recent advances have made it possible to generate relatively large numbers of cells in culture. DCs can be differentiated in vitro from various cellular sources, including bone marrow (BM), cord blood (CB) and PB mononuclear cells (PBMCs). Although a wide variety of conditions have been reported to be able to support DC generation, the majority of research and clinical protocols to date differentiate DCs from precursors using granulocyte-macrophage colony stimulating factor (GM-CSF) in combination with either tumor necrosis factor-(TNF-)alpha or interleukin (IL)-4. However, a diverse array of cytokines has been shown to be able to induce DC differentiation under a variety of conditions. According to recent reports, cytokines such as IL-2, IL-6, IL-7, IL-13, IL-15 and hepatocyte growth factor (HGF), in combination or even, in some cases, alone, can contribute to the generation of DCs from either monocytes or CD34+ cells. Although the majority of cytokine combinations include GM-CSF, some do not. For example, Flt3 ligand (FL), in conjuction with IL-6 (in the absence of GM-CSF), has been reported to be able to induce DC differentiation from BM cells in a murine system. Other agents can play a dual role in DC activity. CD40 ligand (CD40L), as a single agent, has been shown to be able to generate DCs from PB monocytes, while numerous other reports have also demonstrated its role as a potent maturation factor. In contrast, for other cytokines such as IL-16 or IL-17, although there is no data for a role in DC generation, they have been reported to be involved in promoting DC maturation in vitro as defined by upregulation of costimulatory molecules, major histocompatibility complex (MHC) antigens and antigen presenting/T lymphocyte stimulatory capacity. Furthermore, cytokines such as stem cell factor (SCF) and FL have been shown to dramatically enhance in vivo DC recovery. The wide variety of cytokines and conditions that have been shown to be able to influence DC differentiation and activity to amply demonstrate the extreme heterogeneity found in the DC population, something that is reflected in the diverse phenotypes, functions and ontogeny displayed by DCs. This diversity may account for the large number of roles that have been attributed to DCs in the development and function of the immune system and, in turn, emphasizes the potential as well as the challenges of modifying specific aspects of the immune response system by manipulating specific DC subpopulations.  相似文献   

9.
We studied cytokine-driven differentiation of primitive human CD34(+)HLA-DR(-) cells to myeloid dendritic cells (DC). Hemopoietic cells were grown in long-term cultures in the presence of various combinations of early acting cytokines such as FLT3-ligand (FLT3-L) and stem cell factor (SCF) and the differentiating growth factors GM-CSF and TNF-alpha. Two weeks of incubation with GM-CSF and TNF-alpha generated fully functional DC. However, clonogenic assays demonstrated that CFU-DC did not survive beyond 1 wk in liquid culture regardless of whether FLT3-L and/or SCF were added. FLT3-L or SCF alone did not support DC maturation. However, the combination of the two early acting cytokines allowed a 100-fold expansion of CFU-DC for >1 month. Phenotypic analysis demonstrated the differentiation of CD34(+)DR(-) cells into CD34(-)CD33(+)DR(+)CD14(+) cells, which were intermediate progenitors capable of differentiating into functionally active DC upon further incubation with GM-CSF and TNF-alpha. As expected, GM-CSF and TNF-alpha generated DC from committed CD34(+)DR(+) cells. However, only SCF, with or without FLT3-L, induced the expansion of DC precursors for >4 wk, as documented by secondary clonogenic assays. This demonstrates that although GM-CSF and TNF-alpha do not require additional cytokines to generate DC from primitive human CD34(+)DR(-) progenitor cells, they do force terminal differentiation of DC precursors. Conversely, FLT3-L and SCF do not directly affect DC differentiation, but instead sustain the long-term expansion of CFU-DC, which can be induced to produce mature DC by GM-CSF and TNF-alpha.  相似文献   

10.
Development of the immune system is depicted as a hierarchical process of differentiation from hematopoietic stem cells (HSC) to lineage-committed precursors, which further develop into mature immune cells. In the case of dendritic cell (DC) development, this linear precursor-progeny approach has led to a confused picture of relationships between various subsets of DC identifiable in vivo. A possible reconciliation of the diversity of DC precursors and DC subsets in vivo encompasses the role of the microenvironment in DC hematopoiesis. We propose here that various niches for DC hematopoiesis within lymphoid organs could account for the diversity of DC in vivo. A tridimensional space consisting of stromal cells which produce a range of membrane-bound and secreted molecules providing signals to DC progenitors would define these niches.  相似文献   

