首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While stigma anatomy is well documented for a good number of species, little information is available on the acquisition and cessation of stigmatic receptivity. The aim of this work is to characterize the development of stigma receptivity, from anthesis to stigma degeneration, in the pentacarpellar pear (Pyrus communis) flower. Stigma development and stigmatic receptivity were monitored over two consecutive years, as the capacity of the stigmas to offer support for pollen germination and pollen tube growth. In an experiment where hand pollinations were delayed for specified times after anthesis, three different stigmatic developmental stages could be observed: (1) immature stigmas, which allow pollen adhesion but not hydration; (2) receptive stigmas, which allow proper pollen hydration and germination; and (3) degenerated stigmas, in which pollen hydrates and germinates properly, but pollen tube growth is impaired soon after germination. This developmental characterization showed that stigmas in different developmental stages coexist within a flower and that the acquisition and cessation of stigmatic receptivity by each carpel occur in a sequential manner. In this way, while the duration of stigmatic receptivity for each carpel is rather short, the flower has an expanded receptive period. This asynchronous period of receptivity for the different stigmas of a single flower is discussed as a strategy that could serve to maximize pollination resources under unreliable pollination conditions.  相似文献   

2.
3.
《Genomics》2020,112(5):3484-3496
Alcohol dehydrogenase (ADH) is essential to the formation of aromatic compounds in fruits. However, the evolutionary history and characteristics of ADH gene expression remain largely unclear in Rosaceae fruit species. In this study, 464 ADH genes were identified in eight Rosaceae fruit species, 68 of the genes were from pear and which were classified into four subgroups. Frequent single gene duplication events were found to have contributed to the formation of ADH gene clusters and the expansion of the ADH gene family in these eight Rosaceae species. Purifying selection was the major force in ADH gene evolution. The younger genes derived from tandem and proximal duplications had evolved faster than those derived from other types of duplication. RNA-Seq and qRT-PCR analysis revealed that the expression levels of three ADH genes were closely correlated with the content of aromatic compounds detected during fruit development.  相似文献   

4.
5.
6.
Extensive survey of the S‐locus diversity of plant species with RNase‐based gametophytic self‐incompatibility has failed to identify neutral variation segregating within S‐allele specificities. Although this is the expected result according to population genetics theory, it conflicts with recent models of S‐allele evolution, which suggest that new specificities might arise by a continuous process of subtle changes that individually do not alter the specificity of the S‐genes, but whose cumulative effects result in new S‐allele functions. Genomic analysis of S‐RNase sequences associated with the S104 (=S4, =Sb) allele of European pear (Pyrus communis L.) cultivars yielded two distinct variants (named herein S104‐1 and S104‐2) that differed at five nucleotide positions within the open reading frame, two of which resulted in changes in the predicted protein sequence. Test‐cross experiments indicated that the S‐alleles associated with the S104‐1 and S104‐2RNases exhibit the same pollen and pistil functions, suggesting that they are two neutral variants segregating within the S104 haplotype of European pear. These allelic forms might represent transitional states in the process of generating new specificities in the species, in accordance with models that predict S‐function transition through neutral intermediates. This possibility was further evaluated through the pattern of molecular evolution of functionally distinct European pear S‐RNases, which indicated that most recent S‐allele diversification in this species proceeded in the absence of adaptive selective pressure.  相似文献   

7.
8.
A new species, namely Pyrus cordifolia (P. sect. Pashia) is described as new to science, and two new records including P. tamamschianiae (P. sect. Pyrus) and P. theodorovii var. latifolia (P. sect. Argyromalon) are reported for the flora of Iran. These taxa are compared with their closest relatives. Photographs and a distribution map of these taxa as well as an illustration of the new species are presented. An identification key to members of P. sect. Pashia in Iran is provided.  相似文献   

9.
We studied the reproductive biology ofPrunus spinosa andPrunus mahaleb (Prunoideae, Rosaceae) in the northwest Iberian Peninsula. The two species flowered at the same time (peaking on March 9 and 11, respectively in 1990) but differ significantly in their fruit maturation times. Nectar volume peaked in the early morning in both species, and was ten times greater inP. spinosa than inP. mahaleb. Neither species shows apomixis, nor does fruit-set occur if pollinators are excluded. In both species self-pollination resulted in fewer fruits than open pollination. The principal pollinators belong to theApidae family (79% and 63% of visits toP. spinosa andP. mahaleb, respectively). Results are compared with those for other rosaceous plants with fleshy fruits.  相似文献   