11.
Dendritic cells (DCs) reside in tissues, where they function as sentinels, providing an essential link between innate and adaptive immunity. Increasing the numbers of DCs in vivo augments T cell responses, and can cause dramatic CTL-dependent tumor regression. To determine whether greater DC numbers promoted T cell-mediated protection in the context of host defense against intracellular bacteria, we treated mice with Flt3 ligand (Flt3-L) to increase DCs in vivo and challenged them with Listeria monocytogenes. Unexpectedly, after primary challenge with Listeria, the overall control of Listeria infection was impaired in Flt3-L-treated mice, which had greater bacterial burden and mortality than controls. Similar results were obtained when DC numbers were increased by treatment with polyethylene glycol-conjugated GM-CSF rather than Flt3-L and in mice infected with Mycobacterium tuberculosis. Impaired protection was not due to dysfunctional T cell responses, as Flt3-L-treated mice had a greater frequency and absolute number of Ag-specific CD8+ T cells, which produced IFN-gamma, exhibited cytolytic activity, and transferred protection. The increased Listeria burden in Flt3-L-treated mice was preferentially associated with DCs, which were unable to kill Listeria and more resistant to CTL lysis compared with macrophages in vitro. Although we cannot exclude the possibility that other potential effects, in addition to increased numbers of DCs, are shared by Flt3-L and polyethylene glycol-conjugated GM-CSF and contributed to the increase in susceptibility observed in treated mice, these results support the notion that DC numbers must be properly controlled within physiological limits to optimize host defense to intracellular bacterial pathogens.  相似文献   

12.
GM-CSF is critical for dendritic cell (DC) survival and differentiation in vitro. To study its effect on DC development and function in vivo, we used a gene transfer vector to transiently overexpress GM-CSF in mice. We found that up to 24% of splenocytes became CD11c+ and the number of DC increased up to 260-fold to 3 x 10(8) cells. DC numbers remained substantially elevated even 75 days after treatment. The DC population was either CD8alpha+CD4- or CD8alpha-CD4- but not CD8alpha+CD4+ or CD8alpha-CD4+. This differs substantially from subsets recruited in normal or Flt3 ligand-treated mice or using GM-CSF protein injections. GM-CSF-recruited DC secreted extremely high levels of TNF-alpha compared with minimal amounts in DC from normal or Flt3 ligand-treated mice. Recruited DC also produced elevated levels of IL-6 but almost no IFN-gamma. GM-CSF DC had robust immune function compared with controls. They had an increased rate of Ag capture and caused greater allogeneic and Ag-specific T cell stimulation. Furthermore, GM-CSF-recruited DC increased NK cell lytic activity after coculture. The enhanced T cell and NK cell immunostimulation by GM-CSF DC was in part dependent on their secretion of TNF-alpha. Our findings show that GM-CSF can have an important role in DC development and recruitment in vivo and has potential application to immunotherapy in recruiting massive numbers of DC with enhanced ability to activate effector cells.  相似文献   

13.
Tumor exosomes inhibit differentiation of bone marrow dendritic cells   总被引:1,自引:0,他引:1  
The production of exosomes by tumor cells has been implicated in tumor-associated immune suppression. In this study, we show that, in mice, exosomes produced by TS/A murine mammary tumor cells target CD11b(+) myeloid precursors in the bone marrow (BM) in vivo, and that this is associated with an accumulation of myeloid precursors in the spleen. Moreover, we demonstrate that TS/A exosomes block the differentiation of murine myeloid precursor cells into dendritic cells (DC) in vitro. Addition of tumor exosomes at day 0 led to a significant block of differentiation into DC, whereas addition at later time points was less effective. Similarly, exosomes produced by human breast tumor cells inhibited the differentiation of human monocytes in vitro. The levels of IL-6 and phosphorylated Stat3 were elevated 12 h after the tumor exosome stimulation of murine myeloid precursors, and tumor exosomes were less effective in inhibiting differentiation of BM cells isolated from IL-6 knockout mice. Addition of a rIL-6 to the IL-6 knockout BM cell culture restored the tumor exosome-mediated inhibition of DC differentiation. These data suggest that tumor exosome-mediated induction of IL-6 plays a role in blocking BM DC differentiation.  相似文献   

14.
Escherichia coli's heat‐labile enterotoxin (Etx) and its non‐toxic B subunit (EtxB) have been characterized as adjuvants capable of enhancing T cell responses to co‐administered antigen. Here, we investigate the direct effect of intravenously administered EtxB on the size of the dendritic and myeloid cell populations in spleen. EtxB treatment appears to enhance the development and turnover of dendritic and myeloid cells from precursors within the spleen. EtxB treatment also gives a dendritic cell (DC) population with higher viability and lower activation status based on the reduced expression of MHC‐II, CD80 and CD86. In this respect, the in vivo effect of EtxB differs from that of the highly inflammatory mediator lipopolysaccharide. In in vitro bone marrow cultures, EtxB treatment was also found to enhance the development of DC from precursors dependent on Flt3L. In terms of the in vivo effect of EtxB on CD4 and CD8 T cell responses in mice, the interaction of EtxB directly with DC was demonstrated following conditional depletion of CD11c+ DC. In summary, all results are consistent with EtxB displaying adjuvant ability by enhancing the turnover of DC in spleen, leading to newly mature myeloid and DC in spleen, thereby increasing DC capacity to perform as antigen‐presenting cells on encounter with T cells.  相似文献   

15.

Background

One of the hallmarks of rheumatoid arthritis (RA) is hyperplasia and inflammation of the synovial tissue being characterized by in situ occurrence of highly differentiated leukocytes. Fms-like tyrosine kinase 3 (Flt3) has a crucial role in hematopoiesis, regulation of cell proliferation, differentiation and apoptosis. Typically, Flt3 is expressed on early myeloid and lymphoid progenitors and is activated by its soluble ligand (Flt3-L). The highly differentiated cellular pattern in the synovium of the RA patients made us hypothesize that Flt3-L, with its ability to induce proliferation and differentiation, could be of importance in induction and/or progression of arthritis.

Methodology/Principal Findings

To investigate occurrence of Flt3-L in RA we have measured its levels in matched serum and synovial fluid samples from 130 patients and 107 controls. To analyse the pro-inflammatory role of Flt3-L, we continuously overexpressed this protein locally in healthy mouse joints using homologous B-cell line transfected with Flt3-L gene. Additionally, recombinant Flt3-L was instillated intra-articularly in combination with peptidoglycans, a Toll Like Receptor 2-ligand with stong arthritogenic properties. Our results show significantly higher levels of Flt3-L in the synovial fluid as compared to serum levels in RA subjects (p = 0.0001). In addition, RA synovial fluid levels of Flt-3-L were significantly higher than these obtained from synovial fluids originating from non-inflammatory joint diseases (p = 0.022). Intra-articular administration of B-cell line transfected with Flt3-L gene resulted in highly erosive arthritis while inoculation of the same B-cell line without hyperexpression of Flt3-L did not induce erosivity and only in a minority of cases caused synovial proliferation! Flt3-ligand potentiated peptidoglycan induced arthritis as compared to mice injected with peptidoglycan alone (p<0.05).

Conclusions/Significance

Our findings indicate that Flt3-L is strongly expressed at the site of inflammation in human RA. It exerts both pro-inflammatory and tissue destructive properties once in the joint cavity. Owing to these properties, treatment attempts to neutralize this molecule should be considered in RA.  相似文献   

16.
Dendritic cells (DCs), including conventional DCs (cDCs) and plasmacytoid DCs (pDCs) are critical for initiating and controlling the immune response. However, study of DC, particularly pDC, function is hampered by their low frequency in lymphoid organs, and existing methods for in vitro DC generation preferentially favor the production of cDCs over pDCs. Here, we demonstrated that pDCs could be efficiently generated in vitro from common lymphoid progenitors (CLPs) using Flt3 ligand (FL) in three different culture systems, namely feeder-free, BM-feeder and AC-6-feeder. This was in stark contrast to common DC progenitors (CDPs), in which cDCs were prominently generated under the same conditions. Moreover, the efficiency and function of pDCs generated from these three systems varied. While AC-6 system showed the greatest ability to support pDC development from CLPs, BM-feeder system was able to develop pDCs with better functionality. pDCs could also be expanded in vivo using hydrodynamic gene transfer of FL, which was further enhanced by the combined treatment of FL and IFN-α. Interestingly, IFN-α selectively promoted the proliferation of CLPs and not CDPs, which might contribute to enhanced pDC development. Together, we have defined conditions for in vitro and in vivo generation of pDCs, which may be useful for investigating the biology of pDCs.  相似文献   