10.
梨叶柄再生不定芽的研究   总被引:9,自引:0,他引:9  
研究获得了梨品种八月红和水晶的叶柄再生不定芽,不定芽由愈伤组织分化形成。诱导叶柄再生不定芽的适宜培养基为NN69+IBA0.5mg/L(八月红)或IAA0.5mg/L(水晶)+TDZ1.0mg/L+蔗糖30g/L+琼脂6.0g.。AgNO3浓度在0.1-1.5mg/L范围对八月红梨叶柄再生有促进作用,培养基中附加AgNO30.5mg/L八月红梨叶柄再生效率最高。  相似文献   

11.
12.
Thirteen polymorphic microsatellite loci were developed in the Japanese pear (Pyrus pyrifolia Nakai) by using an enriched genomic library. The obtained microsatellite loci showed a high degree of polymorphism in the Japanese pear with 3–6 alleles per locus. The average values of observed and expected heterozygosities among these 13 loci were 0.69 and 0.71, respectively. Ten microsatellites could successfully amplify loci in the European pear (Pyrus communis L.), which were highly polymorphic as well.  相似文献   

13.
14.
Unripe Spanish pears ( Pyras commanis L. ev. Blanquilla ) were ripened at 18°C for 5 and 10 days. Softening of the cortical tissues was associated with swelling of parenchyma cell walls from 1 to more than 5 μm in 10 day ripe pears, by which time the pears were over ripe. However, there was little indication of cell separation and the middle lamella could be detected between most cell walls. Furthermore, cell separation was constrained by regions rich in plasmodesmata where wall swelling was prevented. Parenchyma cells in the 500 μm of tissue underlying the epidermis did not undergo ripening-related changes to the same extent as those of the cortex. These cells, in combination with a sub-epidermal layer of lignified sclereid clusters, constituted a relatively tough and protective skin. Ripening of the cortical tissues was associated with a depletion of alcohol-insoluble pectic polysaccharides, as indicated by the decrease in arabinose and uronic acid. Analysis of alcohol-insoluble cell wall preparations enriched in either parenchyma or sclereid cell walls indicated that this change was predominantly associated with the parenchyma walls. Such changes were less prominent in the peel. The decrease in pectic polysaccharides was accompanied by an increase in their solubility. During ripening, the sclereid clusters of the cortex continued in develop, as indicated by an increase in their size and yield of cell wall xylose and glucose. Cortical parenchyma cells radiating from the sclereids were firmly attached to the lignified cells. This was due to lignification extending from the sclereids into the primary walls of the parenchyma cells. We conclude that dissolution of pectic polysaccharides is one of several factors which determine softening during ripening of Spanish pears.  相似文献   

15.
A multivariate morphometric study of the genus Pyrus in south-west Europe and North Africa shows that five species may be recognized in the area: P. bourgaeana Decne., P. communis L., P. cordata Dew., P. spinosa Forssk, and P. nivalis Jacq. Some valuable characters for identification of these species are proposed. In particular the width of fruit peduncle, petal size, leaf width and petiole length served to discriminate the taxa. Several names such as P. gharbiona Trab., P. cossonii Rehder (|M= P. longipes Balansa ex Coss. & Durieu) and P. boisseriana Buhse, are regarded as synonyms of P. cordata , while P. marnormis Trab. of P. bourgaeana. Consequently a check-list and a key to these species are provided.  相似文献   

16.

The “Nanguo” pear is a typically climacteric fruit and ethylene is the main factor controlling the ripening process of climacteric fruit. Ethylene biosynthesis has been studied clearly and ACC synthase (ACS) is the rate-limited enzyme. ACO (ACC oxidase) is another important enzyme in ethylene biosynthesis. By exploring the pear genome, we identified 13 ACS genes and 11 ACO genes, respectively, and their expression patterns in fruit and other organs were investigated. Among these genes, 11 ACS and 8ACO genes were expressed in pear fruits. What’s more, 4 ACS and 3ACO genes could be induced by Ethephon and inhibited by 1-MCP treatment. This study is the first time to explore ACS and ACO genes at genome-wide level and will provide new data for research on pear fruit ripening.