17.
The generation of a peripheral T-cell pool is essential for normal immune system function. CD4+ and CD8+ T cells are produced most efficiently in the thymus, which provides a complexity of discrete cellular microenvironments. Specialized stromal cells, that make up such microenvironments, influence each stage in the maturation programme of immature T-cell precursors. Progress has recently been made in elucidating events that regulate the development of intrathymic microenvironments, as well as mechanisms of thymocyte differentiation. It is becoming increasingly clear that the generation and maintenance of thymic environments that are capable of supporting efficient T-cell development, requires complex interplay between lymphoid and stromal compartments of the thymus.  相似文献   

18.
MicroRNAs (miRNAs) are an important class of cellular regulators that modulate gene expression and thereby influence cell fate and function. In the immune system, miRNAs act at checkpoints during hematopoietic development and cell subset differentiation, they modulate effector cell function, and they are implicated in the maintenance of homeostasis. Dendritic cells (DCs), the professional APCs involved in the coordination of adaptive immune responses, are also regulated by miRNAs. Some DC-relevant miRNAs, including miR-155 and miR-146a, are shared with other immune cells, whereas others have been newly identified. In this review, we summarize the current understanding of where miRNAs are active during DC development from myeloid precursors and differentiation into specialized subsets, and which miRNAs play roles in DC function.  相似文献   

19.
In autoimmune Graves' disease (GD), autoantibodies bind to the thyrotropin receptor (TSHR) and cause hyperthyroidism. We studied the effects of fms-like tyrosine kinase receptor 3 ligand (Flt3-L) or GM-CSF treatment on the development of experimental autoimmune GD (EAGD) in mice, a slowly progressing Ab-mediated organ-specific autoimmune disease of the thyroid induced by immunization with syngeneic cells expressing TSHR. Flt3-L and GM-CSF treatment resulted in up-regulation of CD8a(+) and CD8a(-) dendritic cells, and skewing of cytokine and immune responses to TSHR in favor of Th1 and Th2, respectively. However, this skewing did not persist until the later stages, and thus failed to affect the course or severity of the disease. To determine whether the total absence of either IL-4 or IFN-gamma could affect the development of EAGD, we immunized wild-type, IFN-gamma(-/-) and IL-4(-/-) BALB/c mice with TSHR. Nearly 100% of the wild-type and IFN-gamma(-/-) mice developed EAGD with optimal TSHR-specific immune responses, while IL-4(-/-) mice completely resisted disease and showed delayed and suboptimal pathogenic Ab response. These data demonstrated that skewing immune responses to TSHR, using either Flt3-L or GM-CSF, in favor of Th1 or Th2, respectively, may not be sufficient to alter the course of the disease, while the complete absence of IL-4, but not IFN-gamma, can prevent the development of EAGD.  相似文献   

20.
Age‐associated decline in immunity to infection has been documented across multiple pathogens, yet the relative contributions of the aged priming environment and of lymphocyte‐intrinsic defects remain unclear. To address the impact of the aging environment on T‐cell priming, adult naïve OT‐I TCR transgenic CD8 T cells, specific for the H‐2Kb‐restricted immunodominant OVA257‐264 epitope, were transferred into adult or old recipient mice infected with the recombinant intracellular bacterium Listeria monocytogenes carrying the chicken ovalbumin protein (Lm‐OVA). We consistently found that adult OT‐I CD8 expansion was reduced in aged recipient mice, and this correlated with numeric, phenotypic, and functional defects selectively affecting CD8α+ dendritic cells (DC). Following Lm‐OVA infection, aged mice failed to accumulate CD8α+ DC in the spleen, and these cells expressed much lower levels of critical costimulatory molecules in the first three days following infection. Further, aged CD8α+ DC showed impaired uptake of the bacteria at very early time points following infection. Treatment of aged mice with Flt3 ligand (Flt3L) improved the number of DC present in the spleen prior to Lm‐OVA infection, and improved, but did not reconstitute, OT‐I expansion to Lm‐OVA infection. These results suggest that age‐associated changes in antigen uptake, pathogen sensing, and/or antigen presentation contribute to impaired adaptive immune responses to microbial pathogens with aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号