  相似文献   

17.
Pollen quality was assessed with cotton blue staining in an apomictic blackberry, Rubus nessensis W. Hall, on plants grown outdoors in a random arrangement under uniform conditions. Significant variation between populations may be attributed mainly to genetical factors. Most of the variation found between plants, sometimes even between ramets, within a population must, however, be environmentally caused, likewise the variation between flowers within the same plant.  相似文献   

18.
Pyrus betulaefolia Bunge, considered as an intermediate between oriental and occidental pear groups, is one of the most important wild pear species. The number of its populations is decreasing because of habitat destruction, fragmentation, and continuous exploitation, so protection and conservation measures are urgently needed. Assessment of its genetic diversity and phylogeography are imperative for its efficient conservation. Two chloroplast DNA intergenic fragments were used to detect genetic diversity and phylogeography of 320 individuals from 18 wild P. betulaefolia populations. Haplotype variation, genetic differentiation, and historical events of the populations were estimated. The results showed that P. betulaefolia populations sampled in northern China contained a high level of genetic diversity (H T?=?0.826). A significant isolation-by-distance value (r?=?0.587, P?<?0.001, 1,000 permutations) among all 18 populations indicated a correlation between genetic divergence and geographic distance. Four population groups were identified in a neighbor-joining tree based on the genetic distance. Analyses of molecular variation showed that the genetic variation mainly existed among population groups, representing 64.61 % of the total variation. Phylogeographic analyses indicated that the populations of P. betulaefolia experienced a scenario of rapid range expansion, which probably occurred between 608,000 and 204,580 years ago. Meanwhile, both the restricted gene flow with isolation by distance and allopatric fragmentation were crucial processes responsible for shaping the genetic patterns of P. betulaefolia. The occurrence of specific haplotypes might be ascribed to an ancestral introgression or joint retention of an ancestral polymorphism with other Pyrus species at the northern edge of the distribution of P. betulaefolia. Three populations displaying a high level of haplotype diversity and unique haplotypes were assumed to be relict populations of Quaternary glaciation and should have conservation priority. Three additional large populations should also be preferentially protected by building natural preservation zones.  相似文献   

19.
?Premise of the study: Pyrus calleryana Decne., an ornamental tree species introduced from China, is a relatively new invasive that has only recently begun to spread across the United States after intraspecific hybridization between cultivars. The function of such hybridization in the evolution of invasiveness is still relatively understudied, especially with respect to the initial establishment and persistence of invasive genotypes. Multiple introductions of genetically divergent populations or cultivars may benefit from new genetic combinations created during hybridization events and/or release from Allee effects in founder populations. ?Methods: We quantified the outcome of intraspecific hybridization between cultivars of P. calleryana in a common garden. Measures of the reproductive success and establishment ability of their early- and advanced-generation hybrid offspring were collected to assess the likelihood of particular cultivar genotypes to establish in invasive populations. These traits also were compared between cultivated and invasive parents to identify any generational differences in invasive potential. ?Key results: Differences were detected in measures of reproductive ability, but no group emerged as consistently more fecund. Advanced-generation hybrids also had significantly less biomass, indicating a reduction in hybrid performance relative to that of the cultivated progeny. ?Conclusion: Ultimately, this study indicates that increased spread of P. calleryana has been initiated by introduction of multiple cultivar types and subsequent widespread planting and is not the result of an inherent fitness advantage of hybrid progeny.  相似文献   

20.

Background and Aims

The possibility of using tree materials in early phenological stages, such as dormant buds and flowers, for the prognosis of Fe deficiency occurring later in the year has been studied in peach and pear trees.

Methods

Thirty-two peach trees and thirty pear trees with different Fe chlorosis degrees were sampled in different commercial orchards. In peach, samples included flower buds, vegetative buds, bud wood, flowers and leaves at 60 and 120?days after full bloom (DAFB). In pear, samples included buds, bud wood, flowers and leaves at 60 and 120?days DAFB. Leaf chlorophyll was assessed (SPAD) at 60 and 120 DAFB. Sampling was repeated for 3–5?years depending on the materials. Mineral nutrients measured were N, P, K, Ca, Mg, Fe, Mn, Zn and Cu.

Results

The relationships between the nutrient concentrations in the different materials and leaf SPAD were assessed using four different statistical approaches: i) comparison of means depending on the chlorosis level, ii) correlation analysis, iii) principal component analysis, and iv) stepwise multiple regression. In all cases, significant associations between nutrients and SPAD were found. The best-fit multiple regression curves obtained for the multi-year data set provided good prediction in individual years.

Conclusions

Results found indicate that it is possible to carry out the prognosis of Fe chlorosis using early materials such as buds and flowers. The relationships obtained were different from those obtained in previous studies using a single orchard. The different methods of analysis used provided complementary data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号